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Abstract

Many neurological and psychiatric diseases in humans are caused by disruptions to large-scale functional
properties of the brain, including functional connectivity. There has been growing interest in discovering
the functional organization of brain networks in larger animal models. As a result, the use of translational
pig models in neuroscience has significantly increased in the past decades. The gyrencephalic pig brain re-
sembles the human brain more in anatomy, growth, and development than the brains of commonly used small
laboratory animals such as rodents. In this work, resting-state functional magnetic resonance imaging
(rs-fMRI) and diffusion tensor imaging (DTI) data were acquired from a group of pigs (n = 12). rs-fMRI
data were analyzed for resting-state networks (RSNs) by using independent component analysis and sparse
dictionary learning. Six RSNs (executive control, cerebellar, sensorimotor, visual, auditory, and default mode) were
detected that resemble their counterparts in human brains, as measured by Pearson spatial correlations and mean
ratios. Supporting evidence of the validity of these RSNs was provided through the evaluation and quantifica-
tion of structural connectivity measures (mean diffusivity, fractional anisotropy, fiber length, and fiber density)
estimated from the DTI data. This study shows that as a translational, large animal model, pigs demonstrate
great potential for mapping connectome-scale functional connectivity in experimental modeling of human
brain disorders.
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Introduction

Resting-state functional magnetic resonance imag-
ing (rs-fMRI) is used to examine functional connectivity

in the brain through the recording and analysis of blood-
oxygenation-level dependent (BOLD) oscillations origi-
nating from synchronized intrinsic neuronal activity in the
absence of any explicit task (Biswal et al., 1995; Chang
et al., 2018; Fox et al., 2005). In rs-fMRI analysis, functional
connectivity is quantified by using various temporal and/or
spatial metrics, such as correlation, covariance, and mutual in-
formation between the BOLD time series signals collected
from different brain regions. This quantification of functional
connectivity can highlight sets of distinct cortical and subcor-
tical areas that form integrated information processing net-
works and can be used to construct connectivity maps.

Numerous prior rs-fMRI studies have reported a number
of functional connectivity networks, commonly referred to
as resting-state networks (RSNs) or intrinsic connectivity
networks (ICNs; Hutchison et al., 2013) in the human
brain. Atlases of the most common human brain RSNs or
ICNs have been developed (Laird et al., 2011; Smith et al.,
2009) and have been used to quantify fMRI activation pat-
terns in healthy subjects.

In addition to functional connectivity, structural connec-
tivity has also been studied by using diffusion tensor imaging
(DTI) to measure the diffusion of water molecules in the
brain. Many studies have reported associations between func-
tional and structural connectivity (Honey et al., 2009), for ex-
ample in the default mode network (DMN) (Greicius et al.,
2008) and in the aging population (Damoiseaux, 2017). Some
studies have shown that the strength of resting-state functional
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connectivity is positively correlated with that of structural con-
nectivity (Damoiseaux and Greicius, 2009). However, other
studies have also reported functional connectivity detected be-
tween regions with little or no structural connectivity (Zimmer-
mann et al., 2016), suggesting that functional connectivity may
also be mediated by indirect structural connections.

Inspired by the discovery of RSNs in the human brain from
rs-fMRI analysis, there has been a growing interest in finding
similar networks of functional connectivity in animal models.
The ability to map homologous connectome-scale functional
connectivity in a highly translational animal model will im-
prove characterization of the effects of neural diseases and
brain injuries on major neural functions and allow such find-
ings to have meaningful translational implications in humans.

Rodents and nonhuman primates have been the most com-
monly used animal models (Lu et al., 2007; Vincent et al.,
2007). However, these animal models are nonideal due to
a number of limitations: the rodent brain is lissencephalic
(lacks gyri and sulci) and has significantly different brain
anatomy relative to the human brain, and economic consider-
ations hinder the use of nonhuman primates in brain research.
Because of this, there is a growing need for the establishment
of alternative non-primate, large animal models.

Use of the pig brain as a model has been rapidly increasing
in neuroscience research due to its similarities in size, struc-
ture, composition, and development to that of the human
brain. The percentage of brain weight at birth, brain growth
spurts, and prenatal and postnatal brain maturation patterns
in humans are also more similar to pigs relative to other animal
models (Dobbing and Sands, 1979). The pig brain is larger in
volume and weight (*180 g) than that of a rodent (*10 g) and
is comparable in size to that of a nonhuman primate (*300 g),
while being much less expensive (Sauleau et al., 2009).

The pig brain, similar to the human brain, is also gyrence-
phalic and follows a similar gyral pattern (Gieling et al.,
2011). The volume of the prefrontal cortex in the pig constitutes
10% of total brain volume, which is comparable to humans
whose prefrontal cortex constitutes *12.5% of total brain vol-
ume (Jelsing et al., 2006; McBride et al., 1999). The dorsal
striatum of the pig brain is split by the internal capsule into
two distinct structures: the caudate nucleus and the putamen;
whereas in comparison, the rodent brain only contains a single
caudate-putamen structure (Felix et al., 1999; Matsas et al.,
1986). The pig hippocampus has been well described and
found to be structurally more similar to the human hippocam-
pus than the rodent, having a degree of encephalization that lies
between rodent and primate (Holm and West, 1994).

A number of descriptive, comparative anatomical studies
have been performed for the pig brain thalamus, hypothala-
mus, hypothalamic nuclei (Campos-Ortega, 1970; Junge,
1977; Szteyn et al., 1980), brainstem structures (Freund,
1969; Otabe and Horowitz, 1970), and cerebellum (Larsell,
1954). Similar to humans, sensory cortices such as the
motor cortex (Breazile et al., 1966) and the somatosensory
cortex (Craner and Ray, 1991) are arranged somatotopically.

In establishing a translational animal model for brain in-
jury and neurological disease research, it is important that
the brain of the animal has similar anatomy and organization
to the human brain, as it impacts the brain regions injured,
vascular responses, short- and long-term effects of the injury,
and, ultimately, whether the findings are translational to hu-
mans (Duhaime, 2006). Pig models of stroke and traumatic

brain injury (TBI) have recently been developed and show
comparable anatomical damage and physiological responses
as would be expected in human patients (Baker et al., 2017;
Platt et al., 2014). However, groundwork studies to charac-
terize functional connectivity in the pig animal model have
yet to be conducted.

To model rs-fMRI data and determine brain functional
connectivity, a variety of data-driven approaches have been
proposed over the past decades. Independent component
analysis (ICA) is one method that has been very successful
(Calhoun and Adali, 2004). Alternatively, sparse dictionary
learning (sDL; Mairal et al., 2010) is another data-driven ap-
proach that has been successfully applied to reconstruct brain
functional connectivity.

In sDL-based methods, fMRI data is decomposed into two
matrices: a dictionary basis matrix (which represents the time-
domain activity of functional networks) and a reference
weight matrix (which represents the spatial distributions of
the functional networks within the brain). Generally, the
sDL approach provides a compact, high-fidelity representation
of the fMRI data and discovers spatial patterns representing
functional connectivity (Lv et al., 2015; Zhang et al., 2018).

In this article, rs-fMRI and DTI data were acquired from a
group of 3-week-old piglets. From the rs-fMRI data, both ICA
and sDL were employed to empirically detect RSNs in the pig
brain. To quantify the degree of homology between the detected
pig RSNs and human RSNs, a reference pig RSN atlas was cre-
ated by combining anatomies from a standard pig brain atlas
(Saikali et al., 2010) that are known to be associated with
human RSNs. Using the reference atlas and empirically detected
pig RSNs, Pearson spatial correlation coefficients and mean
ratio metrics were calculated and used to determine the degree
of homology between the detected pig RSNs and human
RSNs. To the best knowledge of the authors, this is the first
study to attempt to characterize RSNs in the pig brain to date.

From acquired DTI data, structural connectivity measures
(mean diffusivity [MD], fractional anisotropy [FA], fiber length
[FL], and fiber density [FD]) were quantified for each detected
pig RSN to provide supporting evidence of their validity.

Materials and Methods

Subjects

Three-week-old Landrace-cross pigs (n = 12) were used in
this study. The pigs were initially sedated through an intramus-
cular injection of xylazine (7 mg/kg), butorphanol (0.3 mg/kg),
and midazolam (0.3 mg/kg). Then, mild anesthesia was main-
tained with 1.5% inhalational isoflurane in oxygen to keep the
pigs sedated while reducing anesthetic agents from interfering
with pig brain neural activity and neurovascular coupling. All
experimental procedures were approved by the Institutional
Animal Care and Use Committee (University of Georgia).

Data acquisition

Using a GE Signa HDx 3T scanner and an HD quadrature
knee coil, rs-fMRI, T1-weighted anatomical, and DTI
data were acquired by using the following three sequences:
(1) rs-fMRI: gradient echo-planar imaging (EPI) sequence
(repetition time [TR] = 3 s, TE = 30 ms, FA = 80�, field of
view [FOV] = 12.8 · 12.8 · 6.4 cm, a matrix size of 96 ·
96 · 32, 300 total volumes, and an acquisition time of
15 min), (2) T1-weighted anatomical: three-dimensional
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(3D) fast spoiled gradient echo sequence (TR = 5.5 s, TE =
2.1 ms, FA = 9�, FOV = 12.8 · 12.8 · 6.4 cm, slice thick-
ness = 1 mm, and a matrix size of 256 · 256 · 112), and (3)
DTI: spin echo EPI sequence (TR = 15.5 s, TE = min-full,
FOV = 12.8 · 12.8 · 6.4 cm, a matrix size of 64 · 64 · 32, 3
b = 0 images, and 30 diffusion weighted images using
b = 1000 s/mm2).

Data preprocessing

Pig rs-fMRI data were preprocessed to realign images to
correct for motion, perform slice-timing correction, and exe-
cute spatial normalization by using the Realign and Unwarp,
slice timing, and Old Normalize Statistical Parametric Map-
ping software algorithms, respectively (Ashburner et al.,
2016; Penny et al., 2011). One pig was chosen as the template,
and the rs-fMRI datasets of the other 11 pigs were spatially
normalized to the template pig fMRI space. The first volume
from each rs-fMRI dataset was used to calculate a spatial
transformation, and the transformation was then applied to
the rest of the volumes. All spatial transformations in this
work were performed by first applying a 12-parameter affine
transformation, followed by a nonlinear deformation transfor-
mation (Ashburner and Friston, 1999; Ashburner et al., 1997).

Next, brain tissue was separated from the skull and other
surrounding tissues by manual slice-by-slice segmentation of
the images, and the rs-fMRI time series from the 12 pigs
were temporally concatenated into a group dataset. Due to se-
vere movement that occurred for one of the pigs toward the
end of its rs-fMRI data acquisition, eight volumes could not
be corrected for motion and were removed; therefore, the
total time series length of the group dataset was 3592 (total
number of volumes).

Data analysis

The group dataset was analyzed by using FastICA and sDL,
respectively. ICA attempts to extract independent signal com-
ponents from a mixed signal through matrix decomposition.
In fMRI studies, spatial ICA is typically used, which extracts
independent spatial components representing proposed func-
tional networks. In this study, spatial ICA was performed by
using the Group ICA of fMRI Toolbox’s (GIFT; Calhoun
and Adali, 2004) FastICA algorithm, which is a commonly
used iterative algorithm for doing approximate ICA efficiently
on large datasets. FastICA first performs a whitening process
on the input data matrix before iteratively calculating a series
of components through maximization of non-Gaussianity of
the projection of the whitened input data matrix along the
component.

An automated process to estimate the number of indepen-
dent components for ICA decomposition from the group data-
set was performed by using the GIFT Toolbox, and it was
estimated that the data were composed of nine independent
components. To reduce error in this estimation, ICA decom-
position was performed by using 20 independent components,
which doubles the estimated component number and is also
commonly used throughout the literature (Smith et al., 2009).

sDL is an iterative algorithm for learning a sparse repre-
sentation of the input data as a linear combination of a typi-
cally complete or over-complete dictionary of elements, or
‘‘atoms’’ (Mairal et al., 2010). In fMRI analysis, the entire
signal volume of v voxels over t time points is arranged as

a two-dimensional signal matrix X 2 Rt · v, where the time
course data of each of the v voxels are represented as a col-
umn with t rows.

Given a desired n number of atoms, sDL iteratively de-
composes matrix X into a dictionary matrix D 2 Rt · n and
a sparse coefficient matrix a 2 Rn · v, such that D · a closely
approximates the signal matrix X through the minimization
of the mean squared error between X and D · a, while fulfill-
ing an L1-regularization sparsity constraint of k on a, as sum-
marized in Equation (1). Again, n is typically selected so that
the dictionary matrix D is complete or over-complete (n � t),
allowing the a matrix to be sparse.

min
D2C

lim
n!þ1

1

n
+
n

i = 1

min
ai

1

2
xi�Dai
�� ��

2

2þ k ai
�� ��

1

� �
(1)

Through this decomposition, the original signal time series
of each voxel is represented as a linear combination of n dic-
tionary atoms of length t, where each atom corresponds to
the time series of a potential functional network detected
by the decomposition. The corresponding row in a represents
the strength of involvement of each of v voxels in the detected
functional network, which can be mapped back to a brain vol-
ume to generate a map of each of the n potential functional
networks, as illustrated in Figure 1.

In this study, the SPArse Modeling Software (SPAMS)
toolbox (Mairal et al., 2010) was used to implement the
Online Dictionary Learning (ODL) algorithm. ODL trains
a dictionary by iteratively using each sample of an input
data matrix to calculate a sparse coding using least angle re-
gression, and then using the calculated sparse coding to up-
date the dictionary (Mairal et al., 2010). As an iterative
algorithm, ODL is suitable for performing sDL on large data-
sets that are too large to fit into memory (Lv et al., 2015).
When performing sDL, a complete dictionary (n = 292) and
a sparsity parameter of k = 0.15 were used. For details regard-
ing the optimization of n and k, see the Supplementary Data.

Pig reference RSN analysis

To quantify the degree of homology between the detected
pig RSNs and established human RSNs, a reference pig RSN
atlas was created by first spatially normalizing a standard pig
brain atlas (Saikali et al., 2010) to the anatomical space of
the template pig. Spatial normalization was accomplished by
calculating a spatial transformation using anatomical data pro-
vided in the same space as, and associated with, the standard
pig brain atlas and the anatomical data of the template pig.
The calculated transformation was then applied to the atlas.

The anatomically homologous pig brain regions associ-
ated with six major human RSNs (Laird et al., 2011; Smith
et al., 2009) were manually selected and combined to con-
struct the following six pig RSNs: executive control (EX),
cerebellar (CERE), visual (VIS), sensorimotor (SM), audi-
tory (AUD), and DMN. These six manually constructed
pig RSNs formed a reference atlas that was assumed to be
perfectly homologous to the six human RSNs and subse-
quently used as a reference to calculate the degree of homol-
ogy of the empirically detected RSNs found by ICA and
sDL. Table 1 lists the anatomies and corresponding atlas la-
bels from the standard pig brain atlas (Saikali et al., 2010)
that were used to construct each of the six reference pig
RSNs.
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Table 1. Reference Pig Resting-State Network (RSN) Atlas and Human RSN Anatomies

Pig brain Human brain

Executive control Executive control
Primary somatosensory cortex (101, 201) Primary somatosensory cortex
Dorsolateral prefrontal cortex (109, 209) Prefrontal cortex
Anterior prefrontal cortex (210, 211)
Orbitofrontal cortex (111, 211) Orbitofrontal cortex
Insular cortex (113, 213) Insular cortex
Ventral anterior cingulate cortex (124, 224) Anterior cingulate cortex
Dorsal anterior cingulate cortex (132, 232)

Cerebellar Cerebellar
Cerebellum (160–193) Cerebellum

Visual Visual
Primary visual cortex (117, 217) Visual cortices (V1–V6)
Secondary visual cortex (118, 218)
Associative visual cortex (119, 219)

Sensorimotor Sensorimotor
Primary motor cortex (104, 204) Primary motor cortex
Somatosensory associative cortex (105, 205) Secondary somatosensory cortex
Premotor cortex (106, 206) Premotor cortex

Auditory Auditory
Superior temporal gyrus (122, 222) Superior temporal gyrus
Auditory cortex (141, 241) Primary auditory cortex

Associative auditory cortex
Default mode Default mode

Hippocampus (36, 37) Hippocampus
Anterior prefrontal cortex (110, 210) Dorsal medial prefrontal cortex

Ventral medial prefrontal cortex
Orbitofrontal cortex (111, 211) Orbitofrontal cortex
Inferior temporal gyrus (120, 220) Inferior temporal gyrus
Ventral posterior cingulate cortex (123, 223) Posterior cingulate cortex
Dorsal posterior cingulate cortex (131,231)
Retrosplenial cingular cortex (129, 229) Retrosplenial cortex
Anterior entorhinal cortex (134, 234) Entorhinal cortex
Parahippocampal cortex (136, 236) Parahippocampal cortex

Inferior parietal lobule

Anatomies from a standard pig brain atlas (Saikali et al., 2010; atlas labels in parentheses) that were combined to create six reference pig
RSNs (left column) and corresponding human anatomies known to be associated with the same six RSNs (right column).

RSNs, resting-state networks.

FIG. 1. Illustrated representation of the decomposition process of sDL. A matrix representing the complete volume of
v voxel signals acquired from a scan of time t is arranged into a signal matrix X. Through sDL, the matrix is decomposed
into a dictionary matrix D and a, such that X approximates D · a. Dictionary D contains activity for n number of atoms,
or detected RSNs, whereas a contains representations of the detect RSN maps that can be mapped back to a brain volume.
BOLD, blood-oxygenation-level dependent; fMRI, functional magnetic resonance imaging; RSNs, resting-state networks;
sDL, sparse dictionary learning.
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To determine which brain connectivity decomposition
method best identified the six reference RSNs, the functional
activation maps generated by each method were thresholded
by using a z-score of 1, normalized between 0 and 1, and then
spatially normalized to the anatomical space of the template
pig. Spatial normalization was accomplished by calculating a
spatial transformation using the template pigs’ fMRI data
and anatomical data; then applying the calculated transfor-
mation to the activation maps.

The activation maps that produced the maximum Pearson
spatial correlation coefficients for each of the six reference
RSNs were then determined for each method, and mean
ratio values were calculated for the selected activation maps.
The Pearson spatial correlation coefficient was defined as

r =
+n

i = 1
Ai�A
� �

Ri�R
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+n

i = 1
Ai�A
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+n

i = 1
Ri�R
� �2

q (2)

where n is the number of voxels within the brain, A is the
activation value or sparse coefficient, R is the atlas value
(which is binary), and an overbar denotes the arithmetic
mean. The mean ratio was defined as

m =
+n

i = 1
Ai � Ri

� �
= +n

i = 1
Ri

� �
A

(3)

or simply stated, the mean activation value within a given
RSN atlas divided by the mean activation value of the entire
brain. Rose maps of the Pearson and mean ratio values were
used to evaluate the effectiveness of each method at generat-
ing activation maps that correlate well with the reference pig
RSN atlas.

DTI analysis

Group tractography was performed by using an early regis-
tration and superset method (Vo et al., 2013), which included
two spatial transformations. First, the DTI dataset of each pig
was spatially normalized to the DTI space of the template pig.
The spatial transformation was calculated by using the DTI
volumes of each pig that were acquired when no diffusion gra-
dient (b = 0) was applied, and the transformation was then ap-
plied to all DTI volumes. Next, the volumes from all of the
spatially normalized datasets were combined into a group
superset, giving a total of 396 (33 diffusion gradient directions
per pig · 12 pigs) DTI volumes, and brain tissue was sepa-
rated from surrounding tissue by manual segmentation.

The DTI superset was then spatially normalized to the an-
atomical space. The second spatial transformation was calcu-
lated by using the DTI volume of the template pig acquired
with no diffusion gradient applied (b = 0) and the anatomical
data, and the transformation was then applied to all volumes
within the superset. During this second transformation, voxel
size was forced to be 0.75 mm cubed, opposed to the 0.5 mm
cubed voxels of anatomical space, to reduce the computa-
tional size of the dataset. The DTI gradient vectors were cor-
rected accordingly based on each spatial transformation
applied to the DTI data.

Tractography was performed on the spatially normalized
DTI superset by using Medinria (Toussaint et al., 2007).
The Tensor ToolKit’s (TTK) tensor estimation algorithm
was used to determine the DTI tensors, and from the estimated

tensors, MD and FA maps were created. Tractography was
also performed by using the TTK’s tensor tractography algo-
rithm. Whole-brain tractography was performed with fibers
seeding from voxels with FA greater than approximately dou-
ble the whole-brain average, fibers stopping at voxels with FA
less than approximately two-thirds of the whole-brain aver-
age, and the fibers were not restricted to any minimum FL.

In addition, tractography of just the major fibers was per-
formed with fibers seeding from voxels with FA greater than
approximately double the whole-brain average, fibers stop-
ping at voxels with FA less than approximately four-thirds
of the whole-brain average, and a minimum FL of 10 mm.

Before making quantitative measurements, the activation
maps determined by the pig RSN analysis described earlier
were corrected by removing any regions of the activation
volume that were not overlapping with gray matter struc-
tures. Using the whole-brain tractography result, measure-
ments of MD, FA, and FL were then obtained for the fibers
intersecting with the remaining activation volume. The FD,
defined as the number of fibers intersecting with an activa-
tion volume divided by the activation volume, was also de-
termined. All measurements of MD, FA, FL, and FD were
normalized by their respective whole-brain averages, calcu-
lated from all brain structures for comparison.

Results

Using the Pearson correlation analysis described earlier,
the maximum Pearson values obtained from the 20 activation
maps generated by using ICA and the 292 maps generated by
using sDL for each reference RSN are given in Figure 2a, and
Figure 2b gives the associated mean ratio values for these
maps. The activation maps produced by sDL show stronger
Pearson correlations with the atlas than the maps produced
by ICA (values in the range of 0.30–0.53 and 0.16–0.47, re-
spectively), as well as greater mean ratio values (range of
2.00–3.98 and 2.12–2.71, respectively).

It was observed that sDL tends to produce multiple maps
with similar activation patterns and similarly high Pearson val-
ues for each RSN from the atlas. When using a complete or
over-complete dictionary to achieve sparseness, redundant
representations of the same signal are possible. Therefore, av-
eraged sDL activation maps were created by averaging the top
three maps with the highest Pearson values for each reference
RSN. These averaged maps produce even stronger Pearson
correlations with the reference atlas (range of 0.32–0.53) and
even higher mean ratio values (range of 2.72–7.64) in compar-
ison to values obtained by ICA and non-averaged sDL (Fig. 2).

Cross-sectional images of the activation maps associated
with the maximum Pearson values generated by ICA for
each reference RSN are displayed in Figure 3a, as well as
cross-sectional images of the reference RSN itself. All
cross-sectional images are overlaid on the corresponding an-
atomical images. Rose maps giving the associated Pearson
values (Fig. 3b) and mean ratio values (Fig. 3c) for the dis-
played activation maps are also presented.

The activation map generated by ICA that gives the max-
imum Pearson value for the EX RSN shows a strong correla-
tion with this RSN exclusively, as evidenced by its low
correlations with the other five RSNs within the reference
atlas (Fig. 3b, c, first column). However, this exclusivity is
not consistent for all RSNs. For the CERE, VIS, and DMN
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RSNs, the maximally correlated activation maps simulta-
neously exhibit comparatively strong correlations with their re-
spective RSNs and other RSNs as well (Fig. 3b, c, second,
third, and sixth column); for the SM and AUD RSNs, the max-
imally correlated activation maps show stronger correlations
with other RSNs within the atlas than with their respective
RSN (Fig. 3b, c, fourth and fifth column).

The maximally correlated activation maps generated by
sDL for the EX, CERE, and VIS RSNs all show strong and
exclusive correlations with their respective RSNs (Fig. 4b, c,
first–third columns). However, for the SM, AUD, and DMN
RSNs, sDL produced maximally correlated activation maps
with comparatively strong correlations with other RSNs as
with their respective RSNs (Fig. 4b, c, fourth–sixth columns).
In comparison to ICA, sDL tends to produce maps that corre-
late better with an exclusive RSN.

For the averaged sDL activation maps, strong and exclusive
correlations between each maximally correlated activation map
and its respective reference RSN are observed (Fig. 5b, c), ex-
cept for the mean ratio of the DMN RSN. In comparison to
the maps generated by ICA and sDL, the averaged sDL
maps tend to correlate more strongly with an exclusive
RSN. Whole brain 3D projections of each of the averaged
sDL activation maps, as well as each of the reference atlases,
can be found in Supplementary Figures S4 and S5.

Correlations between the averaged sDL activation maps
and the individual anatomical components of each reference
RSN given in Table 1 were further explored by using spatial
Pearson correlations, mean ratios, and the volumetric per-
centage of each anatomical component in relation to its cor-
responding RSN volume, as determined from the reference
pig RSN atlas (Supplementary Table S1). Good correlations
and high mean ratios were observed for the majority of indi-
vidual anatomical components in each RSN. However, poor
correlations were observed between the EX network and the
ventral anterior cingulate cortex and between the DMN and
the anterior prefrontal, orbitofrontal, and parahippocampal
cortices.

The averaged sDL activation maps were also further eval-
uated by examining the normalized MD, FA, FL, and FD
measurements determined for the fibers intersecting with
each activation volume (Fig. 6). The overwhelming majority
of the MD and FA values for the fibers intersecting with each
activation volume are greater than the average value of the
whole brain (Fig. 6a, b), whereas the average FL of these fi-
bers only tends to be slightly greater than the average FL in
the whole brain (Fig. 6c). The EX, CERE, SM, and DMN
RSNs all have FD values of approximately four times greater
than the average FD of the whole brain; whereas the VIS and
AUD RSNs only have FD values of approximately two times
greater than the average FD of the whole brain (Fig. 6d).

To better demonstrate how structural fibers interact with
each individual RSN, tractography of the whole brain, major
fibers, and the fibers intersecting with the activation volume
for each RSN determined from the averaged sDL activation
maps are shown in Figure 7. The activation maps were cor-
rected by removing any regions of the activation volume
that were not overlapping with gray matter structures.

Discussion

Using ICA and sDL, the described empirical analysis gen-
erated six activation maps that have high degrees of correla-
tion with the six reference pig RSNs (EX, CERE, SM, VIS,
AUD, and DMN), which were derived from well-established
human RSNs, indicating a high degree of homology. This
finding suggests that there are RSNs in the translational pig
brain model that may be homologous to RSNs found in the
human brain. To the best of the authors’ knowledge, this is
the first study to identify RSNs in the pig brain and draw
comparisons between those RSNs experimentally found in
pigs and those previously established in humans.

In this work, the use of ICA and sDL to detect RSNs pro-
duces activation maps with Pearson values that fall within the
typical range reported in the literature (Brookes et al., 2011;
Lois et al., 2014; Smith et al., 2009); by averaging the top
three sDL maps with the highest Pearson values, an averaged
map can be generated that produces even stronger Pearson cor-
relations in the range of 0.32–0.53 (Fig. 2). These maps demon-
strate six well-defined RSNs within the pig brain (Fig. 5).

The detection of these RSNs using two separate methods,
as well as evidence provided from structural connectivity
analysis, further supports the validity of these RSNs, as func-
tional and structural connectivity have been shown to be pos-
itively correlated (Greicius et al., 2008; Honey et al., 2009).
The MD and FA values of the fibers intersecting with each
RSN show much greater diffusion and directionality of the

FIG. 2. Maximum Pearson spatial correlation coefficient
values (a) and corresponding mean ratio values (b) from ac-
tivation maps generated by ICA (solid line), sDL (dotted
line), and averaged sDL (dashed line) for six RSNs defined
by the reference pig RSN atlas (EX, CERE, VIS, SM, AUD,
and DMN). AUD, auditory; CERE, cerebellar; DMN, default
mode; EX, executive control; ICA, independent component
analysis; sDL, sparse dictionary learning; SM, sensorimotor;
VIS, visual.
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diffusion along structural pathways both through and within
the RSNs in comparison to the average diffusion and direction-
ality of the diffusion throughout the whole brain (Fig. 6a, b).
The fibers intersecting with each RSN also show greater aver-
age FL than the average FL found throughout the whole brain
(Fig. 6c), and each RSN’s FD is greater than the FD found
throughout the whole brain (Fig. 6d).

The discovery of the six RSNs defined in this work may
help to establish an experimental RSN atlas of a healthy
pig brain, which will allow for future investigation of the ef-
fects of neural diseases and disorders on major neural con-
nections and functions within the pig brain model. There
are a number of important pig neural injury, disease, and de-
velopmental models that cause functional changes closely
associated with the six RSNs identified in this study.

One such example is TBI. Multiple types of TBI in both pigs
and humans have previously been shown to cause changes in
activity in the SM network, as well as the EX network and
DMN network, resulting in a variety of symptoms, including
deficits in motor coordination, proprioception, problem-solving,
cognitive flexibility, and regular modulation of day and night
activity patterns (Etkin and Wager, 2007; Iandolo et al., 2018;
Jak et al., 2018; Tanaka et al., 2008; Ustinova et al., 2015).

Stroke, the number one cause of long-term disability in the
world, is another example of a major neurological injury suc-
cessfully modeled in pigs and may cause changes in RSN ac-
tivity (Baker et al., 2017; Duberstein et al., 2014; Platt et al.,
2014; Tanaka et al., 2008; Webb et al., 2018). In the pig
model, studies found that ischemic stroke causes lesioning
of the temporal and piriform lobes in regions housing the in-

sular and AUD cortices, which are associated with the EX
and AUD networks, respectively (Platt et al., 2014).

Middle cerebral artery occlusion stroke in pigs can lead to
atrophy in the hippocampus, parahippocampal cortex, and
inferior temporal gyrus regions, all of which are associated
with the DMN network (Platt et al., 2014). The high amount
(>60%) of white matter in the pig brain currently also makes
it a suitable model for studying lucunar infarctions, small
areas of necrosis in deep cerebral white matter occurring in
25% of ischemic stroke patients that can affect the activation
of the primary motor cortex and SM network (Izquierdo
et al., 2017; Swindale, 1998).

By identifying pig RSNs homologous to the human SM,
AUD, EX, and DMN networks, which are associated with
TBI and multiple types of ischemic stroke, the findings pre-
sented here further support the extended use of pigs as a
translational model for characterizing the effects of TBI
and stroke on functional network disruption and brain injury.
Many previous pig studies of TBI, stroke, and nutrition
(Mudd et al., 2017, 2018a,b) have heavily relied on observed
tissue or whole animal function (e.g., behavior and cognitive
tests, such as open field) changes; however, most were not
capable of studying changes in brain functional networks
due, in part, to the absence of developed pig functional net-
work maps. This further highlights the importance of the pig
RSNs reported in this study.

Despite the good correlations between the averaged sDL
activation maps and most of the individual anatomical com-
ponents of each RSN given in Supplementary Table S1,
some poor correlations for specific RSN anatomies were

FIG. 6. Normalized MD (a), FA (b), FL (c), and FD (d) measurements for the fibers intersecting with each activation vol-
ume of the averaged sDL activation maps. The lower and upper whiskers of the boxplots represent the minimum and max-
imum measurements, respectively. The central red line in each box represents the mean of the measurements, and the box
represents one standard deviation from the mean. All measurements were normalized by their respective whole-brain aver-
ages, represented as the brown line across all six RSNs. FA, fractional anisotropy; FD, fiber density; FL, fiber length; MD,
mean diffusivity.
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observed, including: the ventral anterior cingulate cortex of
the EX network and the anterior prefrontal, orbitofrontal,
and parahippocampal cortices of the DMN. These poor cor-
relations are possibly due to one or more of three reasons: (1)
the anatomical region is not associated with the RSN, (2) an-
esthetic agents suppressed neural activity in the anatomical
region, and/or (3) only a sub-region or fractional volume of
the anatomical region is involved in the RSN.

Although minimal, feasible amounts of anesthetic agents
were used to minimize interference with brain activity, the
use of anesthesia is known to have potentially confounding
effects on functional connectivity, as many anesthetic agents
are known to interfere with neural activity and neurovascular
coupling (Hamilton et al., 2017; Liang et al., 2012). It is pos-
sible that the RSNs reported in this study may have been af-
fected by the anesthesia protocol, and specific anatomical
regions may have been affected more than others.

This study is also potentially limited by the creation of the
reference RSN atlas from a pre-existing standard pig brain
atlas and the assumption that the reference atlas is perfectly
homologous with the human brain. In humans, certain anat-
omies, such as the anterior prefrontal cortex, are known to

consist of sub-regions that may be functionally activated sep-
arately from the rest of the region. For example, only the me-
dial area of the prefrontal cortex is involved in the human
DMN (Buckner et al., 2008), and this is also observed in
the pig brain (Fig. 5a, sixth column). However, the anterior
prefrontal cortex listed in the standard pig brain atlas (Saikali
et al., 2010) was not segmented into smaller regions, and the
medial area of the pig brain was unable to be differentiated
from the rest of the region.

Among the four anatomical regions that were identified as
having poor correlations with their corresponding functional
activation maps, the orbitofrontal cortex is likely not associ-
ated with the DMN RSN. Since this anatomical region was
also included in the reference atlas for the EX network and
shows good correlation with the functional activation map
for this network, significant interference from anesthesia is
unlikely, and the volume of this region is relatively small,
making fractional volume effects also unlikely.

Although anesthesia can have potentially confounding
effects on functional connectivity, it should not interfere
with structural connectivity. Therefore, to better determine
which of the three reasons may have caused the poor

FIG. 7. Group tractography
of the whole brain (a) and
major fibers (b) obtained by
using an early registration
and superset method, and
the fibers intersecting with
the activation volume (shown
in red) for each RSN
determined from the aver-
aged sDL activation maps
(c–h). The activation maps
were corrected by removing
any regions of the activation
volume that were not
overlapping with gray matter
structures. Coronal, sagittal,
and axial views are projec-
tions from the front, left, and
top of the brain, respectively.
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correlations observed in the other three anatomical regions
yet discussed (the ventral anterior cingulate, anterior prefron-
tal, and parahippocampal cortices), structural connectivity
measures were evaluated for these regions (Supplementary
Figs. S2 and S3).

For the ventral anterior cingulate cortex of the EX net-
work, high structural connectivity measures were observed
in comparison to the whole-brain values (Supplementary
Fig. S2). Since structural connectivity and functional con-
nectivity have been shown to be positively correlated (Grei-
cius et al., 2008; Honey et al., 2009), it is hypothesized that
interference from anesthesia may have possibly affected this
region. Since the volume of this region is relatively small,
fractional volume effects are considered less likely.

For the anterior prefrontal and parahippocampal cortices
of the DMN, high structural connectivity measures were
also observed in comparison to the whole-brain values (Sup-
plementary Fig. S2). However, when comparing the mea-
sures of structural connectivity for the anatomical region
defined by the reference atlas with the measures obtained
for just the functionally activated sub-region from the aver-
aged sDL activation maps of each anatomical region, in-
creased FL and FD were observed within the sub-regions
that were empirically determined to be activated (Supple-
mentary Fig. S3). This observation, as well as the fact that
these two anatomical regions are relatively large, leads to
the hypothesis that these two regions only have fractional
volumes that are involved in the DMN RSN.

As a whole, the DMN shows lower correlation values
compared with the other five RSNs (Fig. 2). This is possibly
due to these fractional volume activations and may also be
due, in part, to the young age of the pigs used in this
study. Studies have shown that in the human infant brain,
there is limited evidence of DMN activation; whereas func-
tional connectivity is more consistent in children aged 9–12
years and older, suggesting that the DMN undergoes devel-
opmental change (Broyd et al., 2009). A possible explanation
for the lower correlation values observed for the DMN in this
work is that the pigs used are still young (3 weeks old), and
the DMN may not be fully developed at such a young age.

One other limitation of this study that the authors intend to
improve on in future work is the relatively small sample size
(n = 12). For larger sample sizes, better-defined RSNs may be
obtained, possibly leading to stronger correlations with the
reference pig RSN atlas and/or better determination of non-
involved anatomies contained within the atlas and fractional
volumes may be feasible.

The results presented in this study provide a groundwork
for the development of a standard pig brain functional net-
work and RSN atlas, which can be used to support future
translational pig model studies characterizing functional net-
work disruption caused by disease and injury. Over the years,
many studies have reported associations between functional
and structural connectivity (Greicius, 2008; Honey et al.,
2009), and some studies have shown that the strength of
resting-state functional connectivity is positively correlated
with that of structural connectivity (Damoiseaux and Grei-
cius, 2009). However, other studies have detected functional
connectivity between regions with little or no structural con-
nectivity (Zimmermann et al., 2016), suggesting that func-
tional connectivity is likely mediated by indirect structural
connections.

In future work, the authors intend to continue exploring
the relationship between functional and structural networks
in the pig brain at multiple time points during brain develop-
ment by using advanced deep learning methods such as con-
volutional neural networks and deep generative models
(Shen et al., 2017), and they intend to explore how these net-
works are effected by acute ischemic stroke and potential
treatments of stroke.

Conclusion

The use of the pig model in neuroscience has significantly
increased in the past two decades. The pig brain, which is
gyrencephalic, resembles the human brain more in anatomy,
growth, and development than the brains of commonly used
small laboratory animals such as rodents. Using ICA and
sDL, six RSNs (EX, CERE, SM, VIS, AUD, and DMN)
were detected in the pig brain that resemble their counter-
parts in humans, as measured by Pearson spatial correlations
and mean ratios, and supporting evidence of the validity of
these RSNs was provided through the evaluation of structural
connectivity. This study shows that as a translational, large
animal model, pigs demonstrate great potential for mapping
connectome-scale functional connectivity in experimental
modeling of human brain disorders.
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tion of diffusion tensor images for group tractography of dys-
tonia patients. J Magn Reson Imaging 37:67–75.

Webb RL, Kaiser EE, Jurgielewicz BJ, Spellicy S, Scoville SL,
Thompson TA, et al. 2018. Human neural stem cell extracel-
lular vesicles improve recovery in a porcine model of ische-
mic stroke. Stroke 49:1248–1256.

Zhang W, Lv J, Li X, Zhu D, Jiang X, Zhang S, et al. 2018.
Experimental comparisons of sparse dictionary learning and
independent component analysis for brain network inference
from fMRI data. IEEE Trans Biomed Eng 66:289–299.

Zimmermann J, Ritter P, Shen K, Rothmeier S, Schirner M, Mc-
Intosh AR. 2016. Structural architecture supports functional
organization in the human aging brain at a regionwise and
network level. Hum Brain Mapp 37:2645–2661.

Address correspondence to:
Qun Zhao

Paul D. Coverdell Center for Biomedical
and Health Sciences

University of Georgia
500 D.W. Brooks Drive

Athens, GA 30605

E-mail: qzhao@physast.uga.edu

Franklin D. West
Regenerative Bioscience Center

University of Georgia
425 River Road

Athens, GA 30602

E-mail: westf@uga.edu

PIGS HAVE HOMOLOGOUS RSNS WITH HUMANS 579


