
HIGHLIGHTED ARTICLE
| INVESTIGATION

The Relationship Between Haplotype-Based FST and
Haplotype Length

Rohan S. Mehta,*,1 Alison F. Feder,*,† Simina M. Boca,‡ and Noah A. Rosenberg*
*Department of Biology, Stanford University, Stanford, California 94305, †Department of Integrative Biology, University of

California, Berkeley, California 94720, and ‡Innovation Center for Biomedical Informatics, Georgetown University, Washington,
DC 20007

ORCID IDs: 0000-0002-6244-9968 (R.S.M.); 0000-0003-2915-089X (A.F.F.); 0000-0002-1400-3398 (S.M.B.)

ABSTRACT The population-genetic statistic FST is used widely to describe allele frequency distributions in subdivided populations. The
increasing availability of DNA sequence data has recently enabled computations of FST from sequence-based “haplotype loci.” At the
same time, theoretical work has revealed that FST has a strong dependence on the underlying genetic diversity of a locus from which it
is computed, with high diversity constraining values of FST to be low. In the case of haplotype loci, for which two haplotypes that are
distinct over a specified length along a chromosome are treated as distinct alleles, genetic diversity is influenced by haplotype length:
longer haplotype loci have the potential for greater genetic diversity. Here, we study the dependence of FST on haplotype length. Using
a model in which a haplotype locus is sequentially incremented by one biallelic locus at a time, we show that increasing the length of
the haplotype locus can either increase or decrease the value of FST , and usually decreases it. We compute FST on haplotype loci in
human populations, finding a close correspondence between the observed values and our theoretical predictions. We conclude that
effects of haplotype length are valuable to consider when interpreting FST calculated on haplotypic data.
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THE quantity FST has seen broad usage in studies of pop-
ulation structure and divergence (Holsinger and Weir

2009). Wright (1951) originally formulated FST for a biallelic
locus; subsequent perspectives that accommodate more than
two alleles (Nei 1973) have enabled its computation on mul-
tiallelic loci such as microsatellites and haplotype loci.

Calculations of FST from haplotypic data have provided
insight into a variety of questions, especially following the
development of a widely used haplotype-based statistical test
for population subdivision (Hudson et al. 1992). Haplotypic
computations of FST have been useful for studying patterns of
population structure, species divergence, and gene flow in
numerous organisms (Hanson et al. 1996; Clark et al. 1998;
Rocha et al. 2005; Jakobsson et al. 2008).

FST can be computed from haplotypic data in multiple ways.
One method computes sequence differences for pairs of sequen-
ces from the same population and from different populations,
and relies ona connectionbetween FST , pairwise sequence differ-
ences, and coalescence times (Slatkin 1991;Hudson et al. 1992).
Both this approach and the related analysis ofmolecular variance
framework of Excoffier et al. (1992) rely on comparisons of
sequences. A fundamentally different method employs a cluster-
ing technique to place distinct haplotypes into a set of haplotype
clusters, regards the clusters of a sequence at a specified location
as alleles, and computes FST from cluster membership frequen-
cies (Jakobsson et al. 2008; San Lucas et al. 2012). A third
method treats a specific segment of the genome as a “haplotype
locus,” so that distinct haplotypes over that genomic segment
represent distinct “haplotype alleles,” and computes FST from
the haplotype alleles (Clark et al. 1998; Oleksyk et al. 2010).

This last approach, treating each distinct haplotype as its
own distinct allele, provides a theoretical framework for un-
derstanding an observed dependence of FST on haplotype
length. Studies that have computed FST using both individual
single-nucleotide polymorphisms (SNPs) and haplotypes in
the same data set have consistently observed that haplotype
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FST tends to be smaller than SNP FST [Clark et al. 1998;
Jakobsson et al. 2008 (Figure S29); Oleksyk et al. 2010;
Sjöstrand et al. 2014 (Figure 2)]. An explanation for this basic
pattern is suggested by the dependence of FST on the fre-
quency of the most frequent allelic type (Jakobsson et al.
2013; Edge and Rosenberg 2014; Alcala and Rosenberg
2017). A lower frequency for themost frequent type at a locus
generally results in lower values of FST , and themost frequent
haplotype at a particular haplotype locus is necessarily no
more frequent than the most frequent SNP allele that it con-
tains. We would then expect that because longer haplotype
loci are likely to have a lower frequency for the most frequent
haplotype, such loci would generate lower FST values.

Here,we examine the effect of haplotype length on FST .We
derive the value of FST upon the addition of a biallelic SNP
locus to an existing haplotype locus. Using this result, we
predict the effect of haplotype length on values of FST , assum-
ing for mathematical convenience that added SNPs are in
linkage equilibrium with existing haplotype loci. Comparing
values of FST for haplotype loci in human genomic data to
those obtained by our theoretical predictions, we find that
our predictions largely match the observed values, despite
the presence of linkage disequilibrium (LD) between the
added SNPs and the existing haplotype loci in the data but
not in the theory. In addition, we find that haplotype-based
FST computations are likely to reduce FST compared to single-
SNP FST computations. We propose that a variety of haplo-
type lengths be usedwhen computing FST from haplotype loci
and that the length of the haplotype locus be considered
when interpreting the resulting FST values.

Model

Definitions

We compute FST on a multiallelic locus in a pair of popula-
tions, 1 and 2, of equal size. Denote by pki the frequency of
allele i in population k, with pki > 0 for all ðk; iÞ. For each k,PI

i¼1pki ¼ 1, where I is the total number of distinct alleles at
the locus. We use Nei’s (1973) formulation of FST ,

FST ¼ JS2 JT
12 JT

; (1)

where

JS ¼ 1
2

X2
k¼1

XI
i¼1

p2ki (2)

is the mean of the two population homozygosities, and

JT ¼
XI
i¼1

"
1
2

X2
k¼1

pki

#2
(3)

is the homozygosity of the population obtained by pooling
populations 1 and 2 together.

For k ¼ 1 and k ¼ 2, we define the population homo-
zygosities by

Jk ¼
XI
i¼1

p2ki: (4)

We define the dot product between the two population allele
frequency vectors by

D12 ¼
XI
i¼1

p1ip2i: (5)

Using Equations 4 and 5, we rewrite FST (Equation 1) in the
form that we use for our analysis:

FST ¼ J1 þ J2 2 2D12

42 J1 2 J2 2 2D12
: (6)

Note that a constraint exists on D12 given J1 and J2:

0<D12<
ffiffiffiffiffiffiffiffiffi
J1J2

p
; (7)

with equality in the upper bound if, and only if, each allele has
the same frequency in both populations. Note that the upper
bound is only achievable if J1 ¼ J2 (see further discussion in
Appendix A). The lower bound can be obtained by making
each distinct allele unique to one of the two populations.

Adding a SNP to a haplotype locus

Weare concernedwith the scenario inwhich themultiallelic locus
is a “haplotype locus,” a genomic region of specified length for
which each distinct haplotype is regarded as a distinct “allele.”
Weadd a biallelic locus to ourmultiallelic locus, corresponding to
a scenario in which the “haplotype locus” is augmented by one
SNP. We refer to the multiallelic locus as a “haplotype locus,” to
each of its alleles as a “haplotype,” and to the biallelic locus as
a SNP. However, our results can apply to any kind of multiallelic
locus augmented by a biallelic locus. We refer to the haplotype
locus augmented by a SNP as an “extended haplotype locus.”

Our goal is to compute FST over the extended haplotype
locus defined by adding the SNP to the haplotype locus, given
the population frequencies of the alleles of the haplotype locus
and the SNP. The SNP has two alleles, a major allele—with
frequency greater than or equal to 1

2—and a minor allele. We
identify these alleles by examining the mean allele frequency
between the two populations, so that the minor allele has
mean frequency 1

2 or less, even if it is the more common allele
in one but not the other of the two populations.

The alleles of the extended haplotype locus are cooccur-
rences of the alleles of the SNP with the haplotypes of the
haplotype locus. Each of the I distinct haplotypes can cooccur
with either the major or the minor allele of the SNP. Therefore,
2I alleles are possible for the extended haplotype locus as a re-
sult of combining the haplotype locus with the SNP. For each i
from1 to I, we index the allele formed by cooccurrence of the ith
haplotype with the SNP minor allele by 2i21, and the allele
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formed by cooccurrence of the ith haplotypewith the SNPmajor
allele by 2i. Denote by qki the frequency of theminor allele of the
SNP on the ith haplotype in population k. In other words, qki is
the probability that haplotype i contains the minor allele of the
SNPwhen augmented by the SNP. By a slight abuse of notation,
using pki for the frequency of allele i of the haplotype locus in
population k, for each i from 1 to I, the allele frequencies of the
extended haplotype locus in population k are

pk;2i21 ¼ pkiqki (8)

pk;2i ¼ pkið12 qkiÞ: (9)

For convenience, we drop the comma in subscripts when
possible.

Written with conditional probability, if A is the event that the
SNP minor allele is observed and B is the event that haplotype
i is observed, then cooccurrence of A and B has probability
PðA \ BÞ ¼ PðAjBÞPðBÞ. Equation 8 merely encodes this result,
with PðBÞ ¼ pki; PðA \ BÞ ¼ pk;2i21, and PðAjBÞ ¼ qki. IfA is the
event that the major allele of the SNP is observed, then Equation
9 can be obtained by noting that PðA \ BÞ ¼ PðAjBÞPðBÞ
and PðA \ BÞ þ PðA \ BÞ ¼ PðBÞ, so that PðAjBÞ ¼ PðA \ BÞ=
PðBÞ ¼ 12 PðA \ BÞ=PðBÞ ¼ 12 PðAjBÞ ¼ 12 qki.

Note that qki is not necessarily equal to the overall fre-
quency of the SNP minor allele in population k, or qk. The
notation in Equations 8 and 9 allows us to write qk as

qk ¼
XI
i¼1

pk;2i21 ¼
XI
i¼1

pkiqki (10)

and the minor allele frequency of the SNP across all popula-
tions, q, as

q ¼ 1
2

X2
k¼1

qk ¼
1
2

X2
k¼1

XI
i¼1

pkiqki: (11)

Table 1 summarizes our allele frequency notation and Figure
1 provides a schematic of the process of adding a SNP to a set
of haplotypes.

Results

General formula: arbitrary LD between haplotype locus
and SNP

We seek to evaluate FST on the set of 2I alleles of the extended
haplotype locus. We call this quantity FþST. To compute FþST

using Equation 6, we use Equations 8 and 9 to obtain the
values of the component quantities Jþ1 , J

þ
2 , and Dþ

12 (Equa-
tions 4 and 5) for the extended haplotype locus:

Jþk ¼ PI
i¼1

p2k;2i21 þ p2k;2i

¼ PI
i¼1

p2kiq
2
ki þ p2kið12qkiÞ2

¼ Jk2 2
PI
i¼1

p2kiqkið12 qkiÞ (12)

Dþ
12 ¼ PI

i¼1
p1;2i21p2;2i21 þ p1;2ip2;2i

¼ PI
i¼1

ðp1iq1iÞðp2iq2iÞ þ ½p1ið12 q1iÞ�½p2ið12 q2iÞ�

¼ D122
PI
i¼1

p1ip2iðq1i þ q2i2 2q1iq2iÞ:

(13)

Addition of the SNP splits each haplotype into two new
alleles, so homozygosity (Equation 12) cannot increase:
Jþk < Jk. For a fixed set of pki for the haplotype locus in pop-
ulation k, equality can occur if and only if for all i, qki is either
0 or 1. This condition is obtained if and only if each haplotype
is associated with only a single SNP allele. Otherwise, adding
a SNP always decreases homozygosity at the extended hap-
lotype locus compared to the haplotype locus itself. Figure 2,
A and B, provides geometric intuition for this result.

The dot product (Equation 13) also cannot increase, as
q1i þ q2i 2 2q1iq2i ¼ q1ið12 q2iÞ þ q2ið12 q1iÞ>0. Equality
occurs if and only if: (1) for all i, pki ¼ 0 for some k, or (2)
for each i, q1i and q2i are both 0 or both 1. In the former case,
the alleles of the haplotype locus are each private to a single
population. In the latter case, the SNP is partitioned so that
each haplotype is associated with a single SNP allele, the
same one in both populations. Otherwise, adding the SNP
decreases the dot product at the extended haplotype locus.
Figure 2, C and D, provides geometric intuition for this result.

Note that if q ¼ 0, so thatq1 ¼ q2 ¼ 0, then q1i ¼ q2i ¼ 0 for
all i.We thenhave Jþ1 ¼ J1; Jþ2 ¼ J2, andDþ

12 ¼ D12. In this case,
FþST is equal to the FST for the initial haplotype locus (Equation 6).
Thus, addition of a monomorphic locus does not change FST .

Because FST (Equation 6) monotonically increases with
J1 þ J2, decreasing homozygosity decreases FST . In contrast,
FST monotonically decreases with D12, so decreasing D12

Table 1 Haplotype and SNP allele frequency notation

Allele at the haplotype locus, population 1 Allele at the haplotype locus, population 2

1 2 I Total 1 2 I Total

SNP allele Minor p11q11 p12q12 p1Iq1I q1 p21q21 p22q22 p2Iq2I q2
Major p11ð12q11Þ p12ð12 q12Þ p1Ið12 q1IÞ 12q1 p21ð12 q21Þ p22ð12q22Þ p2Ið12q2IÞ 12q2
Total p11 p12 p1I 1 p21 p22 p2I 1

Table entries represent allele frequencies of an extended haplotype locus (Equations 8 and 9). Columns for alleles 3, 4, . . ., I-1 are omitted from the table.
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increases FST . Therefore, it is not immediately evident if modify-
ing J1, J2, andD12 in themannerofEquations12and13 increases
or decreases FST . Whether FST increases or decreases with the
addition of a SNP to a haplotype locus depends on whether the
decrease in homozygosity (Equation 12) or the decrease in dot
product (Equation 13) has a larger effect on Equation 6.

We can investigate the relative impact of the decreases in
J1, J2, and D12 on the value of FST by using Equations 12 and
13 in Equation 6 to compute

FþST ¼ J1 þ J22 2D122 2
PI

i¼1xi
42 J1 2 J2 2 2D12 þ 2

PI
i¼1yi

; (14)

where

xi ¼ ðp1iq1i2 p2iq2iÞ½p1ið12 q1iÞ2 p2ið12 q2iÞ�
yi ¼ ðp1iq1i þ p2iq2iÞ½p1ið12 q1iÞ þ p2ið12 q2iÞ�: (15)

We now proceed to examine Equation 14 in the simplest case,
in which the SNP and the haplotype locus are in linkage
equilibrium separately in the two populations.

Special case: linkage equilibrium between haplotype
locus and SNP

We focus the remainder of our analysis on the situation in
which the SNP is in linkage equilibrium with the haplotype
locus. Under this condition of independence, the frequency
of the minor allele of the SNP on a particular haplotype
i in population k, qki, is just the population frequency of
the minor allele of the SNP in population k, qk (Equation 10).

Plugging qki ¼ qk into Equations 12 and 13 yields

Jþk ¼ ½12 2qkð12 qkÞ�Jk (16)

Dþ
12 ¼ ½12 ðq1 þ q2 2 2q1q2Þ�D12: (17)

If we denote the homozygosity of the SNP in population k,
12 2qkð12 qkÞ; jk, and the dot product of the SNP allele
frequency vectors in the two populations, 12 ðq1 þ q2 2
2q1q2Þ; d12, then we can write the quantities in Equations
16 and 17 by

Jþk ¼ jkJk (18)

Dþ
12 ¼ d12D12: (19)

Using Jþk and Dþ
12 from Equations 18 and 19 in Equation

6 yields the special case of Equation 14 in which the SNP is in
linkage equilibrium with the haplotype locus:

FþST ¼ j1J1 þ j2J2 2 2d12D12

42 j1J1 2 j2J2 22d12D12
: (20)

Thus, adding an independent SNP to a set of existing hap-
lotypes amounts tomultiplying the haplotype homozygosities
and dot product by the SNP homozygosities and dot product,
respectively, and recomputing FST (Equation 6) using the
resulting products. This result also holds if the appended
locus has more than two alleles. The general case appears
in Appendix B.

Figure 3 provides a schematic of the special case of adding
a SNP to a set of haplotypes where the SNP and the haplo-
types are in linkage equilibrium.

Subcase: the SNP has the same minor allele frequency in
the two populations: We now consider a series of further
constraints on the alleles. First, we consider an independent
SNP that is not differentiated between the two populations.
This procedure is equivalent to taking all haplotypes and
labeling them with two different labels in the same propor-
tions inbothpopulations. Itmight beexpected todecreaseFST ,
because within-population diversity increases but haplotypes
are not split differently between the two populations.

If the SNP has identical minor allele frequency in the two
populations, then q1 ¼ q2 ¼ q, with 0< q< 1

2. Inserting
q1 ¼ q2 ¼ q into Equations 16 and 17 and applying Equation
6 yields

FþSTðqÞ ¼
J1 þ J2 2 2D12

4
122qð12 qÞ2 J1 2 J2 2 2D12

: (21)

Equation21also follows fromEquation20, noting that for this
case, j1 ¼ j2 ¼ d12 ¼ 12 2qð12 qÞ.

The constant 4 in the denominator of Equation 21 is di-
vided by a quantity that is at most 1, with equality only in the
monomorphic case of q ¼ 0. Hence, the denominator of
Equation 21 is always greater than or equal to that of Equa-
tion 6. Thus, the addition of a polymorphic SNP with the
same minor allele frequency in the two populations always
decreases FST .

The function in Equation 21 decreases monotonically
with increasing minor allele frequency q (Figure 4).

Figure 1 Schematic of the process of creating an extended haplotype
locus by adding a SNP to a set of existing haplotypes in a population k.
Colors represent different haplotypes ði ¼ 1;2;3Þ, gray (major) and black
(minor) represent the two SNP alleles, and color intensity in the right
panel differentiates between the two extended haplotype alleles corre-
sponding to a single haplotype allele prior to the addition of the SNP.
Notation is defined in Table 1, updating the meaning of the pki for the
extended haplotype locus.
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Considering all q, the maximal FST occurs at FþSTð0Þ ¼
ðJ1 þ J2 2 2D12Þ=ð42 J1 2 J2 2 2D12Þ and the minimum oc-
curs at FþSTð12Þ ¼ ðJ1 þ J2 2 2D12Þ=ð82 J1 2 J2 2 2D12Þ.

Subcase: the SNP minor allele occurs only in one pop-
ulation:Wenowconsider the subcase inwhich theSNPminor
allele is private to one population, assuming q1 ¼ 0 without
loss of generality. The SNP splits some haplotypes into dis-
tinct new haplotypes in population 2 only, reducing allele
sharing between populations. Therefore, unlike in the pre-
vious case in which adding a SNP always decreases FST , this
case might be expected to increase FST .

Inserting q1 ¼ 0 and q2 ¼ 2q into Equations 16 and 17,
and applying Equation 6, yields

FþSTðqÞ ¼
J1 þ ½124qð12 2qÞ�J22 2ð122qÞD12

42 J1 2 ½12 4qð12 2qÞ�J2 2 2ð12 2qÞD12
:

(22)

Equation 22 can also be derived from Equation 20, inserting
j1 ¼ 1; j2 ¼ 124qð12 2qÞ, and d12 ¼ 12 2q.

The influence on FþST (Equation 22) of the SNPminor allele
frequency q depends on the value of D12. If D12 ¼ 0, then the
two populations share no haplotypes; they are maximally
diverged at the haplotype locus. In this case, FþST becomes:

FþSTðqÞ ¼
J1 þ ½12 4qð12 2qÞ�J2

42 J1 2 ½12 4qð12 2qÞ�J2: (23)

The function in Equation 23 is symmetric in q across q ¼ 1
4, as

for each a, 0< a< 1
4, FþSTð14 þ aÞ ¼ FþSTð142 aÞ ¼ ½J1 þ ð12þ

8a2ÞJ2�=½42 J1 2 ð12 þ 8a2ÞJ2�. It is minimized at q ¼ 1
4, and

maximized at q ¼ 0 and q ¼ 1
2 (Figure 5A). The maximum

value is the value of haplotype FST prior to the addition of
a SNP and the minimum is ðJ1 þ 1

2J2Þ=ð42 J1 2 1
2J2Þ. Thus, if

the populations are maximally diverged at the haplotype locus
in the sense that they share no haplotypes, then adding a SNP
whose minor allele appears in only one population always
decreases FST , with two exceptions. If the SNP ismonomorphic
in each population, with either ðq1; q2Þ ¼ ð0; 0Þ or ðq1; q2Þ ¼
ð0; 1Þ, then the FST value remains the same.

If D12 . 0 and we disregard the case of a monomorphic
haplotype locus with J1 ¼ J2 ¼ D12 ¼ 1, then the two popu-
lations share at least one haplotype and therefore admit the
possibility of increased divergence through decreased allele
sharing. To understand the effect of the minor allele fre-
quency (q) on whether FST increases or decreases, we exam-
ine the derivative of Equation 22 and assess the monotonicity
of FþST with increasing q.

From Appendix C, for fixed J1, J2, and D12, FþSTðqÞ has
a critical point in the permissible region for q if and only if
the root q* of the derivative d

dqF
þ
STðqÞ satisfies 0< q* < 1

2,
where

q* ¼ 1
2

 
12

1
D12

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D2
12

2
1
D12

2
22 J1 2 J2

2J2

s !
: (24)

Figure 2 The components of FST (Equation 6) all
decrease upon the addition of a SNP. (A) Homozy-
gosity Jk of a single population at a haplotype lo-
cus whose three haplotypes have frequencies
pk1 ¼ 0:4;pk2 ¼ 0:35, and pk3 ¼ 0:25. Homozy-
gosity is represented geometrically by the total area
of squares with side lengths pki for i ¼ 1;2; 3. In this
case, Jk ¼ 0:345. (B) New homozygosity Jþk (Equa-
tion 12) upon addition of an independent SNP with
qk ¼ 0:3. In this case, Jþk ¼ 0:1035. (C) Dot product
D12 between two populations at a haplotype locus
with p11 ¼ 0:4, p12 ¼ 0:35, and p13 ¼ 0:25 as in
(A) and (B), and p21 ¼ 0:2, p22 ¼ 0:3, and
p23 ¼ 0:5. The dot product D12 is represented geo-
metrically by the total area of rectangles with side
lengths p1i and p2i for i ¼ 1; 2;3. In this case,
D12 ¼ 0:31. (D) New dot product Dþ

12 (Equation
13) upon addition of an unlinked SNP with
q1 ¼ 0:3 and q2 ¼ 0:4. In this case, Dþ

12 ¼ 0:1674.
For all plots, the total shaded area equals the value
of homozygosity (A and B) or the dot product (C
and D). The dashed lines in (B) and (D) represent the
boundaries of the solid areas in (A) and (C), respec-
tively. Pop., population.
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We find that q* > 0 if

D12 <
2J2

22 J1 þ J2
; (25)

and that q* < 1
2 if

1
D12

>
J1 þ J22 2

2J2
: (26)

Equation 26 always holds, as its left-hand side is positive and
its right-hand side is negative.

If Equation 25 holds, thenwe can see that the critical point
q* is a local minimum: owing to Equation 25, at q ¼ 0, the
numerator of d

dqF
þ
STðqÞ (Equation 39), and hence the deriva-

tive itself, is less than or equal to 0. Hence, if Equation
25 holds, then FST decreases as q increases from 0 to q* and
increases as q increases from q* to 1

2. If Equation 25 fails, then
the derivative has positive numerator at q ¼ 0, and no critical
points occur in ½0; 12�. FST then increases with q on ½0; 12�.

The behavior of Equation 22 as a function of q appears in
Figure 5. In Figure 5A, J1 ¼ J2 ¼ 0:5, and D12 ranges over its
permissible space from 0 to 0.5 (Equation 7). Equation 25 is
always satisfied. As D12 increases, allele sharing between
populations increases, and the range of q at which the

population-specific SNP increases FST by decreasing allele
sharing expands in turn.

In Figure 5B, J1 ¼ 0:5;D12 ¼ 0:25, and J2 ranges from 0.2
to 1. Equation 7 is always satisfied for these values of J2. Equa-
tion 25 is satisfied for all J2 values considered, except 0.2. For
the J1; J2, andD12 shown, except at J2 ¼ 0:2; FþST (Equation 22)
has a localminimumat q* (Equation24). For J2 ¼ 0:2, Equation
25 is not satisfied, and FþST increasesmonotonicallywith increas-
ing q. As J2 increases from 0.2 to 1 for fixed J1 ¼ 0:5 and
D12 ¼ 0:25, the range of minor allele frequencies q for which
an added population-specific allele increases FST gets smaller.

In summary, the effect of adding a private SNP depends on
q. For large q, FST increases. For small q, FST only increases if
the haplotype locus has large D12 (Figure 5A) or if the pop-
ulation with the minor allele has low homozygosity at the
haplotype locus (Figure 5B).

Subcase: multiple SNPs with the same allele frequencies:
The third subcase we consider is the construction of haplo-
types from independent SNPs,with equivalent frequencies for
all SNPs. Therefore, each SNP has the same values for j1,
j2, and d12. For one of these SNPs, the “haplotype” FST is
ðj1 þ j2 2 2d12Þ=ð42 j1 2 j2 2 2d12Þ (Equation 6). If we now
add another independent SNPwith the same properties, then
using Equation 20, we obtain

FþST ¼ j21 þ j222 2d212
42 j21 2 j22 2 2d212

: (27)

Figure 3 provides a schematic of this case for one of the
populations k, considering a SNP with minor allele frequency

Figure 3 Schematic of the process of creating an extended haplotype
locus by adding a SNP to a set of existing haplotypes in a population, in
the special case in which the SNP and haplotype alleles are in linkage
equilibrium. Colors represent different haplotypes, gray and black repre-
sent the two SNP alleles, and color intensity in the right panel differen-
tiates between the two extended haplotype alleles corresponding to
a single haplotype allele in the left panel. The case shown here is specif-
ically the situation described by Equation 28, in which haplotypes are
constructed from SNPs that all have the same allele frequencies. In this
case, the SNP minor allele has frequency q ¼ 0:5.

Figure 4 FþST as a function of SNP minor allele frequency (q) for the case in
which the SNP minor allele has the same frequency in both populations (Equa-
tion 21). The haplotypes have J1 ¼ J2 ¼ 0:8, with D12 ranging from 0 to 0.8,
leading to haplotype FST values (represented in the plot by q ¼ 0) ranging from
0.67 for D12 ¼ 0 to 0 for D12 ¼ 0:8. All values of D12 in this range are
permitted by Equation 7, as J1 ¼ J2: F

þ
ST (Equation 21) decreases monotonically

from the haplotype FST at q ¼ 0 to a minimum value at q ¼ 0:5, except if
haplotype FST equals zero, in which case the SNP has no effect on FST .
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qk ¼ 0:5. By induction, FST for the extended haplotype locus
constructed by concatenation of n independent SNPswith the
same allele frequencies is

Fþn
ST ¼ jn1 þ jn22 2dn12

42 jn1 2 jn2 2 2dn12
: (28)

We plot Equation 28 as a function of n with j1; j2, and d12
fixed. In Figure 6A, Fþn

ST appears as a function of n for fixed j1
and j2 at each of several values of d12. For each d12, a decline
occurs in Fþn

ST with increasing n. Figure 6B plots Fþn
ST as a func-

tion of n for fixed j1 and d12 at each of several j2 values. As in
Figure 6A, for each j2, Fþn

ST decreases with increasing n.
One special case has q1 ¼ 0 and j1 ¼ 1, so that population

1 is monomorphic for all SNPs. The SNPs are polymorphic in
population 2, with q2 . 0. Then jn1 ¼ 1; dn12 ¼ ð12q2Þn, and

Fþn
ST ¼ 1þ ½122q2ð12q2Þ�n 2 2ð12q2Þn

4212 ½122q2ð12q2Þ�n2 2ð12q2Þn
/

1
3
; (29)

with the limit taken as n/N. The same limit occurs for
q2 ¼ 0 and q1 . 0 (Figure 6B, j2 ¼ 1). Otherwise, if both
q1 .0 and q2 . 0, then every term raised to the nth power
in Equation 28 is less than 1, and Fþn

ST /0 as n/N (Figure 6).
We can conclude that if haplotypes are constructed by

concatenating SNPs that all have the same allele frequencies,
then FST generally decreases with haplotype length. It has
limit 0 in most cases and limit 1

3 if one population is mono-
morphic for all SNPs.

Application to data

To evaluate the empirical applicability of our theoretical
results, we examined FST calculated on human SNP haplo-
types. We used phased SNP data from Pemberton et al.
(2012); the data contain 938 individuals from 53 populations
from the Human Genome Diversity Panel (HGDP), with a to-
tal of 640,034 genome-wide autosomal SNPs.

Our theoretical results are applicable to FST calculated
in pairs of populations. For this empirical application, we

treated the seven geographical regions in the HGDP data
set—Africa, Europe, Middle East, Central and South Asia,
East Asia, Oceania, and America—as “populations.” To ob-
tain a set of haplotypes for a region, we pooled all sampled
haplotypes from every individual in every population in that
region.

Haplotype construction

We constructed haplotypes from collections of n SNPs
obtained in two different ways, choosing windows of size
nmax ¼ 30 SNPs. First, we drew 10,000 sets of nmax random
SNPs without replacement from the entire set of SNPs, re-
quiring all pairs of SNPs in a set to be separated by at least
5 Mb or to be located on different chromosomes. Each “hap-
lotype” started with the first SNP in the set, and subsequent
“haplotypes”were constructed by sequentially appending the
remaining SNPs in the set.

The purpose of this first “random SNPs” procedure was to
create “haplotypes” from SNPs that were not likely to be
physically linked, a situation that accords with the assump-
tions of our theoretical computations. The value of nmax ¼ 30
SNPs was chosen to be large enough that most haplotypes in
a data set were likely to be distinct: for instance, at n ¼ 30,
the first random SNP set for the Europe/East Asia pair had
607 unique haplotypes in a sample of size 774 (387 individu-
als). In this circumstance, FST is effectively zero (Figure 7A).
The distance threshold of 5 Mb was chosen to exceed the
scale of tens to hundreds of kilobases for LD decay in humans
(Patil et al. 2001; Gabriel et al. 2002; Wall and Pritchard
2003).

In our second “SNP window” approach for constructing
haplotypes, we randomly chose 10,000 starting SNPswithout
replacement, each with at least nmax 2 1 SNPs between it and
the chromosome end, as measured in order of increasing SNP
position. Each haplotype started with the first SNP in the set,
and subsequent haplotypes were constructed by sequentially
appending remaining SNPs in the set. The purpose of this
procedure was to test the theory on a situation in which the
assumption of SNP independence is violated due to likely LD
of neighboring SNPs.

Figure 5 FþST as a function of SNP minor allele fre-
quency (q) for the case in which the SNP minor allele
appears only in population 2 (Equation 22). (A) J1
and J2 are fixed and both equal 0.5. D12 is varied
from 0 to 0.5, leading to haplotype FST values (oc-
curring at q ¼ 0) ranging from 0.33 to 0. All values
of D12 in this range are permitted by Equation 7, as
J1 ¼ J2. For all values of D12; FþST (Equation 22) starts
at the haplotype FST at q ¼ 0, then decreases to
a minimum value at q ¼ q* (Equation 24), then
increases to a minimum value of 1

3 at q ¼ 1
2. (B) J1

and D12 are fixed, with J1 ¼ 0:5 and D12 ¼ 0:25. J2
is varied from 0.2 to 1, leading to haplotype FST
values (occurring at q ¼ 0) ranging from 0.07 to

0.5. If J1 is fixed at 0.5, then D12 must be less than
ffiffiffiffiffiffiffiffiffiffiffi
0:5J2

p
unless J2 also equals 0.5 (Equation 7). Setting D12 ¼ 0:25 ensures D12 ,

ffiffiffiffiffiffiffiffiffiffiffi
0:5J2

p
holds

for all J2 .0:125, which covers the range used here for J2. The value of J2 affects the shape of FþST (Equation 22); smaller values of J2 result in
monotonically increasing FþST with q, and larger values result in a decrease followed by an increase, as seen in (A). In both (A) and (B), the dashed line
tracks the local minimum given by q* (Equation 24).
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General observations

Figure 7A plots the observed FST between Europe and East
Asia, regionswith relatively large samples in the data set—157
and 230 individuals, respectively—as a function of haplotype
length. The FST decay with haplotype length is faster for sets of
random SNPs than for neighboring windows of SNPs. This
result accords with the fact that LD in SNP windows maintains
haplotype homozygosity over larger numbers of SNPs than in
the case of the largely independent random SNP sets. We
observe that the mean FST across SNP windows is greatest
for n ¼ 2, after which it decays. This pattern accords with
the claim that as haplotypes increase in length, haplotype ho-
mozygosity decreases and the maximal FST in terms of homo-
zygosity decreases, so that empirical FST values decrease.

To evaluate the agreement of our theoretical results with
observed FST values, for each haplotype of length n> 2 SNPs,
we used Equation 20 to compute a predicted FþST from the
haplotype frequencies of the nested set of n21 SNPs and the
allele frequencies of the nth SNP. The theoretical FþST produ-
ces the same qualitative decay with haplotype length and the
same peak at a small number of SNPs ðn ¼ 2Þ as was seen for
the empirical values (Figure 7B).

For each SNP set and haplotype length, we computed the
ratio of the difference between observed and theoretically
predicted values of FST and the theoretical value, a quantity
we term “rescaled error.” For a particular SNP set and haplo-
type length, rescaled error is:

R ¼ FST 2 FþST
FþST

: (30)

Values of rescaled error (Equation 30) as a function of
haplotype length for the SNP sets in Figure 7, A and B, appear
in Figure 7C. The rescaled error is small for small n, increas-
ing with n. Our theoretical predictions are therefore more
accurate for short haplotypes. Owing to the generally low
FST values recorded for longer haplotypes (Figure 7A), the
absolute magnitude of the poorer predictions for longer
haplotypes is relatively small. For 2< n< 14, the predic-
tion is more accurate for random SNP sets than for SNPwindows.

Interestingly, for n> 15, the prediction is instead more ac-
curate for the neighboring SNP windows, despite the fact
that the prediction is designed for SNP sets with no LD. This
change in accuracy might be explained by the fact that SNP
windows of a particular length produce FST values similar to
those of random SNP sets of smaller length (Figure 7A), so
that our predictions remain reasonably accurate for longer
SNP windows than in the case of random SNP sets.

Correlation between observations and theory

To study the change in FST as SNPs are added to a haplotype
locus, we considered the value of FST with increasing haplotype
length for each collection of nmax ¼ 30 SNPs. For each collec-
tion of SNPs, random SNPs or SNP windows, we obtained a
“trajectory” of FST: the values of FST as a function of the number of
SNPs used to construct haplotypes for each n from 1 to nmax.
We then compared the observed FST for haplotypes of length
n to the theoretical FþST obtained by using Equation 20 on the
set of haplotypes with length n2 1 together with the nth SNP.

In each trajectory, we also compared the observed FST for
haplotypes of length n to a value of FST drawn with replace-
ment from the set of all observed values of FST for haplotypes
of length n. These random draws were designed to serve as
a null model of FST as a function of haplotype length, where
the value of FST depends only on haplotype length without
regard to values of FST for previous entrants in the trajectory
from n ¼ 2 to n ¼ nmax.

Table 2 displays correlation coefficients between observed
FST values, and both theoretical values obtained from Equa-
tion 20 and null model values drawn from the empirical dis-
tribution of FST . The correlations are computed between sets
of 290,000 sets of paired values, 10,000 SNP sets and 29 val-
ues per SNP set ðn ¼ 2; 3; . . . ; 30Þ. The value of n ¼ 1was not
used because FþST in Equation 20 only applies for n> 2. The
correlations between observed and theoretical values range
from 0.96 to 1.00 for random SNP sets, and from 0.94 to 0.98
for SNP windows, compared to 0.24–0.47 and 0.07–0.23 for
the correlation between observed and null values for random
SNP sets and SNP windows, respectively.

Supplemental Material, Figure S1 plots representative
results from Table 2 for the Europe/East Asia pair of regions.

Figure 6 Fþn
ST as a function of n, the number of

SNPs for the case in which all SNPs have the same
allele frequencies (Equation 28). (A) All SNPs have
j1 ¼ j2 ¼ 0:5, with d12 ranging from 0 to 0.5, lead-
ing to SNP FST values ranging from 0.33 to 0. All
values of d12 in this range are permitted by Equa-
tion 7. (B) All SNPs have j1 ¼ 0:5 and d12 ¼ 0:25,
with j2 ranging from 0.2 to 1, leading to SNP FST
values ranging from 0.07 to 0.5. If j1 is fixed at 0.5,
then d12 must be less than

ffiffiffiffiffiffiffiffiffiffi
0:5j2

p
unless j2 also

equals 0.5 (Equation 7). Setting d12 ¼ 0:25 ensures
d12 ,

ffiffiffiffiffiffiffiffiffiffi
0:5j2

p
holds for all j2 .0:125, which covers

the range used here. For both plots, FþST (Equation
28) decreases monotonically as the number of SNPs
increases. For j2 , 1, it decreases to 0.
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As expected, theoretical values of FþST match observed values
more closely for random SNP sets than for SNP windows.
However, the SNP windows produce results that are compa-
rable to the random SNP results, indicating that our theo-
retical results are reasonable in situations in which the
assumption of linkage equilibrium does not hold. For both
methods of haplotype construction, the theoretical results
dramatically outperform the null model results, indicating
that the theory predicts substantial additional information
about haplotype-based FST compared with null predictions.

Trajectories as observations

For each collection of nmax ¼ 30 SNPs, considering the
29 values from n ¼ 2 to 30, we fit a linear regression of
observed FST on the theoretical prediction from Equation
20 and computed the corresponding r2 statistic for good-
ness-of-fit. The purpose of this analysis was to treat each
trajectory as a separate observation with its own r2, in
contrast to grouping them as in Table 2 and Figure S1.

For the Europe/East Asia pair, Figure S2 plots r2 distribu-
tions across 10,000 trajectories for theoretical and null mod-
els, for both random SNPs and SNP windows. The fit of the
theoretical values is substantially closer compared to that of
the null values. The fit is also closer for random SNP trajec-
tories compared to window trajectories (Figure S2).

Figure 8 displays the median r2 trajectories for each cat-
egory of result in Figure S2 for the Europe/East Asia pair.
Figure 8 reveals a distinction between the null and theoret-
ical results; the theoretical model (Figure 8, A and C) closely
matches observations for shorter haplotypes but consis-
tently underestimates the value of FST for longer haplotypes.
In contrast, the null model (Figure 8, B and D) produces
a poor fit for shorter haplotypes but is less consistently bi-
ased for longer haplotypes. This observation provides more
detail about the observation in Figure 7 that rescaled error
(Equation 30) is higher for longer haplotypes than for
shorter haplotypes; in particular, the longer-haplotype FST
is underestimated.

Figure 9 plots example trajectories as a function of
the frequency M of the most frequent haplotype instead of
haplotype length, together with the upper bound on FST
given M (Jakobsson et al. 2013). The haplotype locus starts
with one SNP, with major allele frequency at least 1

2. As more
SNPs are added, M either stays the same (if one SNP allele
does not cooccur with the previous most frequent haplotype)
or decreases (if both SNP alleles cooccur with the previous
most frequent haplotype). Increasing haplotype length first
increases the upper bound on FST , increasing the potential for
an increase in FST to occur upon addition of a SNP. Once M
decreases below 1

2, increasing the haplotype length decreases
the FST upper bound, generally forcing FST to decrease. In
aggregate, these properties of the upper bound of FST as
a function of M can explain the tendency of FST to increase
upon addition of the first few SNPs before decreasing with
more SNPs, as seen in Figure 7A.

Error and LD

We expected that the primary cause of deviation of observed
values from theoretical values was greater LD in SNP windows
than in random SNP sets. LD has been detected in these SNP
data for nearby SNPs, decaying quickly so that it is unex-
pected for random SNP pairs [see Jakobsson et al. (2008),
Figure 2 and Li et al. (2008), Figure 3].

To assess the effect of LD on rescaled error, Figure 10 plots
rescaled error (Equation 30) against a multiallelic D9measure
of LD (Hedrick 1987) for European SNP–haplotype pairs. This
quantity, which we term D91, measures the deviation of ex-
tended haplotype allele frequencies from linkage equilibrium,
and is plotted for each SNP–haplotype pair. For each SNP set,
for each n from 2 to nmax, we computed D9 between the hap-
lotype locus of length n2 1 and the SNP. For East Asia, we
denote the quantity analogous to D91 in Europeans by D92.

Figure 10, A and B, which consider random SNP sets and
SNP windows, respectively, are split by quartile of values of
D92. Increasing LD in one or both populations increases the
rescaled error. This pattern is clear for SNP windows (Figure

Figure 7 FST for collections of random SNPs and windows of neighboring SNPs, as a function of the number of SNPs considered. (A) Median observed
FST . (B) Median theoretical FþST . (C) Median rescaled error (Equation 30). The median is taken across 10,000 SNP sets. For n> 2 SNPs, the rescaled error is
computed as the absolute difference between the observed FST and the FþST predicted from Equation 20 with the allele frequencies of the nth SNP, and
the values of J1; J2, and D12 of the haplotype locus for the n21 initial SNPs, normalized by the predicted FþST . The plot considers as the two populations
the data from Europe and East Asia. Error bars denote first to third quartiles, considering 10,000 SNP sets.
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10B), for which increasing D91 (within a plot) and D92 (moving
left to right across plots) produce greater rescaled error. As
LD increases, the model becomes less accurate, so that
rescaled error increases.

The magnitude of the influence of LD on rescaled error is
relatively small. When we separate SNP windows into quar-
tiles by the physical distance between SNPs n21 and n,
representing four quartiles expected to have different LD lev-
els, we see little difference among quartiles in the rescaled
error (Figure S3).

Data availability

See Pemberton et al. (2012) for the data used in this study.
Supplemental material available at FigShare: https://doi.org/
10.25386/genetics.8792594.

Discussion

We have derived the value of FST that is obtained when
a haplotype locus is augmented by a SNP (Figure 1B), fo-
cusing on the situation in which the SNP is in linkage equi-
librium with the haplotype locus. Three special cases we
studied theoretically—a SNP with the same allele frequen-
cies in both populations (Figure 4), a SNP whose minor
allele appears only in one of the populations (Figure 5),
and haplotype loci that are constructed from SNPs that all
have the same allele frequencies (Figure 6)—suggest a gen-
eral pattern: FST is likely to decrease when a SNP is added to
a haplotype locus, even if the SNP itself has a high value of
FST . Our empirical results using human SNP data corrobo-
rate this conclusion (Figure 7A).

The relationship between FST and the within-population
homozygosities and dot product of allele frequencies between
populations assists in understanding the effect on FST of add-
ing a SNP to a haplotype locus. FST decreases both by a reduc-
tion in the within-population homozygosities and by an
increase in the between-population allele sharing. Adding
a SNP to a haplotype locus necessarily decreases homozygos-
ities within populations by subdividing each allele of the hap-
lotype locus. The addition of the SNP might or might not
increase between-population allele sharing; if it does decrease
allele sharing, then it might not do so sufficiently to overcome
decreases in homozygosity, and FST might still decrease. We
have found that a decrease in allele sharing through differing
SNP allele frequencies in the two populations only increases
FST compared to the haplotype locus if the SNP allele fre-
quencies differ greatly between the two populations, the
two populations are very similar in their frequencies at
the haplotype locus, or they have high diversity at the hap-
lotype locus.

In our FST trajectories, as more SNPs are added to SNP
windows, FST approaches 0. Typically, the first few SNPs en-
able an increase in FST as the frequency of the most frequent
haplotype across the population pair decreases toward 1

2, the
value that permits the greatest FST (Figure 9). With enough
SNPs, the extended haplotype locus becomes too heterozy-
gous within populations for any population divergence infor-
mation to be gleaned from FST .

Because FST has a systematic length dependence, a useful
data analysis strategy is to not restrict attention to a single
length and to report entire “profiles” of FST in terms of
haplotype length. For example, Figure S4 examines the

Table 2 Correlations between theoretical and observed values of FST upon the addition of a SNP to a set of haplotypes, compared to
correlations between observed values with those produced by a null model

Region 1 Region 2
Random SNPs SNP windows

Theoretical Null Theoretical Null

Africa Europe 0.9930 0.4375 0.9685 0.2318
Africa Middle East 0.9923 0.4251 0.9684 0.2321
Africa Central/South Asia 0.9926 0.4289 0.9669 0.2340
Africa East Asia 0.9948 0.4428 0.9727 0.2173
Africa Oceania 0.9945 0.4399 0.9761 0.1642
Africa America 0.9957 0.4699 0.9739 0.1898
Europe Middle East 0.9691 0.2353 0.9429 0.0892
Europe Central/South Asia 0.9823 0.2754 0.9578 0.1177
Europe East Asia 0.9936 0.3786 0.9709 0.1596
Europe Oceania 0.9921 0.3756 0.9741 0.0974
Europe America 0.9930 0.3959 0.9713 0.1028
Middle East Central/South Asia 0.9809 0.3059 0.9544 0.1315
Middle East East Asia 0.9937 0.3900 0.9709 0.1639
Middle East Oceania 0.9919 0.3881 0.9735 0.1017
Middle East America 0.9934 0.4067 0.9708 0.1070
Central/South Asia East Asia 0.9925 0.3636 0.9677 0.1400
Central/South Asia Oceania 0.9911 0.3665 0.9731 0.0857
Central/South Asia America 0.9921 0.3804 0.9700 0.0854
East Asia Oceania 0.9926 0.3414 0.9756 0.0868
East Asia America 0.9933 0.3384 0.9732 0.0749
Oceania America 0.9952 0.3896 0.9765 0.0900

For this computation, 290,000 paired values are compared, as every haplotype length from 2 to 30 is considered for each of 10,000 random or neighboring window SNP
sets.
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dependence of FST on haplotype length for various popula-
tion pairs. Some of the lines representing different compar-
isons cross, indicating that the length affects which of a pair
of comparisons has a larger value. In other cases, lines have
the same relative position irrespective of the length consid-
ered. If FST profiles are computed for multiple population
pairs, and the same pairs have larger values across multiple
lengths, then relative values can potentially be regarded as
robust.

This study augments recent attempts to analyze how pop-
ulation-genetic statistics changeas theunit of analysis extends
from a single SNP to a haplotype locus (e.g., Morin et al. 2009;
Gattepaille and Jakobsson 2012; Duforet-Frebourg et al.
2015; García-Fernández et al. 2018). In particular, our ap-
proach follows Gattepaille and Jakobsson (2012), who com-
pared a statistic for ancestry information for two loci
combined and treated as a single “haplotype locus” to the
information content of the loci individually. We show how
a two-locus framework can be used iteratively to examine
haplotype loci on larger numbers of SNPs.

We have considered a particular form of FST , following
recent work on the dependence of FST on allele frequencies
(Jakobsson et al. 2013; Edge and Rosenberg 2014; Alcala
and Rosenberg 2017), by treating FST as a function com-
puted from allele frequencies rather than as a parameter of
an evolutionary model. In our perspective, FST values at
different haplotype lengths are not expected to be equal,

either numerically or conceptually. In an alternative and
widely used perspective in which FST is treated as an evo-
lutionary parameter (e.g., Holsinger and Weir 2009), hap-
lotype loci of different lengths represent different scales

Figure 9 Example trajectories of observed FST as haplotype length
increases, viewed as a function of the frequency of the most frequent
haplotype. As the haplotype length increases, the frequency of the most
frequent allele decreases, moving the trajectory from right to left. The
solid black curve indicates the upper bound on FST given the frequency of
the most frequent allele for an infinite number of alleles [from Jakobsson
et al. (2013)]. FST values associated with numbers of SNPs other than 1, 2,
5, 10, and the maximum of 30 appear in gray.

Figure 8 Example trajectories of observed, theoret-
ical, and null values of FST for random SNP sets and
SNP windows. (A) Random SNP sets, theory. (B)
Random SNP sets, null model. (C) SNP windows,
theory. (D) SNP windows, null model. For each num-
ber of SNPs n, 1<nmax 21, a prediction is made for
FþST on the basis of a theoretical or null model. The
prediction is indicated by an orange line from
ðn; FST Þ to ðnþ 1; FþST Þ. The trajectories shown are
those with median (5000th lowest) r2 values in the
observed vs. theoretical FST comparison distributions
that appear in Figure S2.
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for investigating the same underlying parameter. Thus,
haplotype-based FST methods that consider each locus in
the haplotype as part of a sum or average (Excoffier et al.
1992; Hudson et al. 1992) are expected to be less sensitive
to haplotype length than in our case, in which haplotype
loci of increasing lengths can be viewed as loci with an
increasing mutation rate due to the larger number of SNP sites
at which mutations can occur.

Wenote that although the scenario of interest assumes that
the appended locus is biallelic, much of our theoretical anal-
ysis applies if the locus is multiallelic (Appendix B). Our main
theoretical analysis focuses on the situation inwhich anadded
SNP is in linkage equilibriumwith the haplotype locus (Equa-
tion 20). Indeed, we have found that the theory is least
accurate when substantial LD is present (Figure 10). How-
ever, our more general theoretical result (Equation 14) does
not assume linkage equilibrium and could be used for explicit
linkage models that permit LD. Theoretical predictions of the
values of the SNP allele frequencies for specific haplotypes qki
under these alternative models could be used in the same

way that we used the assumption of qki ¼ qk in the case of
linkage equilibrium.

The assumption of linkage equilibrium between the SNP
and haplotype locus nevertheless produces reasonably
accurate predictions about FST even under circumstances in
which linkage equilibrium is not expected (Figure 7, Figure 8,
Figure 10, Table 2, and Figures S1–S3). Although the LD
level might be smaller in the data we examined than in dense
DNA sequence data, the general robustness to the presence of
some LD suggests that our results can apply in approximate
form to the general situations we have studied in data from
human populations.
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Figure 10 Rescaled error (Equation 30) vs. linkage disequilibrium (D91 and D92). (A) Random SNP sets. (B) SNP windows. For both panels, four plots
represent four increasing quartiles of D92 from left to right. The four plots in a row together represent 290,000 data points, 10,000 SNP sets and
29 values for the number of SNPs ð2; 3; . . . ;30Þ, with the exception that those data points yielding a rescaled error greater than 5 are omitted. Data
presented here use Europe and East Asia as regions 1 and 2, respectively, so that D91 and D92 represent linkage disequilibrium in Europe and East Asia,
respectively.
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Appendix

Appendix A: Bounds on D12

Herewe derive the upper bound onD12 for a locuswith frequencies p1i and p2i in populations 1 and 2 (Equation 5), when J1 and
J2 (Equation 4) are treated as fixed quantities in ð0; 1�, permitting the number of distinct alleles at the locus to be arbitrarily
large. Because we are concerned with nonnegative allele frequencies, D12 >0.

By the Cauchy–Schwarz inequality, D12 <
ffiffiffiffiffiffiffiffiffi
J1J2

p
, with equality if and only if one allele frequency distribution is a scalar

multiple of the other. Because allele frequency distributions must sum to 1, the equality D12 ¼ ffiffiffiffiffiffiffiffiffi
J1J2

p
occurs if and only if the

two allele frequency distributions are identical, with p1i ¼ p2i for all i. This condition implies J1 ¼ J2 ¼ D12.
If J1 6¼ J2, then no pair of allele frequency distributions satisfies D12 ¼ ffiffiffiffiffiffiffiffiffi

J1J2
p

. However, we can construct a pair of allele
frequency distributions, each with a finite number of alleles, such that D12 is arbitrarily close to

ffiffiffiffiffiffiffiffiffi
J1J2

p
.

Choose e. 0, e � J1 and e � J2. Suppose J1 6¼ 1 and J2 6¼ 1. Let K be an integer with

K>max
�
ØJ21

1 ø2 1; ØJ21
2 ø2 1

�
: (31)

Then K> 1; J1ðK þ 1Þ2 1> 0, and J2ðK þ 1Þ2 1> 0.
Consider the allele frequency distributions defined by

p11 ¼ ffiffiffiffiffi
J1

p
2 e1

p1i ¼ 12
ffiffiffiffiffi
J1

p
K

þ e1
K

p21 ¼ ffiffiffiffiffi
J2

p
2 e2

p2i ¼ 12
ffiffiffiffiffi
J2

p
K

þ e2
K
;

(32)

where i ranges from 2 to K þ 1, and

e1 ¼ 1
Kþ1

h ffiffiffiffiffi
J1

p ðK þ 1Þ2 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K½J1ðK þ 1Þ2 1�p i

e2 ¼ 1
Kþ1

h ffiffiffiffiffi
J2

p ðK þ 1Þ2 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K½J2ðK þ 1Þ2 1�p i

:

(33)

Note that e1; e2 . 0 :
ffiffiffiffiffi
J1

p ðK þ 1Þ2 1. J1ðK þ 1Þ21> 0, so that when we add KJ2 þ KJ to the inequality ðK þ 1Þ ð ffiffiffi
J

p
21Þ2 .0,

rearrange terms, and take the square root, we obtain that e1 . 0. Because e1 <
ffiffiffiffiffi
J1

p
2 1

Kþ1, we have p11 > p1i for all i. 1.
Analogously, p21 > p2i for all i. 1. Thus, alleles are placed in descending order of frequency in both populations.

It is straightforward to calculate
PKþ1

i¼1 p1i ¼
PKþ1

i¼1 p2i ¼ 1;
PKþ1

i¼1 p
2
1i ¼ J1, and

PKþ1
i¼1 p

2
2i ¼ J2. The dot product D12 ¼PKþ1

i¼1 p1ip2i between the two allele frequency distributions exceeds the product p11p21, so that:

D12 .
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J12 e1
p �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J22 e2
p �

.
ffiffiffiffiffiffiffiffiffi
J1J2

p
2 e1 2 e2: (34)

Choose K large enough that

K.max

"�
2þ e22

ffiffiffiffiffi
J1

p �2
e
�
4
ffiffiffiffiffi
J1

p
2 e
� ;

�
2þ e22

ffiffiffiffiffi
J2

p �2
e
�
4
ffiffiffiffiffi
J2

p
2 e
�
#
� (35)

From Equation 33, solving
ffiffiffiffiffi
J1

p ðK þ 1Þ2 12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K½J1ðK þ 1Þ2 1�p ¼ ðK þ 1Þe2 for K, we find that for K exceeding the root

ð2þ e22
ffiffiffiffiffi
J1

p Þ2=½eð4 ffiffiffiffiffi
J1

p
2 eÞ�, e1 , e

2. Similarly, e2 , e
2, so that D12 .

ffiffiffiffiffiffiffiffiffi
J1J2

p
2 e. Thus, given J1; J2 in ð0; 1Þ, allele frequency

distributions exist for which D12 is equal to or arbitrarily close to
ffiffiffiffiffiffiffiffiffi
J1J2

p
, with equality possible if and only if J1 ¼ J2.
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The case in which one but not the other homozygosity equals 1 remains. For J1 ¼ 1 and J2 6¼ 1, we set p11 ¼ 1. We set
p21 and p2i as in Equation 32 for 2< i<K þ 1, with e2 as in Equation 33, and with K. ð2þ e22

ffiffiffiffiffi
J2

p Þ2=½eð4 ffiffiffiffiffi
J2

p
2 eÞ�. Then

D12 . p11p21 ¼ ffiffiffiffiffi
J2

p
2 e2 .

ffiffiffiffiffi
J2

p
2 e. A similar argument holds for J2 ¼ 1 and J1 6¼ 1.

Appendix B: Multiallelic Loci with Linkage Equilibrium

Here, we relax the requirement that the appended “SNP” locus must be biallelic. We show that under linkage equilibrium
between the appended locus and the haplotype locus, Equations 18–20 continue to hold for multiallelic loci. Suppose, as
before, that there are I distinct haplotype alleles, andM> 2 distinct alleles of the additional multiallelic locus. In population k,
we can write the frequency of the extended haplotype allele that contains haplotype i and additional multiallelic locus allelem
analogously to Equations 8 and 9 as

pk;i;m ¼ pk;ipk;mji; (36)

where pk;i is the frequency of haplotype allele i in population k and pk;mji is the frequency of multiallelic locus allele m on
haplotype allele i in population k.

Under linkage equilibrium, pk;mji ¼ pk;m. We can then proceed, as with Equations 12 and 13, to obtain Jþk and Dþ
12, as in

Equations 18 and 19:

Jþk ¼
XI
i¼1

XM
m¼1

p2k;i;m ¼
XI
i¼1

XM
m¼1

�
pk;ipk;mji

�2¼XI
i¼1

p2k;i
XM
m¼1

p2k;m ¼ jkJk (37)

Dþ
12 ¼

XI
i¼1

XM
m¼1

p1;i;mp2;i;m ¼
XI
i¼1

XM
m¼1

p1;ip1;mjip2;ip2;mji ¼
XI
i¼1

p1;ip2;i
XM
m¼1

p1;mp2;m ¼ d12D12; (38)

where jk and d12 are the homozygosity in population k and the allele frequency dot product, respectively, of the additional
multiallelic locus.

Using Jþk and Dþ
12 from Equations 37 and 38 in Equation 6 produces Equation 20.

Appendix C: Roots of the Derivative d
dqF

þ
ST ðqÞ in the Case that the Minor Allele of the SNP Occurs Only in One

Population and D12>0

We use the derivative d
dqF

þ
STðqÞ to determine conditions under which FþSTðqÞ has a critical point in the permissible region for q,

0< q< 1
2. Using Equation 22,

d
dq

FþSTðqÞ ¼
64J2D12q2 2 64J2ðD12 2 1Þq28½ðJ1 2 J22 2ÞD12 þ 2J2�

½8J2q224ðJ2 þ D12Þqþ J1 þ J2 þ 2D1224�2
: (39)

To find the roots of Equation 39,we first show that there are no discontinuities over the range of qwithwhichwe are concerned.
The quantity 8J2q2 2 4ðJ2 þ D12Þqþ J1 þ J2 þ 2D12 24 in the denominator is negative for 0< q< 1

2: at q ¼ 0, its value is
J1 þ J2 þ 2D12 2 4, which is negative for a polymorphic locus because J1, J2, and D12 cannot simultaneously equal one; at
q ¼ 1

2, its value is J1 þ J2 2 4, 0. As a quadratic with positive leading term, it then has no roots in ½0; 12�. The denominator is
therefore never zero and Equation 39 has no discontinuities.

Consequently, the roots of Equation 39 are roots of the numerator. As a quadratic in q, the numerator of Equation 39 has two
roots. One root, termed q*, appears in Equation 24; the other root subtracts rather than adds the termwith the square root, and
because 0,D12 , 1 it cannot be positive. Hence, if and only if 0< q* < 1

2, for fixed J1, J2, and D12, FþSTðqÞ has a critical point in
the permissible region for q.
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