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Abstract

This review will focus on the role of the tumor microenvironment (TME) in the development of 

drug resistance in melanoma. Resistance to mitogen-activated protein kinase inhibitors (MAPKi) 

in melanoma is observed months after treatment, a phenomenon that is often attributed to the 

incredible plasticity of melanoma cells but may also depend on the TME. The TME is unique in its 

cellular composition – it contains fibroblasts, immune cells, endothelial cells, adipocytes and 

amongst others. In addition, the TME provides “non-homeostatic” levels of oxygen, nutrients 

(hypoxia and metabolic stress) and extracellular matrix proteins, creating a pro-tumorigenic niche 

that drives resistance to MAPKi treatment. In this review, we will focus in how changes in the 

tumor microenvironment regulate MAPKi resistance.
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1 Introduction

Melanoma is a malignancy of melanocytes. The transformation of melanocytes into 

melanoma requires a burden of mutations that can be initiated by exogenous and 

endogenous cues. Sporadic melanomas (approximately 90% of all melanoma cases) are 

frequently driven by low- to moderate-risk alleles that have high prevalence and low 

penetrance, indicating that environmental cues are key for malignant transformation 

(Chhabra et al., 2018; Eggermont, Spatz, & Robert, 2014; Hawryluk & Tsao, 2014; 

Schadendorf, Fisher, et al., 2015; Ward, Lazovich, & Hordinsky, 2012). Currently however, 

the pathway that has the highest oncogenic and therapeutic relevance in melanoma is the 

mitogen-activated protein kinase (MAPK) cascade, which is not attributable to direct UV 

damage (Hodis et al., 2012). The MAPK pathway is associated with cellular proliferation, 

differentiation, survival and mechanotransduction, and is activated by GTP bound Ras under 

normal conditions. Upon binding GTP, Ras begins a phosphorylation cascade, in which 
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RAF, MEK, and ERK are consecutively activated, which ultimately results in the 

phosphorylation of cytoplasmic targets or transcription factors that alter gene expression (De 

Luca, Maiello, D’Alessio, Pergameno, & Normanno, 2012).

Recently, melanoma tumors were classified into four different types based on the pattern of 

the most prevalent genes mutated (all components of MAPK pathway): BRAF (detectable in 

~52% of all melanomas), RAS (~28%), NF-1 (~14%) and Triple-WT (wild-type) (“Genomic 

Classification of Cutaneous Melanoma.,” 2015). Compounds targeting this pathway (i.e. 
BRAF and MEK inhibitors, denoted as BRAFi and MEKi, respectively) have been 

introduced to treat BRAF-mutated melanoma patients, which effectively lead to a regression 

of the tumor for few months. Unfortunately, tumor cells overcome MAPK and patients 

undergo relapse after a median of ~5–7 months, ultimately leading to patient’s death 

(Chapman et al., 2011; Gadiot, Hooijkaas, Deken, & Blank, 2013; Haferkamp et al., 2013; 

Hauschild et al., 2012; J. T. Lee et al., 2010; McArthur et al., 2014). Since then, many efforts 

have been undertaken to understand how melanomas resist therapy.

Resistance to MAPK blockade emerges from a combination of intrinsic and acquired 

resistance mechanisms. These include genetic alterations that reactivate MAPK signaling 

such as NRAS mutations (Nazarian et al., 2010), MEK mutations (Wagle et al., 2011) or 

mutant BRAF amplification (Shi et al., 2012). Resistant melanoma cells have upregulated 

levels of receptor tyrosine kinases (RTKs), such as epidermal growth factor receptor 

(EGFR), platelet derived growth factor receptor B (PDGFRB), insulin growth factor 1 

receptor (IGF1R), activated TGFβ pathway, hyper phosphorylated ERK, amongst others 

(Nazarian et al., 2010; Sun et al., 2014; Villanueva et al., 2010). The ERK pathway interacts 

with other pathways, such as WNT/β-catenin, c-Jun N-terminal kinase (JNK), 

microphthalmia-associated transcription factor (MITF) and mechanistic target of rapamycin 

(mTOR), which may collaborate to maintain ERK activity under drug pressure. Such 

networks of signaling pathways are complex and stochastic in nature, and recent efforts in 

identifying key players are starting to emerge in the literature. JUN and a protein kinase C 

(PKC) isoform were recently identified as main drivers of BRAFi resistance (Titz et al., 

2016), whereas p-21-activated kinase (PAK) was found to be pivotal in resistance to 

combinatory MEKi and BRAFi therapy (Zhang et al., 2017). These studies reveal important 

insights into the biology of melanoma, and cell-intrinsic mechanisms of therapy resistance. 

However, it is also important to consider the cell-extrinsic, or microenvironmental cues that 

govern therapy resistance. In this review we will focus on resistance to MAPK blockade 

driven fibroblast driven changes, both in the extracellular matrix (ECM) and in the oxidative 

makeup of the TME. We will then examine how changes in the immune microenvironment 

may also affect targeted therapy. Overall, this review is designed to draw attention to the role 

that the tumor microenvironment plays in driving therapy resistance.

2 The Stromal Microenvironment in Resistance to MAPK Blockade.

Melanomas are highly heterogenous and comprise a vast number of cancer-associated cells 

of different origins. Within the TME, melanoma cells interact with surrounding cells through 

cell-cell contact, adhesion molecules, as well as secreted molecules such as growth factors, 

cytokines, chemokines, ECM proteins, protease inhibitors and lipids (Piérard, Piérard-
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Franchimont, & Delvenne, 2012; Ruiter, Bogenrieder, Elder, & Herlyn, 2002). These 

complex interactions are established between different cell types, including fibroblasts, 

adipocytes, endothelial and immune cells, which potentially regulate the capacity of tumors 

to overcome MAPK blockade. In addition, these interactions often spur changes in more 

global alterations such as changes in oxidative stress, including ROS and hypoxia.

2.1 Fibroblasts as orchestrators of MAPKi Resistance.

Of the multiple cell types encountered by the tumor cell in its microenvironment, fibroblasts 

are one of the most studied cancer-associated cell types. From the early stages of 

tumorigenesis, CAFs are observed in the tumor microenvironment, and distinguish 

themselves from normal skin fibroblasts by their upregulated expression of α-smooth-

muscle actin (SMA), fibroblast-activation protein-1 (FAP1), PDGFRs, TGFβ, Vimentin and 

other proteins. CAFs do not only support tumor growth and metastases (Barcellos-Hoff & 

Ravani, 2000; Krtolica, Parrinello, Lockett, Desprez, & Campisi, 2001; Ohuchida et al., 

2004), they are also implicated in therapy resistance. To date, several groups have shown 

that fibroblasts protect melanoma cells against MAPK. Upon BRAFi, CAFs secrete factors 

that contribute to melanoma cell survival and resistance, such as HGF (Straussman et al., 

2012) and NRG1 (Capparelli, Rosenbaum, Berger, & Aplin, 2015). Aged fibroblasts, which 

have CAF-like properties, also protect melanoma cells from BRAFi via secretion of sFRP2 

(Kaur et al, 2016). Other secreted proteins include those involved the modeling of the 

extracellular matrix (Fedorenko et al., 2016; Fedorenko, Wargo, Flaherty, Messina, & 

Smalley, 2015).

Changes in matrix stiffness, such as loss of pliability, affect the metastatic properties of 

tumor cells. This occurs not only by providing optimal contractile forces for the migration of 

tumor cells, but also by affecting signaling (mechanotransduction), which can alter growth 

and even responses to drugs. Work from the Weaver laboratory and others has shown that in 

the breast cancer setting, increasing stiffness of the ECM can drive increased metastasis and 

resistance to chemotherapy through different processes as reviewed elsewhere (Kaushik, 

Pickup, & Weaver, 2016). Surprisingly, and in contrast to existing studies in other cancers, 

recent modeling experiments from our own laboratory suggest that this may be different in 

melanoma. We identified a non-linear relationship between collagen stiffness and invasion, 

whereby extremely loose and extremely stiff collagen both restrict invasion of melanoma 

cells in vitro, whereas collagen of an intermediate stiffness provides the optimal conditions 

for facilitating invasion (Ahmadzadeh et al., 2017). Additional published data supports these 

observations in various cancers (Goetz et al., 2011; Kwon, Cukierman, & Godwin, 2011; H.-

O. Lee et al., 2011). These data suggest that breast cancer cells may start out in a softer 

matrix, and need a stiffer matrix to invade, where melanoma cells start out in a stiffer matrix 

and need to soften it to invade. We hypothesize that this may mirror the biological need for 

plasticity in the breast (lactation, hormonal changes) that likely requires a soft matrix and the 

need for a firm protective barrier in the skin, that requires a tightly cross-linked matrix.

Understanding the contribution of matrix stiffness to tumor cell progression is important, 

because ECM alignment associated with assorted cancers effectively predicts patient 

outcomes and metastasis 16. Melanoma cells in varying collagen concentrations undergo a 
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morphology change reminiscent of an epithelial to mesenchymal transition (EMT), which 

has recently been linked to chemoresistance (Fischer et al., 2015; Zheng et al., 2015). 

Indeed, several studies have shown that CAFs are highly involved in EMT: they can deposit 

pro-metastatic ECM; they can generate the leading edge for EMT melanoma cells; and they 

release pro-invasive factors that encourage EMT. Growing evidence shows that BRAFi 

causes a biomechanical adaptation of the tumor niche. In melanoma cells, the blockade of 

MAPK pathway using BRAFi alone leads to F-actin remodeling via te mechanosensing 

pathway YAP/TAZ, therefore resulting in more aggressive melanoma cells (Kim et al., 

2016). The upregulation of this signaling pathway may be attributed to the increase of ECM 

proteins secreted by melanoma cells alone. In fact, BRAFi treatment leads to the 

overexpression of ECM proteins in melanoma cells, such as COL1A1 and FN1 (Titz et al., 

2016), which can positively feedback the recruitment of FA and remodeling of F-actin. 

Furthermore, Hirata and co-workers have found that the biophysical microenvironment 

created by CAFs is essential for melanoma cell survival in the presence of BRAFi. The 

authors showed that melanoma survival is in fact promoted by the activation of focal 

adhesion kinase (FAK) and Src by the CAF-dependent microenvironment, a response that 

can be reversed by embedding melanoma cells alone in stiff hydrogels composed by a 

mixture of fibronectin and collagen type I (Hirata et al., 2015). Nevertheless, paracrine 

factors released by melanoma cells stimulate the differentiation of fibroblasts, leading to 

increased expression of ECM molecules (Fedorenko et al., 2016, 2015). It appears, 

therefore, that melanoma cells and fibroblasts enroll in a collaborative effort to form a 

biomechanical tumor niche that is rich in ECM proteins under drug pressure, which further 

accelerates acquired resistance. Understanding how these biomechanical changes drive 

resistance to targeted therapy will be critical in deconstructing the contributions of the TME 

to therapy resistance, and this is schematically mapped in Figure 1.

2.2 Oxidative stress in drug resistance

In addition to driving biomechanical changes, fibroblasts can also contribute to changes in 

the oxidative microenvironment of a tumor. We have previously shown that aged fibroblasts 

lose the expression of anti-oxidants such as SOD3, and peroxiredoxin, resulting in an 

increase in ROS in the microenvironment of the tumor, creating a genetic instability in the 

tumor cell that drives tumor metastasis. However, the role of ROS in melanoma progression 

is quite confusing. In keeping with the data above, it has been shown that reactive oxygen 

species (ROS) levels that drive oxidative stress are often high in many primary tumors, 

particularly in melanoma given the burden placed upon the skin by UV radiation, and these 

increased levels are associated with increased neoplastic transformation and tumor 

progression (Chandel & Tuveson, 2014; Gao et al., 2007; Gorrini, Harris, & Mak, 2013; 

Liu-Smith, Dellinger, & Meyskens Jr., 2014; Rinnerthaler, Bischof, Streubel, Trost, & 

Richter, 2015)(Chandel & Tuveson, 2014; Gao et al., 2007; Gorrini et al., 2013; Liu-Smith 

et al., 2014; Rinnerthaler et al., 2015). But other studies show that increased oxidative stress 

placed on disseminated melanoma cells and other tumors has been shown to inhibit distant 

metastasis and progression (Herraiz et al., 2016; Peiris-Pages, Martinez-Outschoorn, Sotgia, 

& Lisanti, 2015; Piskounova et al., 2015). Whether this is a reflection of the differing 

microenvironments in immunocompetent vs incompetent mice is still a subject of debate. 

Indeed, the inflammatory response initiated by immune cells within primary tumors also 
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significantly increases ROS, suggesting that innate differences involving the immune 

microenvironment exist.

The balance between ROS, and the anti-oxidants that modulate it may play a key role in 

understanding the discrepancies in the literature. One hypothesis is that it is important for 

melanoma cells to adapt to allow survival (Piskounova et al., 2015; Rodrigues et al., 2016). 

As such, many metastatic populations following dissemination increase production of 

antioxidants and increased dependence on NADPH-generating enzymes in the folate 

pathway to help counteract oxidative stress (Piskounova et al., 2015). The expression and 

activity of antioxidant enzyme catalases such as Mn-SOD2, Zn-SOD1, and the ROS 

scavenger GSH is much higher when compared with other skin tumors (Wittgen & van 

Kempen, 2007). Interestingly, the increased resistance of melanoma cells to ROS through 

these enhanced pathways is not seen in melanocytes, suggesting that the acquisition of an 

increased antioxidant network is required for primary tumor development (Rinnerthaler et 

al., 2015; Wittgen & van Kempen, 2007). Metastatic melanoma cells also have increased 

Ferritin expression, a ferroxidase important in reducing oxidative stress, when compared 

with primary melanomas, suggesting that further antioxidant pathways are required to be 

upregulated to allow dissemination and metastasis (Baldi et al., 2005). Intriguingly however, 

as mentioned above, anti-oxidants in the microenvironment seem to play opposing roles both 

in metastasis as described above, and in therapy resistance as described below.

ROS levels have been associated with BRAFi resistance (Corazao-Rozas et al., 2013; Kaur 

et al., 2016; Yu et al., 2014). Studies have shown that melanoma cells exposed to an aged 

microenvironment are exposed to increased ROS, largely due to the fact that aged fibroblasts 

lose expression of superoxide dismutase-3 (SOD3), a key anti-oxidant. Melanoma cells in a 

young microenvironment also express b-catenin, which activates the base excision repair 

enzyme, apurinic/apyrimidinic endonuclease APE1 (Kaur et al., 2016). APE1 is critical for 

modulating DNA damage downstream of ROS. Aged fibroblasts secrete the frizzled related 

protein 2 (sFRP2) which signals to inhibit beta-catenin, and subsequently APE1, rendering 

the melanoma cells more susceptible to ROS. This increase in ROS is related to an increase 

in the resistance of melanoma cells to BRAF inhibition. Interestingly, when treated with 

anti-oxidants, resistant melanoma cells in the aged microenvironment were more sensitive to 

BRAFi (Kaur et al., 2016). This is also true in studies of BRAF inhibition in colon cancer, 

where Vitamin C could be used to target and kill BRAF and KRAS mutant colorectal cancer 

(Yun et al., 2015). The administration of anti-oxidants have, however, failed to prevent 

tumorigenesis in clinical trials (Fortmann et al., 2013); in fact, in lung and prostate cancer, 

anti-oxidants increased the incidence of metastasis and deaths (Goodman et al., 2004; Klein 

et al., 2011; The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group, 1994). 

How this reflects the balance between the ROS generated in the microenvironment, vs that 

within the tumor cell is a subject for further investigation.

2.3 Hypoxia in drug resistance

In melanoma, hypoxia is a key feature associated with the microenvironment and is a well-

known driver of heterogeneity (Fluegen et al., 2017; O’Connell et al., 2013; O’Connell & 

Weeraratna, 2013; Pucciarelli et al., 2016; Widmer et al., 2013). As the tumor continues to 

Almeida et al. Page 5

Pigment Cell Melanoma Res. Author manuscript; available in PMC 2019 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



develop, the formation of non-functional blood vessels throughout leads to regions of mild 

(hypoxia) to severe (anoxia) oxygen deprivation, which induces the epigenetic 

reprogramming of cells to drive adaptation and survival, and is of clinical significance given 

the strong correlation of hypoxia with poor patient prognosis, increased tumor resistance and 

metastasis (Eales, Hollinshead, & Tennant, 2016; Wigerup, Pahlman, & Bexell, 2016). To 

date, the hypoxia inducible factor (HIF) family of transcription factors are central mediators 

of the adaptive response and are heavily associated with chemo- and radiotherapy resistance, 

poor patient prognosis and patient relapse and are considered potential molecular targets for 

the treatment of metastasis (Mills, Joshi, & Niles, 2009; Wigerup et al., 2016).

Many other pathways both upstream and downstream of hypoxia-induced factor (HIF) in 

melanoma tumors are now being recognized to upregulate the expression of drug resistant 

and survival genes in response to hypoxia. HIF is a well-known suppressor of MITF (Cheli 

et al., 2012; Feige et al., 2011), which drives an MITFlow, slow cycling cell state that has 

been well characterized to have increased therapeutic resistance to a large number of 

therapeutics (Carreira et al., 2006; Hartman & Czyz, 2015; Hoek & Goding, 2010; 

Wellbrock & Arozarena, 2015). Cytotoxicity associated with chemo- and radiotherapy is 

much greater in proliferating populations, thus giving slow-cycling cells a specific survival 

advantage against more general treatments. MITFlow populations are also characterized to be 

intrinsically resistant to more specific therapies, particularly those defined by high AXL 

expression (Fane et al., 2017; Konieczkowski et al., 2014; Muller et al., 2014). Hypoxia also 

plays a prevalent role in the phenotype switching model of melanoma progression, as it has 

been shown to act as a central mediator of a HIF-1α dependent switch from an ROR1 

positive proliferative cell state to an ROR2 positive invasive cell state (O’Connell et al., 

2013). The expression of the ROR2 receptor induces a 10-fold decrease in sensitivity to 

BRAF inhibition, with this population being induced via the upregulation of WNT5a, which 

stabilizes HIF-1α levels during hypoxic conditions via increased SIAH2 expression 

(O’Connell et al., 2013). Recent studies using 3D melanoma spheroid models have also 

found that hypoxia-driven upregulation of HGF/MET plays an important role in 

vemurafenib resistance and is prevalent in drug resistant melanoma patients and xenograft 

models (Qin et al., 2016). Together, the various studies strongly suggest that resistance to 

targeted therapy in melanoma can be driven by hypoxia. Whether hypoxia impacts 

fibroblasts such that they produce more factors that drive resistance has not yet been 

explored.

2. The Immune Microenvironment and Resistance to MAPK Blockade.

In addition to targeted therapy against the MAPK signaling pathway, the other standard of 

care therapy for melanoma is immunotherapy. Immune checkpoints are pathways that are 

critical for self-tolerance. During an immune response, the activation of T-cells is a well-

defined multistage process designed to prevent the primed T-cell from attacking normal-self 

tissues. The initial stage of neoantigen processing and presentation by MHC complexes on 

APCs to the T-cell receptor is a key step in the immune attack response, however, the 

subsequent binding of the activating co-receptor, CD28, to CD80/CD86 molecules is an 

equally crucial step for full activation. T-cells also possess inhibitory signals in the form of 

CTLA-4 (found on regulatory T-cells and activated T-cells) and PD-1 that will bind in place 
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of CD28 preventing T-cell activation, among others. These inhibitory signals are termed 

checkpoints, and inhibiting these checkpoints is a key angle of immunotherapy. 

Immunotherapies targeted against these checkpoints (namely PD1 and CTLA4) are now 

FDA-approved for the treatment of fifteen forms of malignancy (Sharma & Allison, 2015), 

including tumors that have been previously classed to be insensitive to other 

immunotherapies (Zou, Wolchok, & Chen, 2016). Immunotherapies like these have similar 

clinical response rate compared to MAPKi such as vemurafenib with an added long-term 

success which ensures a more durable response. In addition, the delivery of chimeric antigen 

receptors (CARs) (Sadelain, 2016) and adoptive cell-transfer (ACT) (Sadelain, 2016) are 

additional immunotherapies that now offer patients with difficult to treat, advanced 

metastatic melanoma a significantly improved prognosis. However, for the purpose of this 

review, we will focus on the interaction between the immune microenvironment and the 

tumor in the context of targeted therapy efficacy.

3.1 The Immune Tumor Microenvironment.

CD4+ and CD8+ T-cells infiltrating the TME have long been associated with strong anti-

tumor effects and a favorable clinical outcome (Clark, 1991; Hadrup, Donia, & thor Straten, 

2013). However, the effectiveness of these cells relies on their fundamental ability to 

recognize neoantigens expressed on tumor cells and their ability to become activated, despite 

a suppressive microenvironment. This balance is maintained by a balance across a wide 

range of immune cells including T-cells, regulatory T-cells (Tregs), Myeloid-derived 

suppressor cells (MDSCs), dendritic cells (DCs) and tumor-associated macrophages 

(TAMs), as well as secreted cytokines such as TGF-β, IFN-γ, and TNF-α. Tregs are well-

described mediators of peripheral self-tolerance. These unique lymphocytes suppress the 

effects of T-cells recruited to the tumor through mechanisms including cell-cell contact and 

the secretion of IL-10, IL-35 and TGF-β (Sakaguchi, Yamaguchi, Nomura, & Ono, 2018; 

Sojka, Huang, & Fowell, 2008). MDSCs, a heterogenous group of immature myeloid cells 

activated in the presence of inflammatory cytokines are also contributors to immune 

suppression. Both cell types are reported in high frequencies within numerous malignancies 

and correlate with a worse patient prognosis and a reduced sensitivity to immunotherapies 

(Meyer et al., 2014; Mohos et al., 2013).

Macrophages also play an indispensable role in innate and adaptive immunity. They are 

activated by a number of stimuli which allows them to differentiate into multiple subtypes 

displaying various phenotypes which are dependent on the microenvironment (Gordon & 

Taylor, 2005; Solinas, Germano, Mantovani, & Allavena, 2009). Two main states of 

polarized activation for macrophages have been described: the classically activated M1 

macrophage and the alternatively activated M2 macrophage (Mantovani, Sica, & Locati, 

2005). Mainly because of their opposing cytokine profiles, the phenotypes of the polarized 

macrophages are reported to have differing roles within the cancer environment and tumor 

growth. Classically activated M1 macrophages express a number of pro-inflammatory 

cytokines, allowing them to act in an anti-tumor manner (Solinas et al., 2009), whereas, the 

majority of TAMs exhibit M2 phenotypes which express a variety of anti-inflammatory 

molecules that are over expressed within suppressed TME and drug resistant tumors (Solinas 

et al., 2009). One such molecule is the CSF1 receptor, expressed on TAMs, that responds to 
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CSF secreted by the tumor. Therapies targeted against CSF1R have failed, and recent data 

implicate the role of cancer-associated fibroblasts (CAFs) in this failure. This is because 

blocking CSF1/CSF1R signaling induces the migration of CAFs to the tumor site, where 

they then secrete a wide variety of chemokines that attract PMN-MDSCs, creating an 

immune-suppressive microenvironment (Kumar et al., 2017). This study demonstrates how 

the stromal microenvironment can affect immune components of the tumor 

microenvironment to drive therapy failure.

3.2. MAPKi and the Immune Response

Reports now demonstrate that melanoma cells carrying mutant BRAFV600E generate their 

own immune-escape mechanisms. These mechanisms involve increased levels of pro-

inflammatory cytokines such as IL-6, IL-10 and VEGF that drive the recruitment of Tregs 

and MDSCs into the TME (Sumimoto, Imabayashi, Iwata, & Kawakami, 2006). Moreover, 

BRAF mutant cells inhibited the maturation of DCs (Kumar, Patel, Tcyganov, & 

Gabrilovich, 2016) and their production of TNF-α and IL-12 (Sumimoto et al., 2006). The 

ability to present antigen through MHC class I molecules on melanoma cells is also 

abrogated in mutant BRAF cell lines (Sapkota, Hill, & Pollack, 2013) thus resulting in 

decreased CD8+ T-cell primed attacks. While MAPK blockade is not designed to 

specifically increase tumor immunogenicity, increasing numbers of reports suggest that this 

may indeed be an effect of MAPKi. Tumor associated macrophages (TAMs) and CAFs are 

the major source of IL-1 in the TME (Young et al., 2017), and IL-1is also secreted from 

BRAFV600E mutant cells (Khalili et al., 2012). IL-1 further stimulated CAFs to up-regulate 

COX-2, PD-1 ligands, GROα and IL8 (Khalili et al., 2012; Young et al., 2017). Early 

treatments with BRAFi such as vemurafenib and dabrafenib have also been demonstrated to 

increase CD4+ and CD8+ T-cells (Hong et al., 2012; Wilmott et al., 2012), reduce the levels 

of MDSCs (Schilling et al., 2013) and Tregs and restore the maturation of DCs and levels of 

TNF-α and IL-12 (Sumimoto et al., 2006).

The recruitment of immunosuppressive cells is influenced through the production of 

chemokines by the tumor including CCL5 (Schlecker et al., 2012), CCL7, CXCL8 and 

CXCL12 (Highfill et al., 2014; Kumar et al., 2016) and CCL2 (Kudo-Saito, Shirako, Ohike, 

Tsukamoto, & Kawakami, 2013). The cognate receptors for CCL2, CCR2 and CCR4 are 

known to be expressed on MDSCs and Tregs. Treatment of vemurafenib in mouse models 

was able to reduce the production of CCL2 by melanoma cells and inhibit growth through a 

change in ratio of effector T-cells to immunosuppressive cells in the TME (Knight et al., 

2013). Another study showed similar findings using anti-CCR4 treatment which inhibited 

Treg recruitment to the TME and promoted anti-tumor T-cell responses through ADCC 

(Sugiyama et al., 2013). Reports have now demonstrated that depleting these suppressive 

cells from entering the TME results in tumor immunogenicity, and the use of monoclonal 

antibodies to deplete Tregs have had success within murine studies (Arce Vargas et al., 2017; 

Viehl et al., 2006). However, as these cells are very important in self-tolerance and normally 

patrol the blood of healthy individuals, the targeting of intratumoral Tregs remains a difficult 

obstacle and often results in high level toxicities with increased risk of auto-immunity. 

Melanoma tumors harboring BRAF mutations are associated with a 2-fold increase in 
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intratumoral Tregs, but is not considered a predictive factor for the success of BRAFi (Leslie 

et al., 2015).

As described, constitutive MAPK activation works to subdue tumor immunogenicity, 

whereas, MAPKi can override some of these factors, restoring the balance by reducing TME 

suppression and also mounting an immune response against the tumor. Early data from 

clinical trials reported that although immunotherapies have a lower success rate, they do 

achieve a more durable response, however, MAPKi have a far higher response rate but also a 

significantly reduced long term success (Hodi et al., 2010; Plimack et al., 2018; 

Schadendorf, Hodi, et al., 2015). To this end, it was originally thought that combinations 

consisting of MAPKi with immune checkpoint therapies may work synergistically. However, 

following a phase 1 clinical trial, the hepatoxicity witnessed was excessive and the study was 

discontinued (Ribas, Hodi, Callahan, Konto, & Wolchok, 2013). Immunotherapy 

combinations have achieved far greater success however. More recently, the use of 

nivolumab and ipilimumab as a combination has been shown to be more effective than 

monotherapy. In fact, this combination has an equivalent success rate to MAPKi, being 

reported at 3 years a 58% survival (Wolchok et al., 2017). Although toxicities are high, they 

provided acceptable safety profiles leading to FDA-approval for stage IV melanoma (Larkin 

et al., 2015), and unlike MAPK inhibitors, there is durable response in a subset of patients.

3. Concluding remarks and perspective

The TME is a key modulator of the ability of a melanoma cell to overcome MAPK 

blockade. It has been proposed that MAPK re-activation involves complex interactions of 

MAPK pathway with non-canonical WNT pathway, TGFβ signaling, PI3K/AKT pathway or 

the adenyl cyclase/cAMP/PKA pathway. As discussed above, the melanoma-CAF crosstalk 

may be central in orchestrating drug resistance. CAFs not only secrete factors that help 

activate these signaling pathways, but they are also responsible for the abnormal deposition 

of extracellular proteins (e.g. collagen and fibronectin) that can increase therapy resistance. 

It has been proposed that this enhanced deposition of ECM proteins leads to the increase of 

melanoma adhesive sites through focal adhesion and remodeling of cytoskeleton, which in 

turn results in an invasive and resistant phenotype. In addition, melanoma cells secrete ECM 

proteins, which amplify the activation of focal adhesion. However, the molecular 

mechanisms that drive cytoskeletal remodeling, and how they result in resistance to MAPK 

inhibitors, remain poorly understood.

ECM composition and structure change dramatically with age. After 65 years of age, the 

dermal ECM exhibits decreased fiber area and thickness, which results in impaired 

mechanical properties (Diridollou et al., 2001; H.-O. Lee et al., 2011; Marcos-Garces et al., 

2014; Oh et al., 2011; Panwar et al., 2015). We have recently identified age as a key 

promoter of melanoma metastasis and resistance to MAPKi (Kaur et al., 2016). Although 

not yet fully demonstrated, it is possible that with age, dermal fibroblasts have enhanced 

CAF-like phenotype, which may further contribute to resistance. Other resident cells in skin 

also intervene in tumorigenesis, and potentially resistance to targeted therapy. Adipocytes 

and keratinocytes, for instance, were identified to interact with melanoma cells even at a 

distant, driving their invasiveness and promote resistance (Fattore et al., 2016; Milhas et al., 
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2016; Romano & Kwong, 2017). Further studies investigating the crosstalk between 

melanoma and these cancer-associated cells are necessary for the development of efficient 

drugs for the treatment of advanced melanoma. Nevertheless, future research in cancer 

should characterize the stochastic nature of the oncogenic-signaling pathways and their 

cross-talk at molecular level. This requires multi-disciplinary research across disciplines 

such as Medicine, Biology, Engineering, Mathematics, Chemistry and Physics.
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Figure 1 –. Schematic of the biomechanical adaptation of the TME to BRAFi as consequence of 
complex melanoma-stroma cross-talk.
Cancer-associated fibroblasts (CAF) create an ECM-rich TME. Upon BRAFi, melanoma 

cells release CAF-activating factors and ECM proteins, whereas CAFs release ECM growth 

factors that confer melanoma cells resistance in the long-term. A phenotype shift in 

melanoma cells is observed: melanoma cells that resist therapy can become de-differentiated 

and less proliferative, which ultimately results in metastasis.
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