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Abstract

Modern mass spectrometry now permits genome-scale and quantitative measurements of 

biological proteomes. However, analysis of specific specimens is currently hindered by the 

incomplete representation of biological variability of protein sequences in canonical reference 

proteomes and the technical demands for their construction. Here, we report ProteomeGenerator, a 

framework for de novo and reference-assisted proteogenomic database construction and analysis 

based on sample-specific transcriptome sequencing and high-accuracy mass spectrometry 
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proteomics. This enables the assembly of proteomes encoded by actively transcribed genes, 

including sample-specific protein isoforms resulting from non-canonical mRNA transcription, 

splicing, or editing. To improve the accuracy of protein isoform identification in non-canonical 

proteomes, ProteomeGenerator relies on statistical target–decoy database matching calibrated 

using sample-specific controls. Its current implementation includes automatic integration with 

MaxQuant mass spectrometry proteomics algorithms. We applied this method for the 

proteogenomic analysis of splicing factor SRSF2 mutant leukemia cells, demonstrating high-

confidence identification of non-canonical protein isoforms arising from alternative transcriptional 

start sites, intron retention, and cryptic exon splicing as well as improved accuracy of genome-

scale proteome discovery. Additionally, we report proteogenomic performance metrics for current 

state-of-the-art implementations of SEQUEST HT, MaxQuant, Byonic, and PEAKS mass spectral 

analysis algorithms. Finally, ProteomeGenerator is implemented as a Snakemake workflow within 

a Singularity container for one-step installation in diverse computing environments, thereby 

enabling open, scalable, and facile discovery of sample-specific, non-canonical, and neomorphic 

biological proteomes.
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INTRODUCTION

Functional analysis of physiologic and pathologic cell activities requires accurate and 

complete identification and quantification of all involved effector molecules. Such global 

studies are principally based on the decoding and assembly of the human genome.1,2 Recent 

advances in messenger RNA (mRNA) sequencing and bioinformatics now enable the routine 

analysis of biological gene expression.3–5 However, direct and proteome-wide studies of 

proteins and their biological variation remain confined to specialized approaches.6–8

Cifani et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2019 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Modern mass spectrometry now permits genome-scale and quantitative measurements of 

cellular proteomes.9–13 This approach is based on mass spectrometric analysis of peptides, 

generated by proteolysis of proteomes, followed by matching their observed fragmentation 

spectra with the corresponding amino acid sequences.14,15 Generally, this is accomplished 

using statistical peptide–spectrum matching techniques that leverage scoring functions to 

assess the similarity of observed and theoretical mass spectra,16 with the corresponding 

confidence of spectral identification expressed as a global false discovery rate (FDR), 

estimated using target–decoy approaches.17

Peptide identification using peptide-spectrum matching (PSM) and target–decoy FDR 

estimation is based on the fundamental assumption that mass spectrometry search databases 

contain a complete and accurate list of all potential protein sequences. Consequently, the 

sensitivity and specificity of peptide identification depend on the fidelity of the target and 

decoy databases. Advances in genome analysis and assembly have led to the development of 

high-quality databases of consensus protein sequences such as UniProt and RefSeq.1,2,18,19 

However, germline and somatic genetic variants, mRNA splicing, and other biological 

processes can diversify polypeptide sequences, thereby generating sequence variants that are 

not catalogued in the consensus or canonical databases.20,21 These sources of proteome 

variation are particularly prevalent in human cancers, which frequently present structural 

aberrations in genes and dysregulation of their expression,22–24 ultimately hindering the 

analysis of cancer proteomes based on reference consensus databases.

In principle, proteogenomic approaches that integrate genome and transcriptome sequencing 

data with mass spectrometric protein analysis can overcome this limitation by generating 

sample-specific target databases for proteomic analysis that more accurately reflect the 

expressed proteome.25–31 Such an approach was first introduced to support gene annotation 

using proteomic data32 and has since become a powerful tool for quantitative and integrative 

studies.30,33–38 In addition, related approaches were recently developed for cancer 

biology39–44 and immunology studies.45

Specifically, sequences of expressed gene transcripts obtained by high-throughput 

sequencing of mRNA (RNA-seq) are a convenient source for proteogenomic sample-specific 

database construction for two main reasons: (i) these measurements reflect sequence 

variability introduced by transcriptional and post-transcriptional processes, and (ii) 

restriction of the mass spectral match search space to the specifically expressed proteins can 

improve its sensitivity and accuracy, particularly as compared with proteins predicted from 

translation of all possible reading frames.46

Based on this rationale, several approaches have recently been developed to generate 

customized mass spectrometry search databases from RNA-seq data.28,44,47–49 However, 

sensitivity and accuracy of proteogenomic detection of neomorphic and non-canonical 

proteins remain limited by the under-sampling of rare peptides and challenges in the 

generation of sample-specific databases from non-strand-specific short-read RNA-seq data.
25–27 Furthermore, while reference sequence databases such as UniProt are manually curated 

to improve accuracy,18 automated workflows are needed to enable facile sample-specific 

proteogenomic analyses at scale.
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Here, we describe ProteomeGenerator, an open, modular, and scalable framework for de 

novo and referenced proteogenomic database construction and analysis written in the 

Snakemake workflow management system and implemented using Singularity for one-step 

installation in diverse computing environments. We controlled the accuracy of peptide–

spectrum matching using sequence and spectral decoys and used this method to assess the 

performance of four state-of-the-art mass spectrometry search algorithms. Lastly, we used 

ProteomeGenerator for genome-scale proteomic analysis of splicing factor mutant leukemia 

cells based on the integration of deep mRNA sequencing and multidimensional high-

capacity chromatography. This led to the high-confidence identification of non-canonical 

protein isoforms arising from alternative transcription start sites, intron retention, and cryptic 

exon splicing as well as improved accuracy of genome-scale proteome discovery as 

compared with conventional approaches.

EXPERIMENTAL SECTION

Reagents

Mass spectrometry grade (Optima liquid chromatography–mass spectrometry, LC–MS) 

water, acetonitrile (ACN), and methanol were purchased from Fisher Scientific (Fair Lawn, 

NJ). Formic acid of >99% purity (FA) was obtained from Thermo Scientific. All other 

reagents at MS-grade purity were obtained from Sigma-Aldrich (Saint Louis, MO).

Cell Culture

Human K052 cells were obtained from the Japanese Collection of Research Bioresources 

Cell Bank, identity confirmed using STR genotyping (Genetica DNA Laboratories, 

Burlington, NC), and cultured as described.50 Cells were collected while in the exponential 

growth phase, washed twice in ice-cold phosphate-buffered saline, snap-frozen, and stored at 

−80 °C.

mRNA Sequencing

RNA was extracted using QIAGEN RNeasy columns (Qiagen, Valencia, CA). Poly(A)-

selected, unstranded Illumina libraries were prepared with a modified TruSeq protocol, and 

0.5× AMPure XP beads (Beckman Coulter, Indianapolis IA) were added to the sample 

library to select for fragments of <400 base pairs (bp), followed by 1× beads to select for 

fragments of >100 bp. These fragments were then amplified via polymerase chain reaction 

(15 cycles) and sequenced on the Illumina HiSeq 2000 (100 000 000, 2 × 49 base-pair reads 

per sample).

ProteomeGenerator

ProteomeGenerator is written in Snakemake,51 a scalable, Python-based workflow 

management system (Figure 2). The entire workflow is available for download at https://

github.com/jtpoirier/proteomegenerator. ProteomeGenerator ingests RNA-seq data, which is 

aligned to a reference genome by the STAR splice aware aligner (version 2.5.2a).52 Aligned 

reads are subsequently filtered to exclude low-quality and poorly mapping reads using 

Samtools (version 1.3).53 A sample-specific transcript model is then assembled either de 

novo or with assistance from reference transcript model if one is available using StringTie 
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(version 1.3.3b),54 with simultaneous filtering for transcripts with coverage of ≥2.5, length 

of ≥300 base pairs, and abundance of ≥1% of expressed transcripts for a given gene. All 

resulting transcript models are then merged with StringTie using an expression threshold of 

one transcript per million with permissive intron inclusion. The resulting merged transcript 

model is then used to generate corresponding cDNA sequences using gffread (version 0.9.8). 

The longest uninterrupted open reading frame is detected within each cDNA using 

TransDecoder (version 2.1, https://github.com/TransDecoder).55,56 Shorter open reading 

frames with low expected values when searched against the UniProt database using BLAST 

(version 2.2.31) are retained.57 The predicted longest open reading frames are subsequently 

mapped back to genomic coordinates and translated to their respective unique peptide 

sequences. Peptides assigned to mass spectra are mapped back to their genomic coordinates 

using ProteomeGenerator for visualization in the Integrative Genomics Viewer.57 Unique 

tryptic peptide search space was calculated for each database using the EMBOSS58 tool 

pepdigest and filtered to include all peptides of at least 6 amino acids in length having a 

molecular weight between 600 and 4000 Da. ProteomeGenerator is distributed with a 

Singularity container,59 allowing for one-step installation in diverse computing 

environments. In addition, its current distribution automatically includes the MaxQuant mass 

spectrometry analysis algorithm.

Databases

Consensus protein sequences databases were downloaded from UniProt18 as of January 

2016 (Homo sapiens SwissProt database including isoforms), September 2015 

(Archaebacteria loki), and June 2014 (Escherichia coli). Contaminant sequences were 

retrieved from cRAP60 as of June 2014. For comparisons, proteogenomic databases were 

also generated using QUILTS27 using GRCh38 as reference genome, variant quality 

threshold of 0, and thresholds for supporting reads for novel splice junctions as 2 for “both 

boundaries annotated”, 3 for “left boundary annotated”, and 3 for “no boundary annotated.”

Proteome Extraction and Proteolysis

Protein extraction and proteolysis was performed as previously described.61 Briefly, frozen 

cell pellets were thawed on ice, resuspended in 6 M guanidinium hydrochloride and 100 mM 

ammonium bicarbonate at pH 7.6 (ABC), and lysed using the E210 adaptive focused 

sonicator (Covaris, Woburn, CA). The protein content in cell lysate was determined using 

the BCA assay according to the manufacturer’s instructions (Pierce, Rockford, IL). Upon 

reduction and alkylation, proteomes were digested using 1:100 w/w (protease:proteome) 

LysC endopeptidase (Wako Chemical, Richmond, VA) and 1:50 w/w MS sequencing-grade 

modified trypsin (Promega, Madison WI). Digestion was stopped by acidifying the reactions 

to pH 3 using formic acid (Thermo Scientific), and peptides were subsequently desalted 

using solid-phase extraction using C18 Macro Spin columns (Nest Group, Southborough, 

MA).

High-Resolution Peptide Chromatography

Peptide chromatographic fractionation was performed using the Alliance e2695 high-

performance liquid chromatograph (Waters, Milford MA). High-pH reversed-phase 

separation was performed using the Xselect CSH 3.0 mm × 150 mm column (Waters, part 
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no. 186006728) at a constant flow-rate of 250 μL/min. After an initial equilibration at 100% 

buffer A (50 mM ammonium hydroxide in water, pH 10) for 5 min, peptides were resolved 

by a 75 min 0–70% gradient of buffer B (80% ACN in water, pH 10), followed by 10 min at 

100% buffer B. The eluate was collected in 0.5 mL aliquots using a fraction collector 

between 25 and 75 min, lyophilized to dryness in a vacuum centrifuge, and stored at −80 °C 

until analysis. Before LC–MS analysis, peptides were resuspended in 20 μL of 0.1% formic 

acid in water, and 2 μL were analyzed.

Strong cation exchange chromatography was performed using the Xselect Hi Res SP, 7 μm, 

4.6 mm × 100 mm column (Waters, part no. 186004930) at a constant flow-rate of 500 μL/

min. After an initial equilibration at 100% buffer A (0.1% formic acid, 5% ACN) for 5 min, 

peptides were resolved by a 80 min 0–30% gradient of buffer B (1 M KCl, 5% ACN), 

followed by 5 min of gradient 30–50% buffer B and a final hold for 5 min at 100% buffer B. 

The eluate was collected in 1 mL aliquots using a fraction collector between 25 and 85 min 

and lyophilized to dryness in a vacuum centrifuge. Pellets were solubilized in 0.3 mL of 

0.1% aqueous formic acid, and peptides were desalted using solid-phase extraction with C18 

Macro Spin columns (Nest Group). SPE eluates were lyophilized and stored at −80 °C until 

analysis. Before LC–MS analysis, peptides were resuspended in 20 μL of 0.1% formic acid 

in water, and 2 μL were analyzed.

Nanoscale Liquid Chromatography

Nanoscale liquid chromatography experiments were performed using the Ekspert NanoLC 

425 chromatograph (Eksigent, Redwood City, CA), equipped with an autosampler module, 2 

10-port and 1 6-port rotary valves, and 1 isocratic and 2 binary pumps. Column fabrication 

were performed as previously described.62 Briefly, samples were initially aspirated into a 10 

μL PEEK sample loop. Chromatographic columns were fabricated by pressure filling the 

stationary phase into silica capillaries fritted with K-silicate. Reversed-phase columns were 

fabricated by packing Reprosil 1.9 μm silica C18 particles (Dr. Meisch, Ammerbuch-

Entringen, Germany) into 75 μm × 40 cm fritted capillaries. Trap columns were fabricated 

by packing Poros R2 10 μm C18 particles (Life Technologies, Norwalk, CT) into 150 μm × 

4 cm fritted capillaries. Vented trap-elute architecture was used for chromatography.63 

Peptides were resolved by reversed-phase chromatography hyphenated to the 

nanoelectrospray ion source. Upon valve switching to connect the trap column in line with 

the analytical reverse-phase column and ion emitter, the pressure was equilibrated at a flow 

of 250 nL/min for 5 min in 5% buffer B (ACN, 0.1% FA) in buffer A (water, 0.1% FA). 

Subsequently, a 120 min (high-pH reverse-phase samples) or 180 min (SCX samples) linear 

gradient of 5–40% of buffer B was used to resolve peptides, followed by a 5 min 40–80% 

gradient prior to column wash at 80% buffer B for 30 min.

Nanoelectrospray Ionization and Orbitrap Mass Spectrometry

Electrospray emitters with terminal opening diameter of 10 μm were obtained from New 

Objective (Woburn, MA). The emitter was connected to the outlet of the reverse-phase 

column using a metal union that also served as the electrospray current electrode. 

Electrospray ionization was achieved using constant 1700 V voltage. During column 
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loading, the electrospray emitter was washed with 50% aqueous methanol using the 

DPV-565 PicoView ion source (New Objective).

For all measurements, we used the Orbitrap Fusion mass spectrometer (Thermo Scientific, 

San Jose, CA). Precursor scans in the 400–2000 Th were performed in the orbitrap detector 

at 120 000 resolution, with 100 ms maximum injection time and automatic gain control set 

at 105 ions. Fragment spectra were recorded in the linear ion trap in rapid mode, with a 

maximum injection time of 75 ms and target of 104 ions and 1.2 Da quadrupolar precursor 

selection.

Data Analysis

Peptide–spectral matching calculations were performed using a custom-built computer 

server equipped with 4 Intel Xeon E5–4620 8-core CPUs operating at 2.2 GHz and 512 GB 

physical memory (Exxact Corporation, Freemont, CA). Peptide– spectral matching was 

performed using SEQUEST HT and Percolator16,64,65 as part of Proteome Discoverer 

version 2.1.0.81 (Thermo Scientific), Byonic version 2.7.84,66,67 MaxQuant version 

1.5.4.1,68,69 and PEAKS version 8.0.70 The Linux-compatible version of MaxQuant71 was 

version 1.6.2.3. For all searches, MS1 and HCD MS2 mass tolerances were set to 10 ppm 

and 0.6 Da, respectively. Cysteine carbamidomethylation was set as fixed, while methionine 

oxidation and glutamine and asparagine deamidation were set as variable modifications, 

with a maximum of three variable modifications per peptide. Only peptides containing 7–35 

residues and up to 2 missed trypsin cleavages were considered. Tryptic peptides observable 

by mass spectrometry were predicted based on proteome composition using the generate-

peptides utility of Crux.72 ProteomeGenerator is openly available at https://github.com/

jtpoirier/proteomegenerator.

RESULTS AND DISCUSSION

ProteomeGenerator for Deep Genome-Scale Transcriptomic and Proteomic Integration

To facilitate proteogenomic analysis, we developed a computational framework, termed 

ProteomeGenerator, which automates proteomic analysis using sample-specific protein 

sequences databases. ProteomeGenerator is programmed in the Snake-make workflow 

management system for open, modular, and scalable analysis. The software is packaged 

using the Singularity software container to enable one-step installation in diverse computing 

environments.59 ProteomeGenerator first generates a sample-specific protein sequence 

database using high-coverage RNA-seq data based on de novo or referenced transcriptome 

assembly (Figure 1). This sample-specific proteome is then automatically set as the target 

database for peptide and protein isoform identification using statistical target–decoy 

database matching. In this work, identification specificity was also controlled by using 

spectrally calibrated sample-specific controls, and the sensitivity of mass spectrometric 

identification was enhanced by leveraging high-resolution nanoscale chromatography.

We applied this method to analyze human K052 leukemia cells harboring splicing factor 

SRSF2 mutations, which were recently described to cause recurrent mRNA mis-splicing and 

are therefore expected to express non-canonical and neomorphic protein isoforms.50 First, 
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we extracted mRNA and obtained high-coverage RNA-seq data of nearly 60 million reads 

by Illumina sequencing. ProteomeGenerator processed the raw sequencing reads in the 

following steps: (i) two-pass splice aware alignment to the user-supplied reference genome 

(in this case, GRCh38); (ii) assembly of possible transcript isoforms using StringTie assisted 

by the user-supplied transcript model (in this case, GENCODE version 20); (iii) prediction 

of the longest open reading frame for each possible transcript; and (iv) generation of 

FASTA-formatted proteogenomic database composed of unique protein sequences (Figure 

2). Finally, we integrated the MaxQuant algorithm in the current distribution to automate 

proteomic analysis using the sample-specific database as the target for peptide–spectral 

matching.

The constructed K052 cells-specific proteogenomic database, to which we refer as PGX, 

consisted of 17 348 protein entries and was expected to produce 743 148 observable tryptic 

peptides with lengths between 7 and 35 residues, assuming 1 missed trypsin cleavage 

(Figure 3A,B). For comparison, the canonical reference human proteome in the UniProt 

database (SwissProt database including isoforms, as of March 2016) contained 42 123 

proteins corresponding to 1 460 257 mass spectrometry observable tryptic peptides. The 

PGX database contained 37 158 peptides with no counterparts in UniProt, presumably 

originating from novel predicted protein isoforms specific for splicing factor mutant K052 

cells and, consequently, not annotated in UniProt. The PGX database was approximately 

51% smaller than UniProt with respect to mass spectrometry observable peptides, 

presumably because it contained only the expressed protein isoforms rather than the protein 

complement of all canonical protein isoforms as in the case of canonical reference 

proteomes.

We compared the sample-specific database assembled by ProteomeGenerator to that 

produced using the QUILTS method.27 The K052 proteome predicted by QUILTS contained 

201 718 protein sequence variants (using UniProt as reference), corresponding to 559 015 

theoretically observable tryptic peptides (Figure S1). Considering only the predicted 

peptides not mapping in the UniProt database, QUILTS identified 544 331 non-canonical 

peptides as compared to 56 397 identified using ProteomeGenerator, with only 1440 (2.5%) 

peptides predicted by both methods. While accounting for canonical isoforms contained in 

UniProt, ProteomeGenerator exhibited a 63% decrease in variant sequences compared to 

QUILTS (Figure S1).

Genome-Scale Mass Spectrometry Proteomics

In parallel to transcriptome sequencing, the proteome of the same K052 cell population was 

analyzed by bottom-up mass spectrometry coupled to high-resolution, multidimensional 

chromatography to improve the detection of low abundance and rare peptides, whose 

selection for fragmentation was previously found to be limited by the finite sampling rate of 

current mass spectrometers.27 Tryptic peptides were generated using sequential LysC and 

trypsin proteolysis and fractionated off-line using high-pH reversed-phase (hRP) and strong-

cation exchange (SCX) chromatography, leveraging the orthogonality of these separation 

modes to reverse-phase under acidic conditions.74 Each peptide fraction was then resolved 

by high-resolution nanoscale reverse-phase chromatography hyphenated via a 
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nanoelectrospray ion source to the mass spectrometer. This strategy enabled the generation 

of a total of 2.8 million fragmentation spectra. To assess sampling efficiency, we used 

statistical database matching against UniProt to identify unique peptides and proteins at 1% 

FDR. Using a subsampling analysis, we observed that this strategy indeed maximized the 

sensitivity of detection of canonical proteins, though peptide sampling was apparently 

incompletely saturated (Figure S2A). Thus, high-resolution chromatography coupled with 

high-accuracy mass spectrometry and high-coverage transcriptome sequencing is suitable for 

genome-scale proteogenomics. Likewise, we found that high-coverage mRNA sequencing 

apparently saturated sampling of unique sequence reads obtained by transcriptomic analysis 

(Figure S2B).

Scoring Function Selection for Sensitive, Accurate, and Efficient Proteogenomic 
Discovery Using Spectral-Match Calibration

Having obtained genome-scale mass spectrometry data and the transcriptome-derived PGX 

database, we next sought to confirm accuracy of algorithms for scoring peptide–spectral 

matches and estimating FDR confidence. Such algorithms should ideally not only maximize 

sensitivity (i.e., the fraction of identified spectra) but also ensure high specificity, 

particularly when searching non-curated proteogenomic target databases that may contain 

erroneous sequences. To empirically assess sensitivity and specificity of these algorithms, 

we introduced two negative controls:75,76 (i) a set of mass spectra from a nonhuman 

proteome (E. coli) recorded under identical experimental parameters as the human K052 

proteome, and (ii) a set of protein sequences from an evolutionarily divergent nonhuman 

species with minimal identity to the human proteome (in this case, the recently published 

proteome of A. loki archaebacteria).77 The negligible homology between the control E. coli 
and A. loki proteomes with the human one was confirmed by direct comparisons of the 

predicted tryptic peptides generated from each assembly (Figure 4A,B). Furthermore, we 

confirmed that the proteomes used as controls did not exhibit substantially different amino 

acid composition as compared to the human proteomes and were expected to produce tryptic 

peptides of similar lengths (based on frequency of K and R residues) and physicochemical 

properties (Figure S3).

For mass spectrometry search algorithms, we used four current state-of-the-art programs, 

chosen for their distinct methods for candidate sequence selection and FDR estimation: 

Sequest HT with Percolator as part of Proteome Discoverer,16,64,65 Byonic,66,67 MaxQuant,
68,69 and PEAKS.70 For benchmarking purposes, we searched the experimental human K052 

and negative control bacterial E. coli mass spectra against a concatenated database 

containing PGX and UniProt human databases, supplemented with sequences of negative 

control archaebacterial A. loki proteome and of common contaminants from cRAP.60 All 

searches were performed using identical search parameters at FDR < 0.01 at PSM, peptide, 

and protein level, as enabled by the specific algorithms. We assessed sensitivity based on the 

number of bona fide correct peptide identifications, mapping to either human or common 

contaminant proteins (Figure 4C and Table S1). We observed that Sequest HT, MaxQuant, 

and PEAKS had similar sensitivity, while Byonic showed superior sensitivity, as measured 

by the number of identified peptides mapping to the target database.
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We estimated specificity based on the fraction of incorrect peptide identifications, 

corresponding to human sequences identified from E. coli spectra, or experimental human 

spectra matched to archaebacterial A. loki sequences (Figure 4D). Because of the difference 

in size between H. sapiens and A. loki proteomes, the latter could not be used directly as 

decoy database for conventional FDR calculation. However, to confirm accuracy of false-

positive rate estimation by the target–decoy strategy, we empirically estimated the FDR by 

multiplying the number of observed incorrect PSMs by the ratio of the number of theoretical 

tryptic peptides in the H. sapiens and A. loki proteomes. This demonstrated that the 

empirical FDR deviated from the expected value of 1% using all tested mass spectrometry 

matching algorithms. In particular, the FDR appeared to be underestimated using Sequest 

HT, Byonic, and MaxQuant (all producing empirical FDR values in the 1.7–2.1 range), and 

over-estimated by PEAKS. In particular, Sequest and MaxQuant, which predominantly rely 

on accurate precursor mass measurements, were preferentially susceptible to in-correctly 

match human spectra to A. loki sequences, while Byonic and PEAKS, which prioritize 

candidate peptides based on de novo sequence tags, were more prone to incorrectly match 

decoy E. coli spectra to human sequences. Thus, in the context of proteogenomic analyses, 

in which the accuracy of the target database may be difficult to control, the latter approaches 

may be preferable. Despite its superior sensitivity and accuracy, the currently available 

implementation of PEAKS is not compatible with shared high-performance computing 

environments. Instead, the fully automated version of ProteomeGenerator uses the recently 

released Linux implementation of MaxQuant.71

Identification of Non-canonical Protein Isoforms Using ProteomeGenerator

Compelled by the superior accuracy of PEAKS, we next compared the peptides from K052 

cells proteome identified using this algorithm against either PGX (i.e., the .fasta database file 

generated by ProteomeGenerator) or UniProt databases. All analyses were performed with 

identical search parameters, and global FDR < 0.01 at the PSM level. Based on the same set 

of 2 736 597 fragmentation spectra, we observed 611 275 and 621 960 peptide–spectrum 

matches (22% PSM rate) when searching PGX and UniProt databases, respectively (Figure 

5A and Tables S2 and S3).

Most of these PSMs defined peptide sequences that were shared between the two databases 

(97% and 94% of the total PGX and UniProt identifications, respectively Figure 5B), and 

showed nearly identical confidence of identification (Figure 5C). A total of 7134 peptides 

were uniquely identified when searching against UniProt, although 999 (14%) of these 

sequences were encoded in the proteogenomic database. It is possible that the absence of 

these peptides was due to the limited sensitivity of mRNA sequencing, as previously 

described for analysis of HeLa and NCI-60 cells.13,78–81 The specific identification of the 

peptides encoded in the PGX database suggests that the greater diversity of sequences in 

UniProt may be due to the incorrect matching of homeometric peptides.82 This is consistent 

with the greater number of nearly isobaric theoretical peptides in UniProt, as compared to 

the proteogenomic database (Figure S4).

To compare the efficiency of ProteomeGenerator and QUILTS, we concatenated each 

database with the canonical UniProt human proteome and used it to score K052 spectra 
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(Figure S5). ProteomeGenerator had a 3-fold higher number of discovered non-canonical 

peptides compared to QUILTS (2340 versus 752 peptides, respectively). In addition, 30% of 

the non-canonical peptides identified using QUILTS were also detected by 

ProteomeGenerator, indicating that, at least with respect to this comparison, 

ProteomeGenerator has similar sensitivity and superior specificity as QUILTS (Figure S5B).

The 3445 identified peptides unique to the proteogenomic database originated from 

inclusion of sample-specific protein sequences as well as increased statistical power of 

database spectral matching produced by the reduced search space,7 as was recently reported 

in proteogenomic context.80,81 In particular, we observed that 30% of peptide sequences 

specifically identified against the PGX database had no apparent counterparts in UniProt. 

However, 70% (2411 out of 3445) of PGX-specific identified peptides were apparently the 

result of increased statistical power. In particular, we observed that the reduced size of the 

sample-specific PGX database led to a lower PSM score threshold as compared with 

searches against Uniprot, as the score cutoff corresponding to FDR < 0.01 was 18.5 and 18.7 

for searches against PGX and UniProt, respectively (Figure 5D–F). Supporting this idea, we 

noticed that searches against individual proteogenomic and canonical databases had superior 

sensitivity compared with searches against concatenated databases (Figure S5C).

To identify non-canonical protein isoforms, we analyzed the subset of peptides with 

sequences not mapping in UniProt, as prioritized based on the apparent statistical confidence 

of their identifications (PEAKS PSM score of >50). Analysis of these sequences using 

BLAST indicated that the majority (94%) mapped to isoforms annotated in the non-

reviewed section of UniProt or RefSeq (Table S4). Notably, we also identified peptides 

corresponding to previously un-annotated isoforms of APH (APEH), YB-1 (YBX1), and 

MUNC13D (UNC13D). These isoforms were found to be consistent with alternative 

splicing and intron retention for APEH and MUNC13D (Figures 6A,B and S4), and peptide 

identification was confirmed by manual inspection of the mass fragmentation spectra 

(Figures 6C and S2).

In the case of APEH, the non-canonical N-terminal domain produced by apparent intron 

retention was detected by mass spectrometry from two unique and independent peptides, 

including one spanning the non-canonical splice junction. Because no peptides 

corresponding to this region were detected from the canonical isoform, we used the total ion 

current of the fragmentation spectrum associated with this PSM to estimate the differential 

abundance of the novel and canonical APEH protein isoforms (Figure 6D). This analysis 

revealed that the identified non-canonical APEH isoform represents the majority of cellular 

APEH, identified specifically by ProteomeGenerator.

CONCLUSIONS

Here, we introduced an analytical framework for scalable de novo and reference-guided 

assembly of sample-specific proteomic databases based on mRNA sequencing and 

proteogenomic peptide–spectral matching. We designed ProteomeGenerator to produce 

sample-specific databases containing only proteins that are predicted to be expressed based 

on transcriptomic sequencing. As a result, PGX databases have markedly reduced search 
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space as compared with canonical reference databases, such as UniProt, and workflows 

requiring the use of concatenated databases (such as QUILTS).27 As a result, the 

ProteomeGenerator workflow exhibits enhanced sensitivity using global FDR as confidence 

metric for statistical database matching.

Because no methods currently exist for an a priori definition of complete transcriptomes and 

proteomes, we confirmed the accuracy of ProteomeGenerator based on three measures: (i) 

the set of peptides identified using ProteomeGenerator largely overlaps with that obtained by 

conventional matching against consensus human proteomes; (ii) the identification of novel 

non-canonical peptides identified by ProteomeGenerator was supported by robust 

experimental evidence both at proteomic (i.e., complete fragmentation spectra) and 

transcriptomic (i.e., multiple sequencing reads) levels and were annotated in other non-

reviewed or provisional databases; and (iii) the accuracy of peptide–spectral matching was 

confirmed by stringent bench-marking of scoring functions and their calibration using 

spectral and sequence negative controls.

ProteomeGenerator and related approaches are limited by the accuracy of transcriptome 

assembly, which is dependent on mRNA sequencing quality, depth, length, and strand 

specificity. We anticipate that ProteomeGenerator will benefit from increasing adoption of 

long-read and strand-specific RNA sequencing technologies. To this end, it will also be 

important to further improve the sensitivity of proteome sampling by peptide mass 

spectrometry, such as optimizing proteome proteolysis, its chromatographic resolution, and 

methods for de novo mass spectral identification.83,84 Lastly, ProteomeGenerator is 

implemented as a Snakemake workflow, enabling open, scalable, and facile discovery of 

sample-specific, non-canonical, and neomorphic biological proteomes. In addition, 

ProteomeGenerator is currently distributed as a Singularity container with automatic 

MaxQuant integration, enabling its one-step installation and execution in diverse computing 

environments. This should facilitate the discovery of natural variation in cellular and tissue 

proteomes, which can contribute to normal tissue development and its dysregulation in 

human disease such as cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

BCA bicinchoninic acid

FDR false discovery rate

LC liquid chromatography

MS mass spectrometry

PGX proteogenomic

PSM peptide–spectral match

RNA-seq RNA sequencing

RP reversed-phase

SCX strong cation exchange
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Figure 1. 
ProteomeGenerator overview. Transcriptomes and proteomes from the same biologic sample 

are analyzed in parallel by high-coverage Illumina sequencing and high-resolution, high-

accuracy mass spectrometry, respectively. ProteomeGenerator assembles fastq-for-matted 

mRNA sequencing reads into predicted transcripts, identifies reading frames and isoforms, 

and produces Fasta-formatted proteogenomic (PGX) databases containing canonical and 

non-canonical expressed protein isoforms for subsequent mass spectrometry searches.
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Figure 2. 
Schema for the ProteomeGenerator snakemake workflow. Sequencing reads are aligned 

using STAR followed by their de novo or referenced assembly intro transcriptomes using 

StringTie and processing to identify reading frames and protein isoforms. The resulting 

protein database is set as the target for peptide–mass spectral matching using MaxQuant.
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Figure 3. 
Comparison of the canonical and proteogenomic protein databases displaying (A) number of 

protein entries (B) and theoretical tryptic peptides amenable for mass spectrometry analysis 

specific for either UniProt, PGX, or both.
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Figure 4. 
Sensitivity and specificity of mass spectrometry search algorithms. (A, B) Comparison of 

unique theoretical peptides in the experimental PGX proteome, canonical UniProt, and 

bacterial proteomes used as negative controls. (C) Sensitivity of tested algorithms expressed 

as the number of identified peptides. (D) Specificity of tested algorithms evaluated from the 

fraction of peptide–spectrum matches mapped to the negative controls. The PSM fraction 

mapped to A. loki is reported both in absolute terms (black) and normalized to take into 

account the relative sizes of the human and archaebacterial proteomes (shown in gray). 

Normalization was performed by multiplying the number of human peptides by the ratio of 

the A. loki and H. sapiens databases, expressed as the number of tryptic peptides.
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Figure 5. 
Accurate proteome discovery using statistical target–decoy matching with spectral 

calibration. (A) Number of peptides identified (FDR < 0.01) based on matching spectra from 

K052 proteome against proteogenomic (PGX, red) and canonical (UniProt, gray) databases. 

(B) Overlap between the peptides identified in PGX (red) and UniProt (gray) databases. (C) 

Comparison of PEAKS scores for peptides identified in both PGX and UniProt databases. 

(D) PEAKS score distribution for peptides identified exclusively in PGX (red) and UniProt 

(gray) databases. (E) For peptides exclusively identified against the PGX database, PEAKS 

score distributions for peptides not mapping in UniProt (red) or present in the canonical 

database (gray). Boxes delimit the 25th and 75th percentiles, the middle line corresponds to 

the median, and whiskers correspond to the 5th and 95th percentiles. (F) PEAKS score 

distributions for peptides identified exclusively in PGX but also mapping in UniProt (gray) 

or exclusively mapping in the PGX database (red).
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Figure 6. 
Identification of non-canonical protein isoforms using ProteomeGenerator. (A) Genome 

tracks of non-canonical APEH isoform generation via inclusion of an intronic sequence 

normally spliced in the canonical APEH isoform. (B) The K052-specific isoform of APEH 

contains a novel N-terminal sequence, with the splicing junction encompassed by peptide 

AGPDPGVSPAQVLLSEPEEAAALYR. Residues 35–276 of the protein sequences defined 

by ProteomeGenerator are identical to residues 4–245 of the canonical UniProt protein 

sequence. (C) Fragmentation spectrum of the peptide encompassing the novel splice 

junction, with diagnostic fragment ions and amino acid residues labeled. Italicized ion labels 

indicate ions with relative intensity above 25% of the maximum. Asterisks denote internal 

ions. (D) Peptide abundance as based on total fragment ion current for all identified APEH 

peptides (red: peptides from K052-specific sequence; gray: peptides from canonical 

sequence).
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