Nitric Oxide Treatment for Lungs and Beyond

Novel Insights from Recent Literature
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Nowadays, inhaled nitric oxide (iNO) is commonly used oft-label as
a pulmonary vasodilator for treatment of pulmonary hypertension
in adults (2). Although devoid of systemic hemodynamic effects,
iNO has recently been shown to have protective properties in the
context of ischemia-reperfusion injury (IRI) of the brain, heart,
and kidneys (3-9). These beneficial effects could be mediated by
circulating NO metabolites such as nitrite, nitrate, S-nitrosothiol
(RSNO), N-nitrosamine, nitrosylheme (NO-heme) (10), and
nitrosylated plasma proteins.

Recently, Nagasaka and colleagues assessed the pharmacokinetics
of NO metabolites in peripheral organs after iNO, and
the preconditioning effects of iNO and NO metabolites, in a murine
model of myocardial IRI (1). The study consisted of two sets of
experiments. In the first study, mice were randomized to breathe
either 80 ppm of iNO or air for 1 hour. Animals were killed at
different time points after the cessation of gas administration to
characterize the decay of the concentrations of different NO
metabolites within peripheral organs. NO metabolite concentrations
were obtained from samples of blood, urine, and pathologic
specimens (kidney, liver, lung, brain, and heart tissue).

In the second study, mice were randomized to breathe either 80
ppm of iNO or air for 1 hour. A model IRI was obtained by closing
the left anterior descending coronary artery for 1 hour with a
surgical knot. Twenty-four hours after the reperfusion, the mice
were killed, and the hearts were inspected to determine the ratio
of the areas at risk for IRI to the infarcted area.

No changes in plasma nitrite concentrations were reported.
Nitrate, RSNO, N-nitrosamine, and NO-heme increased in all

organs assessed, with the exception of the brain. The elevated NO
metabolites lasted longer in the tissue than in the plasma and in
the red blood cells, and decay profiles were metabolite organ
specific.

The mice that received iNO showed an infarcted area/area at
risk ratio which was decreased by 30%, confirming the protective
effect of NO against IRI observed in previous studies (3, 8,9, 11). In
the heart, the only NO metabolites that increased were RSNO and
NO-heme. The authors concluded that the storage of long-lasting
NO metabolites within myocardial tissue allowed local release
of NO during the vascular occlusion, activating protective
antiinflammatory and antioxidant pathways.
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Janssens and colleagues (12) recently conducted a randomized,
double-blind, multicenter phase II study to investigate whether the
off-label use of iNO reduces IRI (13) in patients with ST-elevation
myocardial infarction after successful percutaneous coronary
intervention. The authors randomized 250 adult patients to receive
either 80 ppm of iNO (n=123) or a placebo (n=127) through a
facemask for 4 hours upon arrival in the catheterization laboratory.
The primary endpoint was the difference in infarct size between the
iNO and control groups. Infarct size was defined as a percentage of
affected tissue relative to the left ventricular mass at 48-72 hours.
A subgroup analysis was also performed to explore the possible
interaction effect of intraprocedural use of nitroglycerin in patients
receiving iNO.

The authors reported that iNO did not decrease infarct size/left
ventricular mass, the primary endpoint, at 48-72 hours
(18.0 = 13.5% vs. 19.4 * 15.4%, iNO vs. placebo, respectively;
P=0.427). In the subgroup analysis assessing the effects of
nitroglycerin administration during coronary angioplasty, the
authors found a statistically significant benefit in both primary and
secondary endpoints only in nitroglycerin-naive patients receiving
iNO and no benefit in patients receiving a combination of iNO and
nitroglycerin. Among other secondary endpoints was measurement
of left ventricular dimensions: patients who were enrolled in the
iNO group had smaller left ventricular dimensions (P=0.048) at
4 months than patients receiving the placebo.

This study provides insights into the cardioprotective
mechanisms of NO. Although NO has a very short half-life in the
blood, NO metabolites have the ability to transfer NO molecules
from the lungs to peripheral tissues, where their benefits may be
exerted (1). The results of this trial suggest that additional iNO
might not add beneficial effects already conferred by nitroglycerin,
an NO donor. It is unlikely that a higher dose of NO could lead to
different results (11), but it is possible that earlier administration of
the gas during the ischemic phase may play an important role in
protecting the myocardium from IRI (9).

In a select group of nitroglycerin-naive patients, iNO seemed to
reduce infarct size, revealing an extrapulmonary protective effect, as
previously shown in animals (14). On the basis of these results,
it can also be hypothesized that iNO could be used instead of
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nitroglycerin when a patient’s hemodynamics preclude the use
of nitroglycerin. For safety and when applicable, NO gas in the
environment should be monitored to avoid unnecessary
exposure of personnel (or patients not involved with the
treatment).
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James and colleagues investigated the benefits of the off-label use
of NO delivery via the cardiopulmonary bypass (CPB) oxygenator
in children with congenital heart disease undergoing cardiac
surgery (15). Their data showed that 101 children who received
20 ppm of NO developed low cardiac output syndrome less
frequently (15% vs. 31%; P=0.007) than the 97 children who did
not receive NO. This effect was most significant in children
younger than 6 weeks of age (20% vs. 52%; P=0.012) and in
those aged 6 weeks to 2 years (6% vs. 24%; P=0.026). In
addition, the latter group had a significantly reduced ICU length
of stay (43 vs. 84 h; P=0.031). Extracorporeal membrane
oxygenation was used less often in the NO group (1% vs. 8%;
P=0.014).

To interpret the results of this study, one should consider the
following limitations: first, 40% of eligible patients were not
included (198 of 490); second, the perfusionist was not blinded to
group allocation for safety reasons; and third, this was a single-
center investigation. Local practices related to anesthesia, CPB,
surgery, extracorporeal membrane oxygenation deployment, and
postoperative care might have influenced outcomes, limiting the
general applicability of the study.

The authors suggested possible beneficial mechanisms of
breathing NO in pediatric patients undergoing cardiac surgery.
First, prolonged procedures requiring CPB are associated with
progressively higher degrees of hemolysis (16), causing the release of
free hemoglobin (17) and increase of NO inhibitor asymmetric
dimethylarginine (18). The dioxygenation reaction with the free
hemoglobin together with the inhibition of the endothelial NO
synthetase causes vascular NO depletion, leading to endothelial
dysfunction and vasoconstriction (19, 20). Supplementing NO into
the CPB circuit could reduce NO consumption (21), possibly
decreasing postoperative systemic and pulmonary vascular resistance
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and thus improving ventriculoarterial coupling, cardiac output, and
organ perfusion (22). Second, CPB could induce systemic
inflammation due to IRI, which could contribute to myocardial
dysfunction (23) and to further decrease in endogenous
NO production (24, 25). In this setting, iNO could exert
immune modulation and limit myocardial
dysfunction (4).

This study adds further evidence to the potential
cardioprotective properties of supplemental NO gas
during cardiac surgery (15, 26-28). Multicenter, definitive
phase III trials should test whether supplementation of NO
improves survival in pediatric and adult patients undergoing
CPB surgery.
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Conclusions

These three studies lead to the following considerations. First,
plasma and red blood cells are a systemic circulating storage of NO
metabolites that deliver and receive NO species to and from several
organs. Second, the preconditioning effect in the heart is carried by
stored RSNO and NO-heme, long-lasting NO metabolites acting as
NO donors. Thus, to maximize cardioprotection, iNO must be
delivered before the start of an ischemic insult to increase
concentration of RSNO and NO-heme within cardiac tissue.
Theoretically, iNO targets and NO metabolites might exploit the
preconditioning effects by enhancing either cyclic guanosine
monophosphate-dependent (29) or cyclic guanosine
monophosphate-independent pathways (30). Future trials might
consider whether inhalation of NO has similar protective
properties for other systemic organs.
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