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ABSTRACT: Herein we present a Ni-catalyzed alkyla-
tion of C—SMe with alkyl bromides for the decoration of
heterocyclic frameworks. The protocol, reminiscent to the
Liebeskind—Srogl coupling, makes use of simple C(sp*)—
SMe to be engaged in a reductive coupling. The reaction
is suitable for a preponderance of highly valuable
heterocyclic motifs. In addition to cyclic bromides,
noncyclic alkyl bromides are well accommodated with
exquisite levels of retention over isomerization. The
protocol is scalable and permits orthogonal couplings in
the presence of other functionalization handles.

he functionalization of heterocycles via cross-coupling has

become a powerful tool toward the diversification of
biologically active compounds.' In this context, the vast
majority of electrophiles utilized rely primarily on the use of a
heteroaryl halide as coupling partner due to its large
availability.2 Nevertheless, in certain occasions, issues arising
from stability and fast hydrolysis rates of heteroaryl halides had
led to a reconsideration of such couplings and alternatives have
been investigated.3 In this sense, the venerable Liebeskind—
Srogl (L—S) coupling opened the door to the use of robust
and stable C—SMe bonds as handles for C(sp?)—C(sp?)
coupling utilizing boronic acids (Figure 1A).* This approach
has proven highly versatile in the derivatization of hetero-
aromatic groups as well as thioester derivatives.” The
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Figure 1. (A) The Liebeskind—Srogl reaction. (B) Overview of the
aryl counterparts in cross-electrophile coupling. (C) Ni-catalyzed
reductive L—S alkylation of heteroaromatic thioethers.
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widespread presence of thioether as modification handles has
led to the development of a wide variety of cross-couplin

strategies with a breadth of different organometallic reagents.”

Indeed, the majority of reported methods require the use of a
prefunctionalized alkyl nucleophile, thus requiring several steps
of synthesis for its preparation and, in some instances, the
tolerance of functionality becomes a synthetic hurdle. Hence,
alternatives to efficiently forge such bonds in a straightforward
fashion would be highly desirable.

Recently, reductive cross-couplings between two electro-
philes have arisen as powerful, simple and practical strategies to
circumvent the preparation of reactive organometallic reagents
(Figure 1B).® Albeit a plethora of methodologies have been
reported in this area, the vast majority have focused on the use
of aryl halides or pseudohalides where the C(sp*)—X bond is
polarized due to the electronegative nature of the X element
(inductive effect).” On the other hand, reductive couplings
with C(sp?)—X, where X is electronically contributing to the
aryl ring via additional resonance effects through the lone pair
pose a significant challenge and still remain elusive.'’
Contrarily to the activation of simple aryl (pseudo)halides,
C(sp*)—SMe bonds require highly nucleophilic catalysts for its
activation. This results in chemoselectivity issues arising from
the alkyl halide counterpart ultimately leading to undesired
side-reactivity. Consequently, a fine compromise between
reactivity and selectivity is crucial if this reductive coupling is
to be realized. Additionally, the tendency of SMe anions to
tightly bind to metal centers also poses a potential hurdle for
achievinig catalytic turnover without poisoning the metal
catalyst."' As part of our program on developing catalytic
strategies for the modification of heterocyclic frameworks,'” we
envisaged that a catalytic reductive cross-coupling between
heteroaromatic thioethers and simple alkyl bromides would be
highly beneficial for synthetic purposes.'” Herein, we report a
practical and eflicient Ni-catalyzed protocol based on the
activation of C—SMe bonds, which are primed for reductive
cross-coupling with a variety of secondary alkyl bromides
(Scheme 1C). The method is characterized by the presence of
a variety of aromatic heterocycles, thus permitting rapid
decoration of pharmaceutically relevant scaffolds. The utility of
this protocol is demonstrated by the facile scalability to gram-
scale and the sequential modification of a heterocyclic
framework via orthogonal couplings.

On the basis of their great catalytic activity in reductive
cross-electrophile couplings, we started our investigations
exploring the use of a Ni catalyst in the presence of a reducing
agent. Initially, thiomethyl ether 1 and CyBr (2) were used as
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model substrates for the coupling.'* We anticipated that an
electron-rich ligand for the Ni would be necessary for the
activation of the strong C—SMe bond. Indeed, catalytic
amounts of NiBr, diglyme and dppf in the presence of Zn
(2.5 equiv) and K,HPO, (2.0 equiv) afforded the desired C—C
product 3 in 72% isolated yield (Table 1, entry 1).

Table 1. Optimization of the Reaction”

@::»—sm + Br—<:>

10 mol% NiBrpediglyme
10 mol% dppf

K,HPO4 (2.0 equiv.)

X Zn (2.5 equiv.)
1 2(20equiv)  4AMs, DMA, 100 °C 3
. 4 Me, Me
Entry Deviation from above Yield (%) > @\
1 none 72°¢ v PPh,
2 w/o MS 65 o F.e
3 wlo MS and K,HPO, 47 PPh
4 with KH,PO4 62 PPh;, PPh, Q/
g ith I\V/Yith K?P% fZ “ Xantphos opf
wi n instead of Zn <5
7 with NiClp-glyme 41 tBu tBu @\Pc
8 Fc-(PCy2)2 23 — — o Y2
9 with Xantphos 35 '
10 with dtbbpy <5 \_ /" \_7 C>POy2
t 80 °C
" al 42 dtbbpy Fc-(PCyz)2

“1 (1 equiv, 0.2 mmol), 2(2.0 equiv), NiBr,-diglyme (10 mol %),
dppf (10 mol %), K,HPO, (2.0 equiv), Zn (2.5 equiv), 4 A MS in
DMA (0.6 mL) at 100 °C, 6 h. ®Yields calculated by GC-FID using
dodecane as internal standard. “Isolated yield.

As highlighted in the optimization studies, omission of
molecular sieves led to a slight decrease on the yield (Table 1,
entry 2). Moreover, the basicity of the additive utilized seemed
a crucial element as demonstrated by the lower yields obtained
when tri- or monobasic phosphates of potassium were used
(entries 4 and 5). Interestingly, the use of Mn in place of Zn as
reducing agent completely suppressed the reactivity (entry 6).
Other NiCl, salts bearing glyme instead of diglyme also led to
lower conversion and yield (entry 7). The low yields of 3
obtained when using Fc-P(Cy,), highlight the crucial
electronic aspects of dppf for successful catalysis (entry 8).
The use of a bidentate phosphine with a wider bite angle such
as Xantphos also afforded the desired product 3 albeit in much
lower yields, thus suggesting the need for a rigid cis-chelating
phosphine (entry 9). As anticipated, the use of commonly
utilized dinitrogenated ligands such as dtbpy led to traces of
C—C formation (entry 10).° Finally, lower temperatures
reduced dramatically the amount of cross-coupling product
(entry 11).

As shown in Table 2, the protocol was optimal for the
coupling of benzothiazole derivatives bearing a variety of
functionalities: nitriles (4), fluorides, (5), alkyl (6), esters (7),
ethers (9, 11), trifluoromethyl (10) and thiophene groups (8)
were all well accommodated. Ni salts have been shown to
actlvate anisole and arylfluoride derivatives at high temper-
atures.”> However, no activation of the C—F (5) or C—OMe
(9, 11) was observed and could serve as points for further
derivatization (vide infra). Moreover, the reaction could be
expanded to benzoxazole thioethers as exemplified by 12. With
the aim of expanding the methodology to a wider chemical
space, a variety of structurally distinct heterocyclic frameworks
was surveyed. Gratifyingly, the protocol was applicable to 2-
pyridines (13, 14, 19), 2-quinolines (15), 1-isoquinoline (16),
2-pyrimidine (17) and 3-pyridazine (18). The ability to forge
C—C bonds in compounds bearing Lewis-basic N-containing
motifs highlights the potential of the method when applied to
complex drug-like settings. Compound 1 successfully coupled
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Table 2. Scope of the Reductive Liebeskind—Srogl
Alkylation™”

10 mol% NiBryeglyme Rq [>30 examples]
She i 10 mol% dppf R [no B-hydride elimination]
2 -
* gy R, KHPO.. Zn @ IN, 0 .and S-heterocycles]
4A MS, DMA, 100 °C 4-36 [functional group tolerant]

heterocyclic frameworks

N 4,R=CN,61% ~
\ 5 R=F, 88% 8,R= 9,R=
/@J—Cy 6. R =Me, 62% \s MeO
R 7, R = CO,Me, 70% 56% 60%

10, R' = CF3, 66%
11, R' = OMe, 65%

r O CL

13, 60%°

o

12, 63% 14, 46%°

& el iy

17 Me
47%, >99:1 b:l
alkyl bromides

15, 48%°

©:1:\>-§<5Me

16, 45%° 18, 53%°%¢ 19, 52%°

o o O

23, 86%

20, 68% 21,73% 22,60%

T Oy O,

24,70% 25,58% 26, 76%

ACSNa Gl e U

28, R = Me, 76%
>50:1 b:/ 30, 50% 31, 56%
29 R=H, 35% >99:1 b:l >99:1 b:l

Me _OTBS Me _NPht ’Ji/‘/\o
v
33,63% 34, 62% Y
sulfide ethers

COw) G O

51% of 3

32,52% iPr
>99:1 bif [from cholesterol]
27, 51%
35,X=0, 65%°
>99:1 b:l
36, X =S, 59%°
>99:1 b:l

9% of 3 54% of 3’

“Thioether (1 equiv, 0.2 mmol), alkyl bromide (2.0 equiv), NiBr,*
diglyme (10 mol %), dppf (10 mol %), K,HPO, (2.0 equlv) Zn (2.5
equiv), 4 A MS, DMA (06 mL) at 100 °C, 6 h. “Isolated yields.
“Alkyl bromide (3.0 equiv). 50 °C, 24 h. “12 h./Traces of alkylation
at Ph—S cleavage observed by GC-MS.

with a variety of alkyl bromides; 4-, 5- and 7- membered
cycloalkyls (20—22) as well as bicyclic norbornyl (23)
afforded good yields of coupling product. Heterocyclic
bromides such as 4-tetrahydropyrane (24) and 4-piperidine
(25 and 26) smoothly reacted in good yields. The polycyclic
bromide derived from natural cholesterol was also amenable
for coupling under the reaction conditions (27). At this point,
we investigated the ability of the catalytic system to
accommodate challenging open-chain secondary alkyl bro-
mides. Catalytic systems featuring Ni in combination with
bidentate electron-rich phosphines has traditionally led to
deleterious isomerization events through degenerated Ni(II)
intermediates, thus affordmg synthetically unviable branched
and linear mixtures.'® However, despite the use of dppf as
ligand, when 2-bromoheptane was subjected to the reaction
conditions, branched product was obtained as single isomer
(28). This observation points out to a mechanism involving
different species than the canonical (dppf)Ni(II)(aryl)(alkyl)
intermediate (vide infra). Despite the effort to accommodate
primary alkyl bromides, their reactivity lead to substantially
lower yields (29). A variety of noncyclic bromides was
explored and revealed the possibility of coupling secondary
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bromides bearing aromatic groups (30), esters (32), protected
alcohols (31, 33) and amines (34). Alkyl bromides bearing
heterocyclic furan (35) and thiophene esters (36) smoothly
coupled with good yields. Unfortunately, tertiary alkyl
bromides could not be accommodated. The use of other
thioethers bearing longer alkyl chains in place of Me also could
be accommodated as highlighted by the reaction of 37 and 38.
It is important to mention that when a bis-aryl thioether is
utilized (39), high regioselectivity in the C—S cleavage event
was observed in favor of the benzothiazole unit. The scalability
of the process was investigated as exemplified in Figure 2A: at
10 mmol scale, 1 and 2 successfully afforded gram-quantities of
the desired C—C bond with minimal erosion of the yield.

A. Gram-scale

N
(:[ \>—SMe + Br@
S

1 (10 mmol) 2

Same as

Table 1
[gram scale]

-0

3(1.46 g, 67%)

B. Sequential functionalization of a benzothiazole core via activation of challenging bonds

88% 81%

N SMe Q&
N c-SMe
S alkylation ammatlon
F 40

1% 43%

Ph N H
\
—————0—>
N S
H NTs
42

Figure 2. (A) Scalability; (B) Decoration of the benzothiazole core
via sequential activation of challenging bonds.

To test the translational potential of our method in
pharmaceutically relevant contexts, we applied the reductive
protocol to the modification of the benzothiazole core, a
prevalent m0t1f in a wide variety of biologically active
compounds.'” As shown in Figure 2B, after successful
reductive alkylation (88%), benzothiazole thioether 40 could
be further modified at its C(sp?)—F through Sawamura’s Ni-
catalyzed amination to afford 81% of the drug-like scaffold
41."° In the same manner, piperidyl derivative selectively
reacted with 40 to afford excellent yields of C—C coupling
(71%). Subsequently, a more nucleophilic primary amine
could also be incorporated through C—F amination to afford
the complex target 42 in 43% without further optimization.

Intrigued by the high levels of retention over isomerization
with the use of dppf, a series of mechanistic investigations were
performed. Albeit the low reactivity of primary alkyl bromides,
we conducted the coupling of cyclopropylmethyl bromide to
explore possible ring-opening events (Figure 3A). Indeed, 43-
D and 43-O were obtained in 1:2 ratio, respectively. This
result suggests the involvement of carbon-centered alkyl radical
species during the course of the reaction. Additionally, the
presence of radical scavengers such as TEMPO and 1,1-
diphenylethylene was also investigated (Figure 3B). Whereas
the presence of 1 equiv of TEMPO led to a dramatic decrease
in yield of 3, 2 equiv of TEMPO completely suppressed the
reactivity. This inhibition could be the result of the interaction
with Ni or Zn. However, 1,1-diphenylethylene was used
instead, formation of product (3, 19%) was accompanied by
the formation of 44 and 44-H,. Although these results might
point out to noncage events of the alkyl radical, experiments
with a 5-exo-trig cyclization suggest otherwise. If a radical-chain
process is operating, the formation of uncychzed product
should augment when increasing the amount of Ni.” However,

1920

Same as
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A. Radical ring-opening
N,
\>—SMe . Br Table 1 >_)> >_/_\
s’ 9%

1 430

B. Radical scavengers

TEMPO
(x equiv.)

equiv | Yield of 3
28%

10 mol% NiBr,'diglyme

N
@[ \>—SMe 10 mol% dppf h 2 trace
s’ —  zn@5equiv) 3
1 KAQHPO.; @0equiv) | N Ph
+ 4AMS, DMA, 100 °C Mgy +
Br—Cy (2.0 equiv.) ©:S>_ y Ph/K\/CY
2 w/ Nifdppf 3 (19%) 44 and 44-H, (36%)
wio Ni/dppf (nd) (nd)
C. Radical 5-exo-trig cyclization
x mol% Ni /
N z x mol% dppf
\>—SMe +
s Br Zn, KZHP04
1 45 4AMS, DMA 46- U
54 100 °C
|
454 N
4 | \
£ CL
S 25 “ 46-C
g 2
o 1 L',/J"_—’_“
g | e
0.5 1 30 1.37
0

1.74
178
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x mol% Ni/L

Figure 3. Mechanistic experiments. (A) Ring-opening of methyl-
encyclopropyl radical; (B) Presence of radical scavengers; (C)
Influence of [Ni] in radical cyclization.

the ratio of uncyclized (46-U) and cyclized (46-C) cross-
coupled product remained unaffected at higher concentrations
of catalyst (ca. 1:1.5). Interestingly, when Zn was replaced by
the common organic reducing agent TDAE (tetrakis-
(dimethylamino)ethylene), no product was obtained (Figure
4A). Due to the unique reactivity of Zn in this system, we

-0

(not observed)

el s e

30-B (branched) 30-L (linear)
X = Br, 50%2, >99:1 b:/
X = ZnBr, 21%”, 1.5:1 bil

A. Role of the reducing agent
N,
H-swme + Br—<:>
S
1 2

B. Formation of organozinc species

©: pse . Ph\)\Me

(2 equiv.)

10 mol% NiBry'diglyme
10 mol% dppf

TDAE (1 equiv.)
KoHPO, 4A MS, DMA, 100 °C

10 mol% NiBry'diglyme
10 mol% dppf

KoHPO, 4A MS
DMA, 100 °C

Figure 4. (A) Organic reducing agent. (B) Involvement of organozinc
species. “2.5 equiv of Zn was added. *GC yield.

speculated whether an organozinc reagent was formed in situ.'”
Precedents in Pd-catalyzed Negishi aryl-alkyl cross-coupling
clearly demonstrated a strong effect of the phosphine ligands in
the isomerization of the nucleophile.'®”° Similarly, reports on
the use of Ni as catalyst for Negishi couplings are restricted to
di- or trlamme based ligands to obtain high levels of
selectivity.”!

On the basis of these precedents, we speculated that in the
event of forming a well-defined organozinc reagent during the
reaction the ratios of branched and linear products should be
highly dependent on the ancillary ligand used. To test this
hypothesis, we subjected 1 to the coupling with (2-
bromopropyl)benzene and the homologue zinc reagent in
the presence of dppf ligand. Interestingly, the coupling of (2-
bromopropyl)benzene under reductive conditions afforded
exclusively the branched product 30-B independently of the
phosphine (Figure 4B). On the contrary, the reaction of (1-
phenylpropan-2-yl)zinc(II) bromide under the same condi-
tions afforded mixtures of 30-B and 30-L(1.5:1), thus ruling
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out well-defined organozinc halides as intermediates. Taken
together, these preliminary investigations suggest that the Ni is
responsible for the radical formation and fast cage-rebound
occurs.”” Additionally, the no-isomerization observed with
open chain secondary centers point out to a fast reductive
elimination from higher oxidation states of a Ni/phosphine
complex.”® Efforts to elucidate these intriguing phosphine-Ni
intermediate species are currently under investigation.

In summary, we have developed a Ni-catalyzed protocol for
the direct alkylation of thiomethyl ethers (C(sp*)—SMe
bonds) derived from heterocycles, which represent important
handles commonly encountered in medicinal chemistry routes.
This protocol has a wide substrate scope in both coupling
partners and a high functional group tolerance. The high
selectivity obtained toward the branched isomer with the use
of simple dppf reveal interesting mechanistic scenarios which
might differ from the canonical reductive cross-electrophile
couplings. The successful coupling of strong C(sp?)—SMe
bonds in cross-electrophile couplings opens the door to the use
of other challenging partners with strong bonds to be included
in the palette of electrophiles.
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