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Abstract

Conservation practitioners have long recognized ecological connectivity as a global priority for 
preserving biodiversity and ecosystem function. In the early years of conservation biology, 
ecologists extended principles of island biogeography to assess connectivity using measures of 
source patch proximity and other metrics derivable from binary maps of habitat. From 2006–2008, 
the late Brad McRae introduced circuit theory to many ecologists and conservation biologists as an 
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alternative approach to model gene flow and the dispersal or movement routes of organisms. He 
posited concepts and metrics from electrical circuit theory as a robust way to quantify movement 
across multiple possible paths in a landscape, not just a single least-cost path or corridor. Here we 
discuss applications of circuit theory and related tools to the science and practice of connectivity 
conservation. We begin with a brief introduction to the foundations of circuit theory and a 
synthesis of recent publications from multiple geographies. We then sample and explore the 
diverse array of applications of circuit theory and the open-source software Circuitscape, focusing 
on how these tools have been used to understand genetic structuring, the movement and dispersal 
paths of organisms, habitat corridors and barriers, and the impacts of humans and climate change 
on connectivity. Finally, we consider the impact that circuit theory is likely to have on 
conservation science and practitioners, as well as the maintenance and restoration of connectivity 
for species and fundamental ecological processes around the globe.

INTRODUCTION

Ecological connectivity is a global priority for preserving biodiversity and ecosystem 

function (UNEP 2015; IUCN 2017) and has long been of interest to conservation biologists 

(Harris 1984). In the early years of conservation biology, ecologists extended principles of 

island biogeography to assess connectivity based upon proximity to source patches 

(MacArthur & Wilson 1967) and other metrics derivable from binary maps containing 

habitat patches embedded in a non-habitat matrix (e.g., With et al. 1997). The introduction 

of least-cost modeling in the early 1990s (Knaapen et al. 1992) was a major advancement in 

connectivity and movement corridor research and quickly became the dominant paradigm 

for evaluating connectivity for animals. However, least-cost paths often have clear 

limitations, including an assumption that individuals have perfect knowledge of the 

landscape and therefore select a single optimal route. In three papers published during 2006–

2008, Brad McRae introduced circuit theory to many ecologists and conservation biologists 

as an alternative, process-driven approach to modeling gene flow and the dispersal or 

movement routes of organisms (see below). Drawing from his background in electrical 

engineering, as well as the seminal work of Doyle & Snell (1984) and others, McRae’s key 

innovation was recognizing that circuit theory permitted a robust way to quantify gene flow. 

The approach provided a much-needed theoretical basis for understanding and mapping 

patterns of connectivity and has been rapidly adopted in conservation biology, other 

ecological disciplines, and beyond. The development of accompanying software, such as the 

open-source program Circuitscape (McRae et al. 2008, 2013; www.circuitscape.org), has 

provided accessible means of implementing circuit theory concepts across a range of 

projects and disciplines. Additional software and development topics are described in 

Supporting Information.

In the wake of Brad McRae’s untimely death in July 2017 (Lawler et al. in review), this 

review explores the importance and key contributions of circuit theory to connectivity 

conservation and related issues. We begin by briefly describing the foundations of circuit 

theory, including key concepts, outputs, and comparisons with other approaches to 

evaluating connectivity. We then describe the theory’s diversity of applications in 

conservation and ecology, including a synthesis of relevant publications across a variety of 

Dickson et al. Page 2

Conserv Biol. Author manuscript; available in PMC 2020 April 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://www.circuitscape.org/


topics and from multiple geographies. Finally, we look toward the future and consider how 

new applications of circuit theory might continue to benefit conservation theory and 

practice, particularly in an era of global change.

Foundations of Circuit Theory in Conservation

Brad McRae posited circuit theory as an elegant alternative approach to model gene flow 

and organismal movement in a series of three papers published during 2006–2008. McRae 

(2006) linked the findings of Doyle & Snell (1984) and Chandra et al. (1996) to population 

genetics and landscape ecology. Specifically, Doyle & Snell (1984) demonstrated that 

resistance distances from circuit theory are directly proportional to the movements of 

Markovian random walkers on graphs, and Chandra et al. (1996) related resistance distances 

to “commute times,” or the time it takes a random walker to travel from one point to another 

and back again. McRae (2006) described the concept that the genetic distance among 

subpopulations of interest can be estimated by representing the landscape as a circuit board, 

where each pixel in a raster depiction of the landscape is a resistor, and gene flow between 

any two subpopulations occurs via all possible chains of resistors linking them, not just 

along the single chain with the lowest sum of resistances (i.e., the least-cost path). He coined 

this notion “isolation by resistance” (IBR), which has practical consequences in the context 

of conservation. For example, in IBR (but not least-cost models) increasing the number of 

paths always decreases the total resistance and genetic distance among subpopulations, and 

habitat degradation increases genetic distance, even outside the least-cost path. Its theoretical 

foundation and computational efficiency has made circuit theory a powerful and defensible 

tool for understanding potential gene flow, animal movement routes, and landscape 

connectivity.

The second foundational paper (McRae & Beier 2007) demonstrated that IBR explained 

genetic patterns of mammal (wolverine, Gulo gulo) and plant (bigleaf mahogany, Swetenia 
macrophylla) populations about 50–200% better than two conventional approaches, namely 

isolation by distance and least-cost paths. The findings were striking because the species 

were undergoing rapid human-caused demographic changes, violating the IBR model 

assumption that all populations are in genetic equilibrium (i.e., based on the response 

variable, FST). This robustness suggested that circuit theory could be applied to the variety 

of other landscapes experiencing human-caused changes.

Finally, McRae et al. (2008) introduced many readers to the key concepts and metrics used 

in electrical circuit theory, and how they could be applied to model and map the process of 

connectivity over extensive landscape, habitat, or population networks (using georeferenced 

raster grids). Two of the most commonly used metrics include current density and effective 

resistance. Current density provides an estimate of the net movement probabilities (or flow) 

of random walkers through a given grid cell. Effective resistance permits a pairwise 

distance-based measure of isolation among populations or sites (see also McRae & Beier 

2007). McRae et al. (2008) illustrated how circuit theory could be used to identify multiple 

(i.e., redundant) movement pathways or habitat corridors and reveal, for example, critical 

‘pinch points’ constraining potential flow between focal areas. Redundancy is a measure of 

the number of possible pathways between focal points and reflects a fundamental 
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relationship that is the ratio of least-cost distance to effective resistance (see also Koen et al. 

2012 and Marrotte & Bowman 2017 for in depth treatments of this topic). Because circuit 

theory uses the same underlying landscape resistance data used by least-cost and other 

connectivity models, it could readily be added to the toolkits of conservation planners. In 

addition, McRae et al. (2008) introduced many readers to Circuitscape software, opening the 

door to diverse applications.

Applications of Circuit Theory to Conservation

Circuit theory has been applied to a wide range of conservation questions and challenges. 

Because Circuitscape is the principal tool that researchers and practitioners use to apply the 

method, we reviewed 459 papers identified by either Web of Science or Google Scholar that 

cited McRae et al. (2008) or the Circuitscape user guide (McRae & Shah 2009; McRae et al. 

2013). Of these studies, 277 directly used the software. Applications ranged across 

disciplines from conservation to evolutionary biology, from anthropology to epidemiology, 

and more. Circuitscape has been applied on every continent (including off the coast of 

Antarctica; Dambach et al. 2016), and several applications spanned multiple continents (e.g., 

Lawler et al. 2013, Tassi et al. 2015; Fig. 1). Whatever the geographic or conservation 

context, Circuitscape has been most frequently applied to single, focal species, though 

studies of two or more species are becoming more common (Fig. 2). The vast majority of 

studies addressed animals (n = 228), but ten focused on plants, and one on protists (Dong et 

al. 2016). Mammals were by far the most common vertebrates studied, followed by birds, 

amphibians, reptiles, and fish, though arthropods have been studied almost as frequently as 

birds (Fig. 3). At least five mammal-focused studies addressed human genomics or 

movement patterns.

Below, we examine the impressive range and diversity of circuit-theoretic and Circuitscape 
applications. Specifically, we highlight how circuit theory has been used to understand 

genetic structuring, the movement and dispersal paths of organisms, habitat corridors and 

barriers, and the impacts of humans and climate change on connectivity. Additional topic 

areas and examples may be found in the Supporting Information.

Landscape and Population Genetics—The foundational papers on circuit theory 

energized the emerging field of landscape genetics (Guillot et al. 2009; Manel & 

Holderegger 2013). Using genetic data to inform models of landscape resistance to 

movement using circuit theory has since become a standard practice (Zeller et al. 2012; 

Simpkins et al. 2018). This information has been useful in formalizing the incorporation of 

landscape structure and complexity into conservation plans for many species and 

ecosystems. For example, the multi-species Washington Connected project (WWHCWG 

2010) incorporated mountain goat connectivity based on genetic circuit theory models 

(Shirk et al. 2010), and the Washington-British Columbia Climate-Connectivity project 

(Krosby et al. 2016) spurred additional research using genetic and circuit theoretic 

approaches for assessing potential impacts and adaptation actions under climate change 

(Parks et al. 2015). Indeed, circuit theory has been used in multiple ways to explore the 

potential impacts of climate change on landscape genetics. A few studies have explored how 

historical changes to Earth’s climate have affected connectivity, resulting in modern genetic 
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patterns (Bell et al. 2010; Ortego et al. 2015) or have examined the impact climate change 

will have on future genetic patterns (Velo-Anton et al. 2013).

Despite its widespread use and contributions, the application of circuit theory in genetics is 

not yet fully realized. Initial statistical approaches based on comparing inter-individual 

genetic distances with resistance distances (e.g., using Mantel tests) often led to faulty 

inferences by incorrectly assuming linearity, ignoring spatial structure in the data, and failing 

to recognize that genetic distances can be affected by variable local population density 

(Legendre & Fortin 2010; Jaquiéry et al. 2011; Graves et al. 2013). Other recent approaches 

use appropriate probability distributions for distance data (Hanks & Hooten 2013) and newer 

IBR models accommodate variation in population sizes to some extent (Petkova et al. 2016). 

Even if the basic IBR model assumptions are met, challenges remain in automating 

procedures for how to weigh various environmental factors and how to account for 

uncertainty in noisy estimates of landscape variables (Dudaniec et al. 2016). In their 

comparison of microsatellite genetic datasets to maps of current density derived using circuit 

theory, Marrotte et al. (2017) found that current density was not usually a good predictor of 

gene flow for four terrestrial mammal species in Ontario, especially where habitat amount 

was high or pinch points were observed. Overall, these and numerous other efforts to extend 

circuit theory underscore its foundational and future importance to landscape genetics.

Identifying and Conserving Pathways and Corridors for Animal Movement—
Circuit theory was quickly taken up and applied by conservation biologists and ecologists 

not only to predict population-level patterns of gene flow, but also to understand how 

landscape features influence individual movement paths, with implications for the 

conservation and restoration of habitat corridors, as well as targeted studies of movement 

(Dickson et al. 2013). The breadth of applications, along with comparative method studies, 

have increased our understanding of the strengths of circuit theory in conservation, and 

highlighted its complementarity with other methods for predicting movement, including 

least-cost paths (e.g., Howey et al. 2011; Mateo-Sanchez et al. 2015; Marrotte & Bowman 

2017). Circuit theory is particularly appropriate when the assumption of moving individuals 

having limited knowledge of the surrounding landscape is met (McClure et al. 2016; Keeley 

et al. 2017; Maiorano et al. 2017).

Circuit theory’s basis in random walk theory results in an implicit assumption that 

individuals moving across a landscape have no knowledge of relative resistance beyond their 

immediate surroundings, making it particularly appropriate for modeling natal dispersal 

paths (McRae et al. 2008). Applications to predicting dispersal corridors for large, wide-

ranging carnivores have been common (e.g., Proctor et al. 2015; Ahmadi et al. 2017; 

Gantchoff & Belant 2017; McClure et al. 2017), but circuit theory has also seen utility in 

modeling amphibian dispersal via surface water networks of Australia (Bishop-Taylor et al. 

2015), dispersal paths of subterranean beetles via substratum karst systems (Rizzo et al. 

2017), marine shrimp larvae dispersal via ocean currents (Dambach et al. 2016), the 

dispersal of early human populations in Africa and the Caucasus (Tassi et al. 2015; 

Tarkhnishvili et al. 2016), and even the pathways of early explorers (e.g., Hernando de 

Soto’s route through the Appalachian Mountains in 1540; Thayn et al. 2016). Advantages of 

circuit theory may be less pronounced when applied to the movements of individuals 
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through known landscapes. For example, circuit theory and least-cost path models have been 

shown to perform comparably in predicting seasonal ungulate migration routes (Poor et al. 

2012; McClure et al. 2016). Still, circuit theory has been found suitable for characterizing 

relative frequency of routine movements along multiple potential paths through urban and 

other fragmented landscapes (e.g., Braaker et al. 2014; Rödder et al. 2016; Grafius et al. 

2017).

Given its utility for predicting high-use animal movement routes, researchers have applied 

circuit theory to evaluate alternatives for establishment of protected areas to enhance 

connectivity among populations, e.g., for pumas in the Atlantic Forest of southeast Brazil 

(Castilho et al. 2015), for forest understory birds in Costa Rica (Fagan et al. 2016), and for 

giant pandas (Ailuropoda melanoleuca) in China’s Qinling Mountains (Wang et al. 2014). 

Circuit theory models have also been used to identify corridors between occupied and 

unoccupied habitat areas to promote recolonization of a species’ historic range, or to identify 

areas suitable for habitat restoration (e.g., Jarchow et al. 2016; Ziółkowska et al. 2016; 

Gantchoff & Belant 2017). Similarly, other applications have identified potential pathways 

for spread of invasive species, diseases, and pathogens (see Supporting Information for 

further details).

Conservation biologists often wish to protect corridors that promote movement of more than 

one species, and have used circuit theory to assess the functionality and efficiency of 

potential multi-species corridors (e.g., Koen et al. 2014; Bleyhl et al. 2017; Lechner et al. 

2017). Several studies (e.g., Epps et al. 2011; Breckheimer et al. 2014) have shown that 

corridors designed for wide-ranging umbrella species enhance connectivity for less vagile 

organisms with similar habitat requirements, and Brodie et al. (2015) showed that multi-

species corridors tailored to ecologically similar species (e.g., carnivores and herbivores) can 

be highly effective for all species. Dilkina et al. (2017) explored the cost effectiveness of 

grizzly bear (Ursus arctos) and wolverine (Gulo gulo) corridors by optimizing corridor 

selection under a constrained budget. Even greater generality can result from ‘species-

agnostic’ approaches to estimating ecological flows that base landscape resistance on the 

degree to which habitats are unaltered or otherwise modified by humans (e.g., Bennie et al. 

2014; Dickson et al. 2017).

Anthropogenic Barriers to Connectivity—Circuit theory has been used to understand 

how humans impact movement corridors and where mitigating these impacts might be most 

crucial to maintaining or restoring connectivity. Indeed, understanding the effects of linear 

infrastructure such as transportation corridors and other barriers (e.g., international boundary 

structures, fence lines) on connectivity and gene flow was a primary impetus for McRae’s 

interest in the theory and development of Circuitscape (McRae 2006). Examples include 

work by Litvaitis et al. (2015) exploring the potential effects of roads on the movement of 

wide-ranging carnivores in New Hampshire, and work by Naidoo et al. (2018) examining 

barrier effects on movement corridors for African elephants (Loxodonta africana). Guidance 

for direct application of these approaches with transportation agencies has been provided by 

Beier et al. (2011), and initial explorations are underway that explicitly incorporate volume 

of traffic on highways into estimates of landscape permeability (e.g., Theobald et al. 2012). 

Yet, work integrating connectivity across transportation infrastructure, particularly within 
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the context of regional transportation planning, remains understudied (e.g., Mateo-Sanchez 

et al. 2014), and this gap is especially important given the ubiquity of transportation and its 

strong population and genetic effects on various animals globally (Trombulak & Frissell 

2000). Beyond the impacts of transportation corridors, circuit theory applications have 

addressed a wide range of anthropogenic impacts on connectivity, including urbanization, 

agriculture, and energy infrastructure (see Supporting Information).

More recent studies have assessed the vulnerability of populations to climate change due to 

fragmentation that could potentially impede adaptive shifts in distributions (e.g., Leonard et 

al. 2017a). A number of studies used Circuitscape to explicitly plan for climate-driven 

movements. For example, Lawler et al. (2013) used species distribution models to map the 

routes that organisms might follow to track shifting climates, and Littlefield et al. (2017) 

mapped connections between climatic conditions today and where those conditions will be 

in the future (i.e., climate analogs). These and other studies have used Circuitscape to model 

climate, sea-level rise, range shifts, and climate-driven landscape change projections to 

understand or anticipate the impact of climate change on species and their movements.

Non-traditional and Emergent Applications of Circuit Theory

Fire Spread—Circuit theory has provided an intuitive analogue to the process of wildfire 

movement (i.e., spread) across heterogeneous landscapes. The approach accommodates 

important stochastic properties of wildfire by modeling probabilistic spread between 

adjacent neighbors in a landscape network (Gray & Dickson 2015). Circuit theory also 

accommodates the critical role of spatial context in estimating fire likelihood, as areas on the 

landscape can burn far away from an ignition source. In this case, circuit conductance (the 

inverse of resistance) is a surrogate for the ease of fire spread across the landscape. Fuels, 

topography, and other biophysical variables that influence the spread of fire may be flexibly 

integrated into a conductance surface in a circuit-theoretic model (Gray & Dickson 2015, 

2016). Resulting metrics (e.g., current density and centrality) and maps of potential fire 

connectivity may be used to target areas on the landscape where fuel breaks could most 

effectively hinder fire movement through wildlife habitat (Welch et al. 2015), and disrupt the 

invasive grass-fire cycle (Gray & Dickson 2016). In addition, wall-to-wall estimates of fire 

connectivity can be useful to identify areas of highest fire likelihood across a landscape and, 

consequently, the natural and human infrastructure at greatest relative risk from wildfire 

(Gray & Dickson 2015).

Water Flow—The electronic circuit analogy has been used in a variety of subdisciplines 

within the field of hydrology. As early as 1962, electronic circuit models were seen as an 

innovative approach to analyzing groundwater flows (Robinove 1962). In these early studies, 

physical circuit models, often involving the careful placement and soldering of thousands of 

resistors for each individual run, were constructed in the lab to simulate the groundwater 

system (Miley & Kuelske 1990). With increased computer processing power this approach 

was supplanted by more contemporary node-based numerical models that are in wide use 

today (Fetter 2001). The use of such models has significantly advanced scientists’ 

understanding of flow connectivity within aquifers as well as between ground- and surface-

waters (Singh 2014). Application of resistance-based groundwater models has provided 
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insights into questions that are highly relevant to the field of conservation biology, including 

understanding water budgets in the midst of rapid human development (Tillman et al. 2016), 

the effects of flow management (Shafroth et al. 2010) groundwater pumping (Falke et al. 

2011) on dryland stream habitats and riparian ecosystems, and the impacts of climate change 

on stream summer baseflows (Huntington & Niswonger 2012).

Ecosystem Services—In the context of ecosystem services, circuit theory has been used 

to examine the landscape genetic structure and movements of pollinators, especially bees, in 

response to habitat and land-use changes (e.g., Goulson et al. 2011; Lander et al. 2013; 

Lozier et al. 2013; Jaffe et al. 2016a, 2016b). In southeastern Australia, Luck et al. (2014) 

used Circuitscape to investigate the potential movements of Regent Parrots (Polytelis 
anthopeplus) through almond orchards, which may benefit from parrots foraging on nuts 

remaining after harvest, reducing the need for manual or mechanical removal. Koh et al. 

(2013) used circuit theory to estimate the potential flow of agricultural insect predators 

across habitat networks in the Midwest U.S., quantifying the pest control benefit of 

grassland restoration and native prairie remnants. They concluded that the flow of multiple 

predators on soybean aphids (Aphis glycines) was improved by the presence of adjacent, 

native ‘conservation plantings’ that maximize such biocontrol services.

Impacts of Circuit Theory and Future Opportunities

Circuit theory’s widespread application across multiple disciplines (beyond genetics and 

wildlife ecology) is a testament to its power and flexibility as a tool for exploring movement 

and flow across a range of scales and settings. For example, novel applications of the theory 

to understanding the spread of fire, water, diseases, and invasive species, as well as the 

future impacts of climate change on natural and human systems are transforming the way 

scientists, planners, managers, and decision makers think about or incorporate connectivity 

processes into their work. From these diverse applications, we anticipate that new areas of 

inquiry and tools will emerge that also can benefit the field of conservation.

Looking forward, we see a variety of opportunities for circuit theory’s continued 

development and use in conservation. First, a new wave of applications are emerging from 

advances in how we conceptualize connectivity, such as by recognizing that a range of 

habitat conditions can serve as a source for individuals (and genes) moving between 

populations. ‘Omnidirectional’ or ‘wall-to-wall’ approaches (e.g., Walpole et al. 2012; Koen 

et al. 2014; Pelletier et al. 2014; Anderson et al. 2016; McRae et al. 2016; Supporting 

Information) avoid the need to arbitrarily define and delineate discrete areas to connect (e.g., 

habitat cores or patches), revealing important areas for connectivity over continuous 

landscape gradients. Because circuit theory extends easily to other, nontraditional 

‘landscapes,’ we also see a rapid expansion in efforts to quantify connectivity in other 

dynamic systems, such as seascapes, riverscapes, and below-ground environments (e.g., cave 

or karst habitats). In addition, circuit theory can be used to identify key places for mitigating 

or restoring connectivity (e.g., McRae et al. 2012; Torrubia et al. 2014) in areas where new 

investments in transportation infrastructure might prioritize crossing structures for wildlife. 

Second, tighter coupling between near real-time data on landscape dynamics (e.g., derived 

using remotely sensed images within Google’s Earth Engine environment) and estimates of 
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landscape resistance and current flow, as well as increasingly available information (e.g., 

Global Positioning System or other telemetry data) specific to the movement behaviors or 

seasonal life-history traits of a target organism, will greatly improve insights into or tests of 

potential connectivity. Third, we expect that in the future, outputs from Circuitscape will see 

more frequent use as hypotheses to strategically inform the design and monitoring of habitat 

use studies and to strengthen statistical inferences drawn from hard-won field data.

Although circuit theory provides a robust and intuitive framework for analyses of gene flow, 

animal movement, and corridor use, it has been shown that IBR may not perform as well as 

some other frameworks (e.g., isolation by distance) in less fragmented landscapes (Ruiz-

Gonzalez et al. 2015) or when connectivity is being assessed for migration pathways as 

opposed to dispersal pathways (e.g., Poor et al. 2012; McClure et al. 2016). As with any 

modeling framework, the assumptions and utility of a circuit-theoretic approach should 

always be assessed on a project-by-project basis. Additionally, several assumptions and 

caveats still need to be addressed, such as modeling long-distance dispersal events (McRae 

2006) and asymmetric migration (McRae et al. 2008; but see Hanks 2017). Future 

applications of circuit theory could account for temporal variation in dispersal rates 

(Anderson et al. 2010; Cushman & Lewis 2010) and predicting patterns of variation at 

adaptive loci (e.g., Creech et al. 2017).

Since the initial applications of circuit theory in conservation, Circuitscape and other related 

applications have undergone rapid and near constant refinement and improvement. 

Increasingly, circuit theory-based analyses are being conducted on larger and more complex 

datasets through recent advances in open-source software (e.g., gflow; Leonard et al. 2017b), 

programming (e.g., the Julia numerical computing language; Bezanson et al. 2017), and 

cluster- or cloud-based computing resources. The Julia implementation of Circuitscape (v. 

5.0) has greatly improved performance and scalability. Users are now able to solve for 

landscape grids that are larger or derived at finer resolutions than those used in earlier 

versions, as well as pairwise resistance calculations between a higher number of focal points 

(see also Supporting Information).

Similarly, advances in data visualization tools have assisted the communication of circuit 

theory results to a broader set of conservation practitioners, stakeholders, and planning 

efforts. A leading example is “migrations in motion” (http://maps.tnc.org/migrations-in-

motion), which uses a dynamic illustration of projected species migrations under climate 

change (Lawler et al. 2013) and has been a powerful and accessible way for The Nature 

Conservancy (TNC) to communicate the potential risks of climate change to a variety of 

audiences, including the general public. Importantly, these advances are often occurring as 

scientists around the world apply circuit theory to inform applications and decision makers. 

In his work at TNC, McRae played a major role in the development of generalized 

connectivity maps produced with wall-to-wall (Anderson et al. 2016) and ‘Omniscape’ 

(McRae et al. 2016; Supporting Information) versions of Circuitscape models. These 

regional-scale flow maps remain a key component in TNC’s Conserving Nature’s Stage 

approach for identifying land protection priorities, which to date has helped guide decisions 

on US$38 million in land protection funding. In India, national policy associated with the 
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Wildlife Protection Act, which delineates key habitat areas as tiger reserves, has been 

informed by Circuitscape-derived models and maps (Qureshi et al. 2014; Dutta et al. 2016).

We believe that the impact of circuit theory and Circuitscape on conservation has come from 

not only the theoretical basis and elegance of the approach, but also the powerful 

collaborations and active user community that have emerged. Because circuit theory took 

root so quickly and broadly, it can be expected to continue to provide a springboard for 

ecological understanding and remain an important tool for future researchers and 

conservation practitioners around the globe.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Number of peer-reviewed studies that used Circuitscape, by nation for the period January 

2009 – February 2018. Three studies that were continental in their spatial extent are not 

represented in this map.
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Figure 2. 
Number of peer-reviewed studies that used Circuitscape, by year (through 2017) and number 

of species (several species, 2–10; many species, > 10). Studies that modeled structural 

connectivity or addressed communities without targeting particular species are termed ‘not 

species specific;’ studies that compared models, or modeled physical processes (e.g., 

hydraulic resistance in roots; Zeppenfeld et al. 2017) are termed ‘other.’
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Figure 3. 
Number of peer-reviewed studies that applied Circuitscape to research questions in the 

animal kingdom (vertebrate classes Mammalia, Aves, Amphibia, Reptilia, and Pisces; 

invertebrate arthropod subphyla Chlicerata, Crustacea, and Insecta) for the period January 

2009 – February 2018.
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