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Abstract
Since early work attempting to characterize the brain’s role in pain, it has been clear that pain is not generated by a specific brain
region, but rather by coordinated activity across a network of brain regions, the “neuromatrix.” The advent of noninvasive whole-
brain neuroimaging, including functional magnetic resonance imaging, has provided insight on coordinated activity in the pain
neuromatrix and how correlations in activity between regions, referred to as “functional connectivity,” contribute to pain and its
modulation. Initial functional connectivity investigations assumed interregion connectivity remained stable over time, andmeasured
variability across individuals. However, new dynamic functional connectivity (dFC) methods allow researchers to measure how
connectivity changes over time within individuals, permitting insights on the dynamic reorganization of the pain neuromatrix in
humans. We review how dFC methods have been applied to pain, and insights afforded on how brain connectivity varies across
time, either spontaneously or as a function of psychological states, cognitive demands, or the external environment. Specifically, we
review psychophysiological interaction, dynamic causal modeling, state-based dynamic community structure, and sliding-window
analyses and their use in human functional neuroimaging of acute pain, chronic pain, and pain modulation. We also discuss
promising uses of dFC analyses for the investigation of chronic pain conditions and predicting pain treatment efficacy and the
relationship between state- and trait-based pain measures. Throughout this review, we provide information regarding the
advantages and shortcomings of each approach, and highlight potential future applications of these methodologies for better
understanding the brain processes associated with pain.

Keywords: Pain, Neuroimaging, Dynamic brain connectivity, Functional connectivity, Time-varying connectivity,
Psychophysiological interaction, Dynamic causal modeling

1. Introduction

Neuroimaging is a powerful tool that provides insights on the brain
mechanisms of pain and its modulation. Studies of pain-related
brain activation focus on identifying which regions are influenced
by painful stimulation or show alterations with pain conditions.
Noninvasive human imaging studies16,27,28,134 have confirmed
animal models indicating that nociceptive neurons and pain-
related regions are highly distributed throughout the brain (for

meta-analyses and reviews, see Refs. 2, 35, 59, and 99), and
provided unique insights on how pain is modulated in humans.
Yet, it has long been understood that the brain is functionally
integrated129; considering regions in isolation will ignore the
important role of communication between regions. Evidence from
lesion patients and cortical stimulation studies suggests that
individual brain regions are insufficient for the production of
pain.42,46,53,97 Although the brain regions that respond to pain are
anatomically linked,40,47,88,90 only by studying how activation
across regions covaries systematically can we begin to un-
derstand how networks within the brain construct and modulate
pain.

To understand the communication between brain regions
within the pain neuromatrix in humans, neuroscientists have
combined noninvasive whole-brain neuroimaging with analytic
techniques to measure correlations between brain regions,
referred to collectively as functional connectivity (FC). Functional
connectivity techniques do not measure physical connections
(eg, axonal projections), but instead assess functional coupling
between 2 or more spatially or anatomically distinct regions of the
brain, ie, whether activity in those regions correlates over time.
Initial FC approaches assumed that connectivity is stable over
time within individuals. Researchers used static FC to character-
ize functional networks (eg, intrinsic networks in the absence of
a task, referred to as “resting-state”137), to map basic pain
processing,117 and to measure whether the strength of
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communication between relevant brain regions varied across
individuals in meaningful ways (eg, differences between patients
and controls61,65,92,131,141; or in relation to a relevant behavioral
dimension92,122,137). However, recent work on “dynamic func-
tional connectivity” (dFC) assumes that functional coupling
between brain regions can actually change over time within
individuals.5,20 Indeed, FC can vary both spontaneously and as
a function of psychological processes and experimental
demands,22,63,104 and longitudinal changes in FC have been
linked to the development of persistent pain7,91 (for a review, see
Ref. 14). In this review, we provide an overview of recent dFC
approaches that have been applied to the study of pain using
functional magnetic resonance imaging (fMRI), which balances
high spatial and temporal resolution, thereby permitting inves-
tigations of communication between multiple brain regions over
time (for a review of general approaches to dFC, see Refs. 5, 20,
63, and 104).

1.1. Studying dynamic functional connectivity can enhance
the study of pain

Understanding how FC varies dynamically across time and as
a function of external factors can enhance the study of the brain
processes of pain. The experience of pain varies greatly between
individuals,26,94 even among patients with chronic pain who are
ascribed the same medical diagnosis.130 Pain is influenced by
many processes that fluctuate over time in both healthy
individuals and individuals with chronic pain disorders, including
attention,19,71 emotion,19,138 and treatment or treatment con-
text.3,68 Indeed, the experience of pain varies spontaneously over
seconds, days, months, and years.6,76,96,105 Pain can also cause
variations in cognitive processes: pain is a salient stimulus that
automatically captures attention36 and can impair performance
on complex cognitive tasks.10,89 This suggests that pain is not
a stable qualia but rather a highly variable experience that exhibits
a complex relationship with brain processes that engender,
enhance, and diminish it. Standard FC measures treat commu-
nication between brain regions as static, and therefore cannot
account for these fluctuations across time, within individuals.
Dynamic functional connectivity approaches instead systemati-
cally account for this variance by analyzing how coordinated
neural activity between different regions evolves and varies
across time.

Because interregional covariance in activity varies dynamically
across time and as a function of external factors, particularly in the
context of pain, dFC approaches will strengthen our ability to
understand how networks of brain regions dynamically commu-
nicate, construct, and modulate acute and chronic pain.

1.2. The present review

In this review, we use the term “dynamic functional connectivity”
(dFC) to refer broadly to measures of interregional coordinated
activity that vary across time, either spontaneously (sometimes
referred to as “time-varying connectivity”84) or as a function of
psychological states, cognitive demands, or the external envi-
ronment. We first review research on FC patterns in acute pain
that vary as a function of experimentally controlled conditions, as
identified with psychophysiological interactions (PPI) models and
dynamic causal modeling (DCM). We next survey data-driven
dFCmethods that assess how connectivity varies across different
brain states (ie, different patterns of brain network organization),
including how it varies across time within a task-free (ie, “resting”)
state, and how these methods are being used to understand

acute pain perception and coping. Finally, we discuss how dFC
may vary between individuals, and highlight clinically relevant
observations that have the potential to inform diagnosis and
treatment of chronic pain conditions. We examine the insights
these approaches have produced for our understanding of pain
perception and modulation, while identifying limitations and
potential confounds of each method. Finally, we discuss future
directions for research using dFC approaches to study the brain
processes of pain and pain modulation.

2. Modeling task-induced changes in
functional connectivity

Many pain neuroimaging studies combine fMRI measurement
with experimental manipulations to measure how cognitive
factors influence brain responses to noxious stimulation. For
example, fMRI studies of placebo analgesia might compare brain
responses to noxious stimulation during placebo administration
relative to a control condition without an analgesic. Researchers
then often use statistical regression to measure whether brain
activation within a region varies as a function of the experimental
manipulation (eg, whether activation within pain-related brain
regions is reduced with placebo; whether responses differ
between patients and controls). For a thorough primer on basic
approaches to pain neuroimaging, please see Ref. 87. Task-
based fMRI studies also offer an additional opportunity: to test not
only whether activity within regions changes based on experi-
mental manipulations, but also whether the experimental
manipulation influences between-region FC. We consider 2
dFC approaches that have been applied to task-based fMRI in
pain research: PPI and DCM.

2.1. Psychophysiological interactions

Some of the earliest neuroimaging work examining dFC in pain
was conducted by modeling PPI. Psychophysiological inter-
actions measure whether and how FC between brain regions
varies with context, typically some “psychological” variable that
is experimentally manipulated50 (eg, placebo vs control).
Psychophysiological interactions measure the relationship
between FC and known, observable, or assumed features of
the experimental design. An assumption of PPI analysis is that if
2 brain regions interact, then activity in those regions will
correlate over time, even when controlling for the effect of the
task on activation in both regions.95 Psychophysiological
interactions test formally whether this correlation differs in
different experimental conditions (Fig. 1), ie, whether the
correlation can be statistically predicted by a Region 3
Condition interaction. Psychophysiological interactions can test
how context changes both functional coupling between regions
(ie, a positive correlation) and functional decoupling between
regions (ie, a negative correlation). Importantly, PPI can be
applied to measure both static FC (where the modulating
contextual factor varies between individuals, for example, the
presence of a chronic pain condition61,131) and dynamic FC
(where the modulating contextual factor varies within individu-
als, for example, attention toward or away from pain); here, we
focus on the latter. Although the standard approach to PPI
analyses in early applications was limited to studying contexts
that varied with only 2 levels, a more recent approach (referred
to as generalized PPI85) can account for more variable contexts
(eg, comparing connectivity that differs under multiple task
conditions) than the standard PPI approach. For a thorough
description of generalized PPI, see Ref. 85.
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In the context of pain research, PPI has played a pivotal role in
enhancing our understanding of the neural basis of placebo
analgesia,11,38,39,111 cognitive and emotional function in patients
with chronic pain,86,123 and other forms of acute pain modula-
tion.83,100,107 In an early use of PPI in the study of placebo
analgesia, Bingel et al. (2006) evaluated the relationship between
the rostral anterior cingulate cortex (rACC) and the antinocicep-
tive descending pain modulatory network in healthy volunteers.11

Consistent with previous work,98,135 rACC activation in response
to noxious stimulation was higher during placebo relative to
control (eg, as in Fig. 1D). Bingel et al.11 then used PPI analysis to
measure whether rACC connectivity with subcortical regions
differed as a function of the placebomanipulation. Rostral anterior
cingulate cortex covaried more with activity in the periaqueductal
gray (PAG) and amygdala under placebo than control.11 Given
the role for the PAG and amygdala in descending antinociceptive
control and affective responses to pain,43,62,119,132 one in-
terpretation of these results is that the rACC may play a role in
transforming cognitive factors (ie, expectations) into experienced
analgesia through its association with subcortical antinociceptive
networks. These PPI findings were later replicated and extended
by Eippert et al.,38 who found not only that rACC-PAG
connectivity is modulated by placebo, but also that this
connectivity is abolished with opioid-antagonist naloxone,
demonstrating that the functional coupling between these
regions is opioid dependent.

As demonstrated here, PPI is a useful tool for testing whether
the correlation between the time series of evoked brain activity in
multiple regions varies as a function of psychological context.
Although most applications of PPI use experimental manipu-
lations, such as in the examples above, PPI can also be used
flexibly with psychological regressors of many different types and
sources. For example, one can test whether connectivity covaries
with behavior within individuals, such as decisions about pain (eg,
painful or not painful, as in Ref. 101) or reaction time (similar to
Ref. 73). However, PPI analyses are fundamentally limited
because they can only measure changes in connectivity that

are associated with known or observable contextual factors.
Thus, researchers must assume that their experimental manip-
ulations induce dynamic changes in brain activity at specific,
known time points, which requires assumptions about the
dynamics of the cognitive processes affected by experimental
manipulations. We discuss approaches that use latent methods
and data-driven techniques to identify shifts in connectivity
below. Another limitation of PPI analysis is that it rests on the
fundamental assumption that if brain activity in 2 regions is
correlated, the regions are interacting or communicating. Indeed,
this is arguably a limitation to all dFC approaches thatmeasure FC
as a statistical dependency (eg, correlation) between brain
regions, and we return to the need to validate fMRI measures of
FC with methods that directly manipulate or measure brain
activity in our discussion below. This assumption leaves open the
possibility that 2 brain regions may exhibit task-dependent
correlated activity not because they actually interact but because
both regions share connectivity with some third active region. In
other words, PPI cannot measure “effective connectivity,” where
“effective connectivity” is defined as a directional influence of one
neuronal system over another neuronal system.49We turn now to
DCM as a method to estimate effective, rather than functional,
connectivity.

2.2. Dynamic causal modeling

Similar to PPI, DCM is a method that investigates how contextual
factors modulate coordinated activity between discrete brain
regions. Although DCM analysis methods for resting-state fMRI
have been proposed recently,52,80 to the best of our knowledge,
resting-state DCM has yet to be applied to the study of pain.
Thus, for the purposes of this review, we focus on DCM of task-
related brain activity. Dynamic causal modeling is a framework for
generating models of “hidden” (ie, unobservable) neuronal states
and estimating parameters of those models using observed data
(eg, blood-oxygen level dependent, or BOLD, signals). Dynamic
causal modeling assumes that the brain is a dynamic system that

Figure 1.Psychophysiological interaction. Here we present a cartoon example of howPPI can be used tomeasure task-based changes in connectivity. A) PPI has
been used to measure placebo-induced changes in connectivity between the rACC and PAG11. In PPI analysis, a variable that represents 2 levels of an
experimental condition (B) is convolvedwith a canonical hemodynamic response function (the dotted line in C). Then, the time series of the BOLD signal of an ROI is
extracted (eg, the red time series in D could represent the time series of the rACC), which will correspond roughly to the onsets of the experimental condition if that
ROI is responsive to the experimental condition. Finally, those 2 time series aremultiplied together to create a time series that can be used to predict activity in other
brain regions (eg, the time series of the PAG, represented by the blue time series in E). Regions of interest whose time series correlate with the red time series in D
can be said to exhibit FCwith the ROI that generated the red time series, and if the correlation varies as a function of experimental condition (eg, is enhanced under
placebo, relative to control), then FC is associated with experimental condition. Adapted from Ref. 95. FC, functional connectivity; PAG, periaqueductal gray; PPI,
psychophysiological interactions; rACC, rostral anterior cingulate cortex; ROI, region of interest.
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is perturbed by deterministic inputs (eg, experimental stimuli,
contextual factors) and produces measurable outputs (eg,
hemodynamic responses51). In DCM, researchers design multi-
ple competing statistical models (Fig. 2A–C) regarding how
predefined anatomical regions of interest (ROIs) interact and how
observable external perturbations (eg, sensory inputs) modulate
those interactions (Fig. 2). Dynamic causal modeling analyses
use Bayesian model selection to test which of the competing
models (ie, hypotheses) best explains the observed data (ie, the
BOLD signal, Fig. 2D). Unlike PPI, whichmeasures correlations in
the BOLD signal, DCM estimates underlying neuronal activity by
statistically modeling time-varying hidden parameters that affect
the transformation of neuronal activity into a hemodynamic
response that comprises BOLD signal.124 By modeling these
time-varying parameters, DCMattempts to estimate the temporal
precedence of one neuronal system over another,125 which is
why DCM is considered a model of effective connectivity. In other
words, DCM assesses how changes in one system linearly and
nonlinearly influence another (or how changes inmultiple systems
influence each other) across time, and how those interactions are
influenced by external perturbations (eg, sensory inputs124).
Dynamic causal modeling can be used to compare directional
models that describe how observed neural networks that exhibit
an evoked response to pain are organized, how the neural
systems influence each other, and how those influences change
under different conditions. Although these directional statistical
analyses have been argued to provide evidence of causal
influences between regions,48,49 this point is still under de-
bate.31,109 Factors such as variation in the hemodynamic
response function across regions of the brain, for example, may
lead to spurious conclusions in any analyses that assess effective
connectivity.57,106,110 Stronger inferences about directionality
that do not depend on hemodynamic response function may be
possible with advances in fMRI temporal resolution through new
sequences such as multiband imaging acquisition,41 as dis-
cussed in more detail below (see “Summary and Future
Directions”). Although methods that directly perturb brain circuits
(eg, lesions, electrophysiology, and transcranial magnetic stim-
ulation [TMS]) are necessary to truly demonstrate causality, the
noninvasive nature of DCM makes it a useful method for
approximating dynamic effective connectivity.

Dynamic causal modeling has been used in acute pain
research to test both the analgesic effects of pharmacological136

and nonpharmacological treatments for pain,114,115 as well as
basic pain processing mechanisms.66,81 Sevel et al.,114 for
instance, observed that descending effective connectivity from
the dorsolateral prefrontal cortex (dlPFC) to the PAG was
significantly diminished during placebo analgesia (Fig. 2A), and
that modulatory connectivity between these regions during pain
stimulation (relative to rest) was associated with future placebo
analgesic responses in healthy participants over 2 weeks later.115

These results indicate a directional pain modulation under
placebo analgesia (ie, the dlPFC influences the PAG, rather than
bidirectional correlations between the 2 regions). These di-
rectional findings can be confirmed using direct manipulations of
brain activity, such as TMS, to truly support causal claims;
indeed, TMS to dlPFChas been associatedwith reduced placebo
analgesia,70 although downstream effects on PAG were not
measured in this study. In other cases, however, directionality
inferred based on DCM model solutions may be more complex.
For example, 2 studies used DCM to investigate whether painful
and nonpainful stimuli are processed in the primary and
secondary somatosensory cortex (SI and SII, respectively) in
serial or parallel66,81 and came to very different conclusions. One

group observed that connectivity between the thalamus, SI, and SII
was modulated by both nociceptive and nonnociceptive somato-
sensory inputs in a parallel fashion,81 suggesting no serial
organization between SI and SII when processing somatosensory
information. However, another group observed that sensory inputs
go directly to contralateral SI, and modulatory effects of the inputs
were observed from contralateral SI to contralateral SII, and from
contralateral SII to ipsilateral SII,66 suggesting sequential rather than
parallel processing of noxious and innocuous stimuli. These studies
tested slightly different models using DCM, so it is impossible to
reconcile the different conclusions on the basis of DCM alone.
Furthermore, although DCM can be used to approximate effective
connectivity, research questions that demand high temporal
precision (eg, whether processing occurs in serial or parallel) may
be better addressed with methodologies that provide greater
temporal resolution (eg, electroencephalography or magnetoence-
phalography; EEG/MEG), or by pairing such methodologies with
fMRI data collection (eg, simultaneous fMRI/EEG). This is especially
true in the case where cortical regions are the primary ROIs.

Together, these studies clearly demonstrate both advantages
and disadvantages of using DCM analysis to study dFC. The
strengths of DCM include its use ofmodel comparison to produce
statistical inferences about neuronal activity and to identify the
best directional effective connectivity model for the observed
data. On the other hand, model testing is also an inherent pitfall of
DCM analyses—the model that “best fits” the data is inherently
constrained to the selection of models that researchers test, and
the types of modulatory parameters they consider. Thus, even if
studies are testing the same research question, as were the 2
studies described above.66,81 it is challenging to directly compare
between studies unless they test identical models. Furthermore, it
is possible in model testing that no single model is significantly
superior to all others, or there could be different winning models
between different hemispheres, as was the case in Ref. 115.
Dynamic causal modeling also does not permit tests of a null
hypothesis; that is, a way to validate whether effective connec-
tivity actually exists. In summary, DCM analysis is a powerful
method that provides directional information on how pain-related
information is received and processed in a given network.
However, DCM requires clear hypotheses because it is neither
a data-driven nor a data-exploring analysis method, and is highly
influenced by modeling decisions. We return to these consid-
erations below (see “Summary and Future Directions”).

3. Modeling network-based dynamic
functional connectivity

The methods reviewed above focus on changes in connectivity
that depend on known or observable events that are specified
during analysis, and require that researchers make assumptions
regarding the relationship between experimental timing and
potential functional reorganization in brain networks. These
approaches are particularly useful in the context of task-based
fMRI experiments that deliver stimuli at known intervals de-
termined by the experimenter, such as most acute pain experi-
ments. Other methods for studying FC circumvent the
requirement to make assumptions about the timing of behavior
or cognitive processes and concomitant changes in connectivity,
and instead use data-driven approaches to identify shifts in
connectivity and characterize spontaneous fluctuations within
networks in the absence of experimental manipulations. These
methods may be more appropriate for pain studies that involve
uncertainty about task timing, such as pharmacological experi-
ments, and for resting-state fMRI experiments. Below, we review
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data-driven and network-based dFC approaches that have been
applied to pain neuroimaging.

3.1. Combining graph theory with dynamic functional
connectivity: state-based dynamic community structure

New approaches to FC measure communication within large
networks of brain regions by using graph theory (for reviews, see
Refs. 8 and 18). Graph theory–based network analysis represents
the brain as a network of interacting “nodes” (eg, brain regions) that
are linked by “edges” (eg, measures of interregional connectivity),
and quantitatively describes the topological properties of brain
network connectivity.127 In the past decade, graph theory–based
analysis has been used to investigate human brain connectivity by
illuminating the architecture in brain structure and function and the
organization of dynamic behavior over time in resting state, during
different tasks, and across the lifespan.33,140 Recently, several
researchers have introduced new dFC approaches that combine
graph theory–based approaches with methods to identify latent
shifts in brain connectivity state.30,63,108,120 One such method that
has been applied to pain neuroimaging is state-based dynamic
community structure (SDCS108; Fig. 3). State-based dynamic
community structure evaluates connectivity between an a priori set
of regions/nodes (Fig. 3I), and uses data-driven statistical analysis
(ie, stochastic block model combined with hidden Markov
modeling; see Ref. 108 for complete details) to identify timepoints
of change in connectivity in network structure (Fig. 3II). Unlike
many other dFC approaches, SDCS formally compares models
that involve changes in FCwith the null alternative that connectivity
within the network does not change over time. This direct
comparison is an important advantage of SDCS relative to other
dFC approaches.

State-based dynamic community structure was used to
examine dFC during noxious heat administration under open-
label administration of the opioid analgesic remifentanil.108 Initial
task-based univariate analyses4 tested whether the magnitude of
the heat-evoked BOLD response differed as a function of drug or
expectancy, but did not measure how these factors influenced
connectivity between brain regions. In a follow-up analysis,108

SDCS analysis was applied within 3 separate a priori functional
networks (a pain-related network, an emotion network, and
a working memory network), to determine whether the networks
changed over time and whether network reorganization corre-
sponded to known experimental dynamics (eg, changes in drug
concentration and expectations about drug infusion).

State-based dynamic community structure revealed distinct
dynamics of network reorganization within the 3 networks.108 The
structure of connectivity within the emotion network remained
stable across the task, although univariate analyses had revealed
strong effects of instructions on heat-evoked responses within
these regions.4 There was significant reorganization, however, of
network structure within a pain network and working memory
network. Each of those networks transitioned between 2 states,
with state shifts occurring when drug concentration was high. For
example, the pain network shifted between one state (before and
after the drug), characterized by the highest within-community
coupling in a network that included ACC and insula, to a second
state (present at peak drug concentration) in which the ACC was
part of a different community characterized by low coupling. This
suggests that remifentanil might decouple the insula and ACC at
peak concentrations. Such conclusions would not be possible in
FC analyses that assume connectivity remains stable over time,
or that require strong assumptions about event timing, because
remifentanil pharmacokinetics lead to slow changes over time.

Figure 2. Dynamic causal modeling. Here we present a cartoon example of how DCM can be used to model placebo-related modulation of descending pain
pathways. InDCManalysis,models are generated topredictBOLDactivity ofROIs (eg, the dlPFC,PAG,andother regions, adapted fromRef. 114). Examplemodels (A,
B, and C), shown here, comprise endogenous connectivity (the black arrows), driving inputs (thewhite arrows), andmodulatory effects (dotted lines) of the driving input
on the endogenous connectivity but can vary on hypothesized connectivity between regions (for example, in A, B, and C, dlPFC connectivity varies). Placebo analgesia
could thus be a driving input that can directly influence the activity of certain regions ormodulate the intrinsic connectivity between regions.Models are compared using
Bayesianmodel selection (BMS) to find which best explains the observed BOLD signal (D). Formore information, see Ref. 51. DCM, dynamic causal modeling; dlPFC,
dorsolateral prefrontal cortex; PAG, periaqueductal gray; ROI, region of interest; pINS, posterior insula; Thal, thalamus; dACC, dorsal anterior cingulate cortex.
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State-based dynamic community structure and other graph-
based measures require relatively long periods to capture
meaningful network structure. For instance, Robinson et al.108

found stable estimations when they measured intervals 150
seconds in duration, but shorter intervals were less stable. Thus,
SDCS and other graph-based dFC approaches might be more
appropriate for pharmacological fMRI and block designs, but less
useful in cases where connectivity is likely to shift over shorter
timescales. We note that SDCS and related dFC methods
assume that dFC is consistent across individuals. The
approaches we turn to next may be better suited to determine
how dFC differs as a function of individual differences (eg, patient
status, behavioral response, etc.).

3.2. Approaches for measuring time-varying connectivity in
resting-state analyses

The approacheswe have examined thus far have focused on dFC
during pain perception or pain-related tasks and focused on
within-participant fluctuations in connectivity. However, it is also
possible to study spontaneous brain connectivity dynamics in
a task-free (or “resting”) state. Indeed, static FC analyses have
demonstrated much utility for elucidating the network dynamics
of the brain at rest in the study of pain and pain modulation.69,128

Yet, even at “rest,” the brain displays spontaneous fluctuations in
FC, thought to largely reflect intrinsic physiological operations.17

Over the timescale of several minutes or longer, remote brain
regions display highly organized spatiotemporal patterns of
spontaneous activity9,13 that topographically resemble the net-
works that are commonly observed to coactivate/deactivate
during active task performance or in response to external
stimulation.121 For example, the “salience network,” including
subregions within the insular and cingulate cortex that commonly
coactivate during pain perception,34,64 also displays coordinated
activity during resting states.113

It is now widely appreciated that resting-state network
organization remains relatively stable within individuals across

long timescales.45,56,77 However, emerging evidence suggests
that spontaneous FC dynamics may vary on the order of tens of
seconds or even shorter,63,104 motivating the development of
nascent methodologies to analyze resting-state dFC. Similar to
SDCS described above, resting-state analyses are not guided by
known or observable events. A popular approach is sliding-
window correlation analysis (Fig. 4), in which FC is repeatedly
calculated within subjects across multiple distinct temporal
windows (Fig. 4; top panel) within a single resting-state session.
The resulting dFC time course can then be summarized in various
ways. A simple example is that how much FC varies across
windows (ie, FC variability) can be used as an index of the flexibility
or stability of the connectivity between a given pair of regions71,74

(Fig. 4; bottom panel). Alternatively, to summarize dFC more
globally across thewhole brain, a “dFCmatrix” can be computed,
consisting of pairwise FC between all predefined ROIs for each
temporal window. Network “states” can then be defined based
on clustering analyses of the dFC matrix1 or graph theoretical
metrics similar to those described above126,142 computed across
windows. Another important analysis decision concerns how to
define windows and FC within each window. Although using
windows with fixed lengths and computing FC with interregional
Pearson correlation is a common approach, thismethod can lead
to spuriously inflated estimates of FC, especially if window lengths
are short or windows are overlapping.60,78,84 Furthermore,
window length can affect the frequency components that a given
dFC analysis can identify.78 Given that resting state networks are
typically identified in slow components of the BOLD signal,29

short windows (eg, 20–30 seconds) for analysis may capture only
a single cycle of activity fluctuation or even less. Thus, research
conclusions can be biased by decisions during analysis (eg,
shorter window lengthsmay be biased to identify high-frequency,
rather than low-frequency, components of dynamic connectivity).
Proposed metrics that aim to address shortcomings of the
sliding-window correlation approach can offer more time-
resolved dFC estimates, including dynamic conditional correla-
tion (DCC)82 andmultiplication of temporal derivatives,118 but can

Figure 3.State-based dynamic community structure. (I) In SDCS analysis, networks are first identified and features of the network are estimated in nonoverlapping
time windows. (II) A hidden Markov model is then used to determine network states and when the network shifts between states. (III) Finally, Markov Chain Monte
Carlo is used to construct the network structure for each state, including the strength of within-network connectivity. Adapted from Ref. 108. SDCS, state-based
dynamic community structure.
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be more computationally intensive, and their adoption for the
study of resting-state dFC has been slow. Guidelines for best
practices in resting-state dFC analysis are beginning to
emerge,84 but open questions remain, and—as for task-based
dFC analyses described above—analysis choices must be
tailored for specific research questions.

Example applications of such tailored analyses to pain are
found in a handful of existing studies linking individual variability in
resting-state dFC with aspects of pain perception and coping.
Thus, resting-state dFC analyses provide a means of relating
within-subjects fluctuations in connectivity with individual differ-
ences across participants. For instance, initially using task-based
PPI analysis, Kucyi et al.74 showed that FC between the PAG and
medial prefrontal cortex (mPFC) was increased within individuals
when they reported that they were mind-wandering away from
a painful stimulus. Subsequent analyses across individuals
revealed that greater PAG–mPFC resting-state dFC variability
was associated with the tendency to mind-wandering away from
pain.74 Cheng et al.23 also applied resting-state dFC analysis to
test the hypothesis that pain-induced changes in cognitive task
performance relate to coupling among nodes of the executive
control and salience networks during resting state. Functional
connectivity variability within and between these networks during
resting state was associated with individual differences in the
capacity to prioritize task performance over pain.

Importantly, in the aforementioned studies, brain-behavior
relationships for resting-state dFC were found, but static
connectivity between the same brain regions during resting state
was not significantly related to the same behavior. These studies
therefore highlight the possibility that spontaneous changes in
dFC at rest may capture unique, behaviorally relevant aspects of

pain perception and coping across individuals. Further support-
ing this idea, recent studies demonstrate that there is marked
variability in dFC across individuals, which is consistent across
multiple tasks but remains stable within individuals, including
across both rest and task.33,116 Together, these studies suggest
that resting-state dFC could be a useful tool for studying how
intrinsic network dynamics differ between individuals, and
whether those differences are associated with pain-related
experiences or behavior.

4. Using dynamic brain connectivity to characterize
chronic pain patients

Throughout this review, we have examined different methods for
studying dFC that have primarily been applied to the study of
acute pain. Here, we consider how dFC approaches can provide
insight into chronic pain and its treatment. Patients with chronic
pain, including those ascribed the same medical diagnosis, are
heterogeneous in their experience of pain,130 and this heteroge-
neity can contribute to interindividual variability in treatment
outcomes.37 Recent findings suggest promising applications of
dFC to characterize pain pathophysiology and predict treatment
outcomes in patients with chronic pain.21,58,67

As mentioned above, one approach to assess individual
differences in dFC is analysis of the brain at rest. A promising
new dFCmethod is DCC.82 Briefly, time-varying variances for time
series from multiple regions are each first estimated using
a statistical model for time series data (specifically, a generalized
autoregressive conditional heteroscedastic, or GARCH, model),
and thenused toderive standardized residuals for each time series.
The dynamic correlation between these standardized residuals is
then calculated using exponentially weighted moving average
windows followed by a rescaling step. A key feature of the DCC
approach is that it produces a summary measure, the variance of
the estimated dynamic connectivity between 2 brain regions over
time, that has been shown to be scan–rescan reliable and can be
performed on an individual basis.25 Correlations between this
measure and behavior can then be performed across individuals to
investigate individual differences, or contrasted between patients
and controls to determine group differences.

One illustrative example of the application of dFC to chronic
pain focused on patients with ankylosing spondylitis, an in-
flammatory arthritis that affects the axial skeleton.24 Amultivariate
regression approach was used to determine whether multivariate
patterns of dFC computed using DCC, combined with measures
of static FC, were related to levels of chronic pain. Importantly,
this study also measured pain on multiple timescales—both state
pain (pain during the day of the study) and trait pain (average pain
in the past 4 weeks)—affording the opportunity to directly
compare both static and dynamic pain and FC. When the
multivariateweightswere used as a proxy of the importance of the
features in the model, dFC features were generally more
important than the static FC features, demonstrating that
accounting for the temporal dynamics of FC may explain
important variance in clinical outcomes.

Furthermore, multivariate patterns of brain connectivity were
more highly related to measures of trait pain (average pain in the
past 4 weeks) than measures of state pain (pain during the day of
the study, both measures assessed with a single item24). This
latter findingmay be driven by the fact that the dFCmeasure used
(the variance of DCC) is scan–rescan reliable (as mentioned
above), and thuswas better associated with stablemeasures (eg,
trait pain) that capture pain on average than with measures that
might be related more to fluctuations in the external environment

Figure 4. Sliding-window analysis of dynamic functional connectivity in
resting-state fMRI. In sliding-window analyses, the BOLD time series from 2
distinct regions or networks are extracted, and then the correlation between
the time series over a set “window” of time is computed as a metric of FC,
a process that is repeated for Nwindows (in this case, N5 25) to determine the
time series of FC. Reproduced with permission from Ref. 63. FC, functional
connectivity; fMRI, functional magnetic resonance imaging.
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(eg, state pain). Whether dFC maps onto dynamic fluctuations in
current pain among patients with chronic pain, however, remains
to be established. In future investigations, onemethod to address
this question could entail regressing continuous fluctuations in
pain collected throughout the scan with raw DCC estimates,
rather than summarizing dFC using the variance of DCC.

Dynamic FC methods may also be useful in predicting
treatment outcomes. For example, a recent study of neuropathic
pain patients showed that dFC between the default-mode
network and descending antinociceptive system before ketamine
infusion distinguished between those who responded ($30%
pain relief) and did not respond to the infusion.15 Notably,
pretreatment temporal summation of pain (TSP) also distin-
guished between responders and nonresponders. In a mediation
analysis, it was determined that the relationship between TSP and
treatment response was mediated by the dFC between the
default-mode network and the antinociceptive system,15 sug-
gesting that dFC explained some variability in the link between
TSP and treatment outcome. Although the study of dFC, as it
pertains to treatment outcomes or individual differences across
patients, is still nascent and further work in this area is necessary,
early research in this domain demonstrates promise for future
clinical applications of this method.

5. Summary and Future Directions

We have reviewed and highlighted dFC methods that have been
applied to pain neuroimaging research and provided new insights
not possible with standard approaches or static connectivity.
Pain is modulated by many psychological and biological factors
that vary dynamically across time, both spontaneously and with
changing environmental contexts and demands. Patterns of
connectivity in the brain are also dynamic, fluctuating over both
very short and longer timescales, and these fluctuations have
utility for predicting cognition and behavior. Dynamic functional
connectivity analyses permit us to investigate the neural basis of
pain processing and pain modulation with greater nuance, and to
approach understanding pain as a process encoded by a “pain
connectome,” a “spatiotemporal signature of brain network
communication that represents the integration of all cognitive,
affective, and sensorimotor aspects of pain.”71 Psychophysio-
logical interaction analyses demonstrate that the time courses of
activity in key pain-responsive brain regions correspond more
under certain contexts (eg, placebo analgesia) than others.
Dynamic causal modeling can further investigate the dynamics of
brain activity in each node using Bayesian modeling to test for
putative directional pathways between nodes, with utility in
predicting future pain-related outcomes. Methodologies such as
SDCS that use graph theory–based network analyses combined
with data-driven change point detection can identify shifts in brain
network organization and characterize both the timing and
structure of shifts in connectivity. Most recently, the study of
dynamic resting-state FC has revealed a role for spontaneous
dFC in predicting differences in pain processing and coping
between individuals. In particular, resting-state dFC measures
seem to capture individual differences in stable, trait measures
across individuals, including patients with chronic pain. Although
work in this area is still in its infancy, dFC offers great promise as
a tool for predicting treatment outcomes and characterizing
patients, including those with chronic pain, and may explain
greater variance in clinical outcomes than static FC.24

As dFC analytical approaches continue to be applied to the
study of pain, it will be important to remain cognizant of the fact
that dFCmethods are constantly evolving. There are still a number

of open questions and methodological concerns regarding dFC
analytical approaches. Although some of the approaches for
studying dFC have been around since the early days of pain
neuroimaging (eg, PPI and DCM), others are relatively new (eg,
SDCS, sliding windows, DCC), and the comprehensive applica-
tion of all these methodologies to the study of experimental pain
and pain in patient populations is yet to be fully established. One
methodological concern to consider when investigating brain
dynamics in pain is the susceptibility of dFC analyses to influence
by researcher decisions during experimental design and analy-
ses. Methods for studying task-evoked changes in FC are of
course influenced by decisions about task design, such as
decisions pertaining to sample size and the number of trials to
ensure adequate power and choices regarding task timing. We
encourage researchers interested in task-evoked changes in FC
to consult comprehensive reviews on neuroimaging acquisition,
including a recent report from the Organization for Human Brain
Mapping Committee on Best Practices in Data Analysis and
Sharing (COBIDAS93) and a recent primer that specifically
focuses on pain neuroimaging.87

Yet, even fully data-driven methods such as resting-state dFC
analyses also require careful decisions before data acquisition.
For example, recent research suggests that test–retest reliability
metrics of resting-state static connectivity are strongly related to
the amount of time participants spend in the scanner, with 30
minutes of resting-state data nearly doubling the reliability
obtained at shorter scan times,44,116 and at least 10 minutes of
data collection having been recommended previously for the
measurement of whole-brain connectivity.12,55 However, these
recommendations must be tempered with practical concerns
regarding feasibility, especially when working with patient
populations who may not be able to withstand the physical
demands of scanning for extensive periods. Indeed, fMRI FC
analyses are particularly sensitive to motion artifacts,102 which is
a further point researchers must consider when designing studies
to evaluate contextual effects that might vary in the extent to
which they evoke motion (eg, pain vs nonpain) or when
comparing populations who might exhibit differences in motion
(eg, chronic back pain patients forced to lie on a scanner bed
might exhibit more motion from discomfort than pain-free
controls). Scan sequences that enhance the temporal resolution
and reduce the acquisition time of fMRI, such as usingmultiband/
multislice imaging (where multiple slices are acquired in
parallel41), are worth considering as potential solutions to these
concerns because they reduce the length of time participants are
in the scanner without necessarily decreasing signal quality103,112

or limiting the types of dFC approaches that can bemeasured (for
further discussion on selection of scan sequences in pain
imaging, see Ref. 87). Furthermore, multiband approaches can
improve the sensitivity of dFC measures for capturing small
connectivity changes and higher-frequency signals (eg, greater
than 0.2 Hz),79 overcoming typical weaknesses associated with
assessing dFC with fMRI. However, because the improved
reliability of connectivity measures derived from longer scan
lengths is due to not only the increased number of volumes
acquired but also the increased total duration of the scan,12

multiband imaging sequences may not be a fully adequate
solution to the practical concerns that can come with acquiring
neuroimaging data in pain studies, particularly when working with
pain populations, and multiple short scans with parallel multislice
sequences could be more practical. Ultimately, more research is
necessary to establish guidelines for dynamic, rather than static,
measures (although see Refs. 54 and 84 for emerging recom-
mendations and open questions).
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At a more theoretical level, another important and challenging
theoretical question for pain researchers to consider is whether
the timescales assessed with dFC can be matched to the
timescales at which pain varies, especially in clinical pain states.
Pain can vary over timescales ranging from seconds to days and
months to years,6,76,96,105 and even within the same noxious
stimulus, different features of pain (eg, prickling, aching sensa-
tions) display distinct temporal profiles.32 It remains to be
established how these variations in subjective experience can
be best measured using dFC. Some studies have previously used
continuous reports of patients’ spontaneous pain to measure
brain activation.96 This approach could easily be modified to
measure how interregional fluctuations in FC, rather than
activation in a single region, correspond to continuous pain
ratings. It may also be possible to determine the frequency bands
at which certain pain features are most likely to fluctuate, and to
select time windows for resting-state analyses that can capture
fluctuations at these frequencies. This latter recommendation,
however, would be limited by the temporal resolution of the
imaging methodology used. As discussed previously, fMRI may
be limited in its ability to detect high-frequency fluctuations, and
approaches with enhanced temporal resolution (eg, EEG/MEG)
could be better suited for detecting dFC corresponding to rapid
changes in clinical pain states.

Dynamic functional connectivity approaches also require
careful decisions during the analysis stage. A critical decision
for all dFC approaches, for instance, is also the selection of brain
parcellations and definition of ROIs, particularly when defining
nodes for building brain networks. Although brain nodes and
ROIs are often defined using anatomical boundaries (ie, brain
atlas–based ROIs), simulations demonstrate that data-driven
methods (such as independent component analysis) for defining
nodes may be less susceptible to artifacts and more accurately
reflect true network structure.139 Thus, selection of any method-
ology for analyzing dFC should be guided by research questions
and specific hypotheses, in tandem with an understanding of the
limitations of each technique. These methodological concerns
and open questions should not preclude the use of dFC analytical
approaches to understanding pain, but do suggest that
continued research efforts toward addressing these concerns
are necessary to enhance their applicability to pain research.

We are still in the infancy of our understanding of fMRI and dFC
approaches and their application to pain, and work in this area is
replete with both challenges and opportunities for enhancing our
understanding of the functional dynamics of pain and its
modulation. A difficult challenge in this field will concern
determining whether dFC approaches can be leveraged to track
intraindividual spontaneous dynamics of pain as they occur in the
real world, involving continuous, ongoing interactions with
attention and emotion.71,72 Furthermore, it remains an open
question whether dFC detected with fMRI could have utility for
tracking more ecologically valid fluctuations in pain or whether
electrophysiological techniques with greater temporal resolution
and the ability to capture a greater spectrum of frequency- and
phase-specific network dynamics75,133 could be needed. Al-
though other neuroimaging methodologies may be able to better
characterize rapid fluctuations in FC because of their superior
temporal resolution, these methods may not provide the spatial
resolution and insights on whole-brain connectivity provided by
fMRI. Furthermore, it is still not clear whether correlations
between regions reflect actual communication between net-
works or other physiological influences that lead to shared
fluctuations. Validating the fMRI-based dFC approaches
reviewed here by measuring brain connections and

communication directly using intracranial recordings, perturba-
tions (TMS and lesion studies), or confirmation in animal models
will be important next steps. Going forward, research using dFC
methodologies has promise for enhancing our understanding of
the neural mechanisms of pain and pain modulation, for clarifying
how network dynamics are linked to pain both within and across
individuals, and for providing new paths forward for the clinical
diagnosis and treatment of pain.
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[66] Khoshnejad M, Piché M, Saleh S. Serial processing in primary and
secondary somatosensory cortex: a DCM analysis of human fMRI data

10 E.A. Necka et al.·4 (2019) e752 PAIN Reports®



in response to innocuous and noxious electrical stimulation. Neurosci
Lett 2014;577:83–8.

[67] Kilpatrick LA, Kutch JJ, Tillisch K, Naliboff BD, Labus JS, Jiang Z,
Farmer MA, Apkarian AV, Mackey S, Martucci KT, Clauw DJ, Harris RE,
Deutsch G, Ness TJ, Yang CC, Maravilla K, Mullins C, Mayer EA.
Alterations in resting state oscillations and connectivity in sensory and
motor networks in women with interstitial cystitis/painful bladder
syndrome. J Urol 2014;192:947–55.

[68] Kirsch I. Response expectancy and the placebo effect. Int RevNeurobiol
2018;138:81–93.

[69] Kong J, Jensen K, Loiotile R, Cheetham A, Wey H, Tan Y, Rosen B,
Smoller JW, Kaptchuk TJ, Gollub RL. Functional connectivity of the
frontoparietal network predicts cognitivemodulation of pain. PAIN 2013;
154:459–67.

[70] Krummenacher P, Candia V, Folkers G, Schedlowski M, Schönbächler
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[128] Tétreault P, Mansour A, Vachon-Presseau E, Schnitzer TJ, Apkarian AV,
Baliki MN. Brain connectivity predicts placebo response across chronic
pain clinical trials. PLoS Biol 2016;14:1–22.

[129] Tononi G, Edelman GM, Sporns O. Complexity and the integration of
information in the brain. Trends Cogn Sci 1998;2:474–84.

[130] Turk DC. The potential of treatment matching for subgroups of patients
with chronic pain. Clin J Pain 2005;21:44–55.

[131] Vachon-Presseau E, Martel M, Roy M, Caron E, Marin M, Plante I,
Sullivan MJ, Lupien SJ, Rainville P. Acute stress contributes to individual
differences in pain and pain-related brain activity in healthy and chronic
pain patients. J Neurosci 2013;33:6826–33.

[132] Veinante P, Yalcin I, Barrot M. The amygdala between sensation and
affect: a role in pain. J Mol Psychiatry 2013;1:9.

[133] Vidaurre D, Hunt LT, Quinn AJ, Hunt BAE, Brookes MJ, Nobre AC,
Woolrich MW. Spontaneous cortical activity transiently organises into
frequency specific phase-coupling networks. Nat Commun 2018;9:
2987.

[134] Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-
based neurologic signature of physical pain. N Engl J Med 2013;368:
1388–97.

[135] Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ,
Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in fMRI in
the anticipation and experience of pain. Science 2004;303:1162–7.

[136] Walter C, Oertel BG, Felden L, Kell CA, Nöth U, Vermehren J, Kaiser J,
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