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Abstract

Lipoxygenases (LOX) form a family of lipid peroxidizing enzymes, which have been implicated in 

a number of physiological processes and in the pathogenesis of inflammatory, hyperproliferative 

and neurodegenerative diseases. They occur in two of the three domains of terrestrial life (bacteria, 

eucarya) and the human genome involves six functional LOX genes, which encode for six 

different LOX isoforms. One of these isoforms is ALOX15, which has first been described in 

rabbits in 1974 as enzyme capable of oxidizing membrane phospholipids during the maturational 

breakdown of mitochondria in immature red blood cells. During the following decades ALOX15 

has extensively been characterized and its biological functions have been studied in a number of 

cellular in vitro systems as well as in various whole animal disease models. This review is aimed 

at summarizing the current knowledge on the protein-chemical, molecular biological and 

enzymatic properties of ALOX15 in various species (human, mouse, rabbit, rat) as well as its 

implication in cellular physiology and in the pathogenesis of various diseases.
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1. Introduction

Lipoxygenases (LOXs) are non-heme iron-containing fatty acid dioxygenases (Brash, 1999; 

Ivanov et al., 2010; Haeggstrom and Funk, 2011; Kuhn et al., 2014) that catalyze the 

dioxygenation of polyunsaturated fatty acids to the corresponding hydroperoxy derivatives 

(Fig. 1). For a long time it was believed that true LOX enzymes only occur in plants but in 

1974 an arachidonic acid 12-lipoxygenating enzyme was discovered in human platelets 

(Hamberg and Samuelsson, 1974) and this enzyme was named platelet type 12-LOX 

(ALOX12). Some months later a different LOX-isoenzyme was reported in the lysate of 

immature red blood cells (Schewe et al., 1975), which was capable of oxidizing membrane 

lipids. This enzyme was named reticulocyte-type 15-LOX (the rabbit ortholog of human 

ALOX15). Since then a large number of LOX-isoforms exhibiting different enzymatic 

properties have been described in various species. Completion of the human genome project 

revealed that the human genome contains 6 functional LOX genes (ALOX5, ALOX12, 

ALOX12B, ALOX15, ALOX15B, ALOXE3) encoding for 6 different LOX-isoforms (Funk 

et al., 2002). In most mammalian cells linoleic acid (C18:∆2, n-6), alpha- (C18:∆3, n-3) and 

gamma- (C18:∆3, n-6), linolenic acid, arachidonic acid (C20:∆4, n-6), eicosapentaenoic acid 

(C20:∆5, n-3) and docosahexaenoic acid (C22:∆6, n-3) are the most abundant polyenoic 

fatty acids serving as substrates for the different mammalian LOX-isoforms. Mammalian 

LOXs prefer free fatty acids as substrate but the cellular concentration of free fatty acids is 

rather low. Thus, to initiate the formation of LOX products in cellular systems polyenoic 

fatty acids must be liberated from the cellular ester lipids by the catalytic activity of ester 
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lipid hydrolyzing enzymes, preferentially by cytosolic phospholipase A2 (Mancini and Di 

Battista, 2011). The hydroperoxy fatty acids formed by the different LOX isoforms are 

subsequently converted to a large array of bioactive lipid mediators, which include 

leukotrienes (Savari et al., 2014), lipoxins (Romano, 2010), hepoxilins (Pace-Asciak, 2009), 

eoxins (Sachs-Olsen et al., 2010), resolvins (Yoo et al., 2013), protectins (Serhan and 

Petasis, 2011) and others. However, some LOX isoforms, in particular the ALOX15 

orthologs of rabbits (Schewe et al., 1975), pigs (Takahashi et al., 1993) and rats (Pekarova et 

al., 2015) are capable of oxygenating complex ester lipids even if they are constituents of 

complex lipid-protein assemblies, such as biomembranes (Kuhn et al., 1990b), and 

lipoproteins (Belkner et al., 1993).

Among the six different human LOX-isoforms ALOX5 (Radmark et al., 2015) and ALOX15 

(Ivanov et al., 2010) are probably the best characterized isoenzymes and the biological 

relevance of these mammalian LOX-isoforms has recently been reviewed (Kuhn et al., 

2014). This paper is aimed at summarizing our current knowledge on the protein-chemical, 

molecular-biological and enzymatic properties of ALOX15 orthologs in various mammalian 

species and at critically evaluating the experimental data characterizing the physiological 

and patho-physiological roles of this particular LOX-isoform. Among the ALOX15 

orthologs rabbit ALOX15 has been characterized most comprehensively because of its early 

discovery and its long lasting history. Although there are considerable species-specific 

differences between the rabbit enzyme and the corresponding orthologs of other mammalian 

species rabbit ALOX15 is frequently considered as suitable model for ALOX15 orthologs of 

other species including humans. Writing a review about a well-characterized enzyme, which 

has been discovered more than 40 years ago, is always very selective and strongly depends 

on the perspective of the authors. Although we did our best to balance this selection we 

might have overlooked important contributions and we apologize to those distinguished 

colleagues who significantly contributed to the field but whose work could not be referenced 

because of space limitations.

2. Lipoxygenase family and human lipoxygenase isoforms

2.1. Lipoxygenase distribution in terrestrial life

As indicated above the human genome involves six functional LOX genes and evolution of 

this class of enzymes recently became a matter of discussion (Hansen et al., 2013; Horn et 

al., 2014). In viruses functional LOXs haven not been characterized although LOX-like 

sequences have been deposited in publically available sequence databases (Horn et al., 

2014). LOX occur in two (bacteria, eukarya) of the three domains of terrestrial life and 

although LOX-like sequences have been reported in various archeae there are no convincing 

data suggesting expression of functional LOX-isoforms in these microorganisms (Horn et 

al., 2014). In bacteria LOXs do occur (Hansen et al., 2013) but they are not widely 

distributed (Horn et al., 2014). Among the bacterial genomes sequenced so far (~13,000, 

Aug. 2014) some 60 LOX-like sequences have been identified on the basis of amino acid 

comparison. These bacterial species include firmicutes, different types of proteobacteria, 

cyanobacteria, actinobacteria and representatives of the CFB group (Horn et al., 2014). 

Although the functionality of most bacterial LOXs has not been characterized, the 
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observation that less than 0.5 % of the bacterial genomes contain potential LOX genes, 

suggest that these enzymes only sporadically occur in bacteria. In fact, most human 

pathogenic bacteria including E. coli (bacterial model organism) do not carry LOX genes 

(Horn et al., 2014). In eucarya LOXs are more widely distributed and functional enzymes 

have been characterized in algae, fungi, protists, plants as well as in lower and higher 

animals (Horn et al., 2014). However, well-characterized eucaryotic model organisms 

representing lower evolutionary stages of terrestrial life such as Saccharomyces cerevisiae, 

Drosophila melanogaster and Caenorhabditis elegans do not carry LOX genes. In mosses 

(Physcomitrella patens) and higher plants (Glycine max, Oryza sativa, Zea mays) a large 

number of LOX isoforms have been detected indicating wide spread occurrence of these 

enzymes in plants. When we searched the ENSEMBL (http://metazoa.ensembl.org) and the 

NCBI (www.ncbi.nim.gov) protein databases for Placozoa, Porifera, Coelenterata, 
Platyhelminthes, Nematoda, Mollusca, Annelida, Echinodermata, Chelicerata, 
Cephalochordata, Tunicata with the key word “lipoxygenase” we found that functional 

LOXs occur in selected invertebrates and this conclusion is consistent with the previous 

characterization of several enzymes in corals (Brash et al., 1996), mussels (Hada et al., 

1997; Coffa and Hill, 2000), sea urchins (Hawkins and Brash, 1987) and others. On the other 

hand, more detailed database searches indicated that most invertebrates do not carry 

functional LOX genes and a rough estimate suggested that among the more than one million 

invertebrate species on earth less than 1% carry LOX-like sequences (Horn et al., 2014). In 

lower cordates (Branchiostoma floridae, Ciona intestinalis) LOX sequences have been 

identified but more detailed characterization of the corresponding enzymes is still pending. 

In higher cordates, particularly in vertebrates including mammals, LOX sequences are more 

common. The genomes of the elephant shark (Callorhinchus milii; model organism for 

cartilaginous fish), the zebrafish (Danio rerio; model organism for bony fish), the western 

clawed frog (Xenopus Silurana tropicalis; model organism for amphibia), the american 

alligator (Alligator missisippiensis; model organism for reptilia) and chicken (Gallus gallus; 

model organism of aves) contain LOX sequences and although little functional data are 

currently available for these animal species, the sequence data suggest a wide distribution of 

functional LOX in higher vertebrates. However, subclassification of these enzymes on the 

basis of their sequence homology and their assignment to either of the human isoforms is 

complicated since most of these isoenzymes only share a low degree of sequence similarity 

(20–30%) with any human LOX isoform. Thus, it can hardly be predicted, which of the 

LOX isoforms present in lower animals is the functional equivalent (ortholog enzyme) or the 

immediate precursor of human ALOX15.

The mouse genome (Mus musculus; a model organism for mammals) involves seven 

functional LOX genes (alox5, alox15, alox15b, alox12, alox12b, aloxe3, aloxe12). In 

humans all mouse LOX genes except for the aloxe12 gene are well conserved as functional 

gene (Funk et al., 2002). The mouse aloxe12 gene is present in the human genome as 

corrupted and functionless pseudogene. The question, which of the mouse LOX genes might 

constitute the functional equivalent of human ALOX15, has been discussed controversially. 

Since mouse alox15 converts arachidonic acid to 12-H(p)ETE it has been suggested that 

mouse alox15 may functionally be more closely related to human ALOX12. However, this 

would only be the case if ALOX15 orthologs exhibit their bioactivity via the formation of 
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arachidonic acid oxygenation products. In contrast, when ALOX15 orthologs exhibit their 

biological function by oxygenating of complex lipid-protein assemblies (lipoproteins, 

biomembranes) there is hardly any functional similarity between mouse alox15 and human 

ALOX12. ALOX15 orthologs including mouse alox15 can oxidize complex lipid-protein 

complexes whereas the ALOX12 orthologs of humans and mice are not capable to do so. 

Genomic sequence alignments, chromosomal localization and comparison of the enzyme 

properties strongly suggest that the mouse leukocyte-type 12-LOX (old nomenclature) and 

the human reticulocyte-type 12/15-LOX (old nomenclature) are orthologous enzymes. 

Usually, enzyme orthologs fullfill similar functions in different organisms and thus mouse 

alox15 may constitute the functional equivalent of human ALOX15 despite their different 

reaction specificity of arachidonic acid oxygenation. A similar situation was observed in 

rats. Here again, the alox15 ortholog is an arachidonic acid 12-lipoxygenating enzyme 

species and is also capable of oxygenating membrane phospholipids (Watanabe and 

Haeggstrom, 1993; Pekarova et al., 2015).

2.2. LOX classification systems

Traditionally, animal LOXs have been classified according to their reaction specificity using 

arachidonic acid as model substrate. When oxygen is introduced at carbon atom 5 of the 

fatty acid backbone the corresponding enzyme was called 5-LOX. If the substrate is 

oxygenated at carbon 15 a 15-LOX was predicted as catalyst. This nomenclature is simple 

and straightforward but it does not consider the evolutionary relatedness of the enzymes. 

Moreover, it leads to confusions since LOX-isoforms, which share a high degree of 

evolutionary relatedness, might exhibit different reaction specificities. This is, for instance, 

the case for human ALOX15, which oxygenates arachidonic acid at carbon 15 (Sloane et al., 

1991a), and mouse alox15, which catalyses arachidonic acid 12-lipoxygenation (Sun and 

Funk, 1996). Similarly, human ALOX15B introduces dioxygen at carbon 15 of the model 

substrate (Brash et al., 1997) whereas the corresponding murine ortholog (alox15b) is an 8-

lipoxygenating enzyme species (Jisaka et al., 2000). Even more confusing was the 

observation that except for alox5 and aloxe3 all other murine LOX isoforms are 12-

lipoxygenating enzymes and, thus should be classified together despite their structural and 

functional differences. To avoid such confusions the simple specificity related nomenclature 

should not be used any more. In recent years newly discovered LOX-isoforms are frequently 

classified according to their sequence similarity with any of the human isoforms. This 

classification concept works well for most mammalian LOX-isoforms but because of the low 

degree of sequence conservation problems may arise when LOX-isoforms of evolutionary 

more distant species are to be classified. For instance, in zebrafish a number of LOX 

transcripts originating from several genes have been identified, but neither of them shares a 

high degree of amino acid conservation with human ALOX15 (Haas et al., 2011; Jansen et 

al., 2011).

3. Enzymology of ALOX15

3.1. Multiple catalytic activities of ALOX15 (moonlighting character)

Various LOX-isoforms including ALOX15 (Schewe, 2002) exhibit multiple catalytic 

activities. They oxygenate polyenoic fatty acids to hydroperoxy derivatives but also exhibit a 
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lipohydroperoxidase activity (sometimes also called hydroperoxide isomerase activity), 

which converts lipid hydroperoxides to secondary lipid peroxidation products. As indicated 

in Fig. 1A the lipid oxygenase activity involves as initial reaction a hydrogen abstraction 

from a bisallylic methylene of the fatty acid substrate. In contrast, the lipohydroperoxidase 

activity is initiated by a homolytic cleavage of the hydroperoxy bond, which formally leads 

to the formation of alkoxy and hydroxy radicals (Fig. 1B). In addition to lipoxygenase and 

lipohydroperoxidase activity ALOX15- orthologs exhibit a leukotriene synthase activity 

converting hydroperoxy fatty acids containing a conjugated diene system to 

epoxyeicosanoids carrying conjugated trienes (Bryant et al., 1985; Brash et al., 1989; 

Schewe, 2002).

3.1.1. Lipoxygenase activity—The lipoxygenase activity is initiated by hydrogen 

abstraction from a bisallylic methylene and leads to the formation of hydroperoxy lipids 

(Fig. 1A). For ALOX15 this activity is not restricted to free polyenoic fatty acids since 

phospholipids and even biomembranes and lipoproteins are ALOX15 substrates. The 

mechanistic details for the oxygenase reaction with different substrates are given in chapters 

3.2., 3.3., 3.4.

3.1.2. Lipohydroperoxidase activity—Under certain reaction conditions 

(anaerobiosis, hypoxia, limited fatty acid supply) LOXs are capable of catalyzing the 

secondary conversion of hydroperoxylipids to an array of secondary lipid peroxidation 

produts. This catalytic property, which was first described for soybean LOX1 (Garssen et al., 

1971), was called lipohydroperoxidase activity and the product mixture involved ketodienes, 

epoxy hydroxy compounds, short chain aldehydes, volatile hydrocarbons (pentane) and 

mixed oxygenated and non-oxygenated fatty acid dimers (Garssen et al., 1972; de Groot et 

al., 1973). Mechanistic experiments indicated that this reaction did also proceed under 

aerobic conditions when linoleic acid was replaced with guaiacol serving as artificial 

electron donor (Streckert and Stan, 1975). The reaction sequence of the lipohydroperoxidase 

activity resembles that of the lipoxygenase reaction and its catalytic cycle involves a valency 

change of the nonheme iron (Fig. 1B). A similar anaerobic lipohydroperoxyidase activity 

has later been reported for rabALOX15 (Hartel et al., 1982; Salzmann et al., 1984). 

Interestingly, for this enzyme the lipohydroperoxidase activity was not restricted to 

anaerobic conditions but was also observed in hypoxia (Kuhn et al., 1986a). From this data it 

was concluded that the ratio between oxygenase vs. lipohydroperoxidase activity of a given 

LOX-isoform depends on both, the enzyme properties and the oxygen pressure in the assay 

sample. Later experiments with recombinant human ALOXE3 suggested that its oxygenase 

activity is largely suppressed under normoxic conditions but that it exhibits a strong 

lipohydroperoxidase (hydroperoxide isomerase) activity (Zheng and Brash, 2010a; Zheng 

and Brash, 2010b). The lipohydroperoxidase activity may not be considered as in vitro 

artifact but has been implicated in the formation of the water barrier of human and mouse 

epidermis (Munoz-Garcia et al., 2014).

Hepoxilins (Pace-Asciak, 2009; Pace-Asciak, 2015) are epoxy hydroxy eicosanoids formed 

from 12-HpETE via the lipohydroperoxidase activity of ALOX12 orthologs. The epoxide 

ring can be hydrolyzed, which leads to the formation of trihydroxy eicosanoids (trioxilins). 
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There are two classes of hepoxilins (A and B), which differ from each other by the relative 

positions of the two functional groups (hydroxy group and the epoxide ring). When 15-

HpETE is converted by the lipohydroperoxidase activity of ALOX15 hepoxins [11S-

hydroxy-14S,15S-epoxy-5Z,8Z,12E-eicosatrienoic acid (14,15-HXA3) and 13R-

hydroxy-14S,15S-epoxy-5Z,8Z,11Z-eicosatrienoic acid (HXB3)] are formed. Although the 

detailed mechanism of hepoxilin and hepoxin signaling have not been clarified, a large 

number of bioactivities has been described for these lipohydroperoxidase products (Nigam 

et al., 2007; Zafiriou et al., 2011; Gregus et al., 2013; Krieg et al., 2013; Munoz-Garcia et 

al., 2014; Pace-Asciak, 2015).

3.1.3. Leukotriene synthase activity—ALOX5 and ALOX15 orthologs are capable 

of converting hydroperoxy fatty acids such as 5- and 15-HpETE to epoxy leukotrienes 

(Bryant et al., 1985; Ueda et al., 1986; Brash et al., 1989). Although several aspects of the 

leukotriene synthase activity of LOX-isoforms have not been explored, the catalytic cycle 

involves hydrogen abstraction from a bisallylic methylene and homolytic cleavage of the 

hydroperoxy group forming a fatty acid biradical. This biradical is then stabilized via 

expoxide formation (Fig. 1C). Thus, formally, the leukotriene synthase activity of LOX-

isoforms may be considered as combination of its oxygenase (hydrogen abstraction from a 

bisallylic methylene) and its lipohydroperoxidase (hemolytic cleavage of the peroxy group) 

activity.

3.2. Reaction kinetics with polyenoic fatty acids

Purified native and recombinant rabbit ALOX15 (Ludwig et al., 1987) and its recombinant 

human ortholog (Kühn et al., 1993) exhibit non-linear reaction kinetics. A typical kinetic 

progress curve exhibits sigmoid shape (Fig. 2). It starts with a kinetic lag-phase, in which the 

catalytic activity is increased reaching the maximal turnover rate. This lag-phase is followed 

by a more or less linear part, in which the reaction rate is not altered but then the activity is 

decreasing owing to suicidal inactivation.

3.2.1. Kinetic lag-phase and autocatalytic activation—The catalytic cycle of the 

LOX reaction (Fig. 1) consists of four stereochemically controlled elementary reactions 

(hydrogen abstraction, radical rearrangement, oxygen insertion and product dissociation) 

and involves a valence shuttling of the non-heme iron (Kuhn et al., 1986b; Rickert and 

Klinman, 1999; Lehnert and Solomon, 2003). When isolated from native and/or recombinant 

sources ALOX15 is present as catalytically silent ferrous enzyme. To initiate fatty acid 

oxygenation, the enzyme must first be oxidized to a ferric form capable of initiating 

hydrogen abstraction (Fig. 1). Unfortunately, single activation of the enzyme is not sufficient 

to keep it running, since during catalysis small quantities of radical intermediates escape 

from the active site (Ludwig et al., 1987; Schilstra et al., 1994) leaving the enzyme in an 

inactive ferrous (Fe2+) form. To keep the reaction at quasi-stationary levels, repeated enzyme 

activation is required and the primary oxygenation products appear to serve as enzyme 

activators. In this sense, the LOXs exhibit autocatalytic properties. Studying the oxygenation 

of 15S-HETE by pure rabbit ALOX15, it was found that the corresponding oxygenation 

product(s) did not activate the enzyme (Kuhn et al., 1986c). When activated with 13S-

HpODE the reaction proceeded for up to 2 min but then ceased. Subsequent addition of 13S-
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HpODE restarted the reaction at the initial rate and this could be repeated several times. 

Quantitative evaluation of the kinetic progress curves of 15S-HETE oxygenation suggested 

that 1 mole of exogenous 13S-HpODE is sufficient for the oxygenation of 9–10 moles of 

15S-HETE (Kuhn et al., 1986c). The chemistry of peroxide dependent LOX-activation 

appears to be more complex than simple oxidation of the ferrous non-heme iron, since it 

depends on the presence of molecular dioxygen. The kinetic progress curve for ALOX15 

catalyzed oxygenation of (19R/S,5Z,8Z,11Z,14Z)-19-hydroxyeicosa-5,8,11,14-tetraenoic 

acid (19-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid) under normoxic conditions was 

characterized by an extensive (more than 30 min) kinetic lag phase (Ivanov et al., 2005). 

However, under hyperoxic conditions a much shorter lag-phase was observed, suggesting an 

oxygen dependence of the activation process. Thus, molecular dioxygen serves not only as a 

lipoxygenase substrate, but also impacts peroxide-dependent enzyme activation (Ivanov et 

al., 2005). A similar oxygen dependence of the LOX activation was recently reported for 

ALOXE3 (Zheng and Brash, 2010b).

3.2.2. Suicidal inactivation—ALOX15 undergo suicidal inactivation during the 

oxygenation of polyenoic fatty acids (Hartel et al., 1982), but the molecular basis for this 

enzyme inactivation remains unclear. Initially, it has been suggested that hydroperoxy fatty 

acids may oxidize catalytically relevant amino acids at the active site. In fact, treatment of 

pure rabbit ALOX15 with 13S-HpODE induced selective oxidation of a methionine residue 

(Rapoport et al., 1984). However, site-directed mutagenesis of this methionine to an 

oxidation resistant alanine did not reduce the degree of suicidal inactivation (Gan et al., 

1995). Covalent modification of rabbit ALOX15 was reported when the enzyme was 

incubated with 15S-HpETE (Wiesner et al., 2003) and separation of proteolytic cleavage 

peptides by two-dimensional-gel electrophoresis confirmed this hypothesis (Kuhn et al., 

2005b). Despite these descriptive experimental data the molecular basis for suicidal enzyme 

inactivation remains unclear.

3.2.3. Temperature- and pH dependence of fatty acid oxygenation—Although 

pH alterations frequently occur in vivo, little is known on their impact on ALOX15 activity. 

ALOX15 catalyzed oxygenation of fatty acids was strongly pH-dependent and optimal 

enzymatic activity was observed between pH 7.0 and 7.4 in the absence of detergents. 

However, addition of surface-active compounds modified the pH optimum. In ALOX15 four 

histidine residues are 1st order iron ligands (Gillmor et al., 1997; Kuban et al., 1998) and 

thus pH alterations might impact their iron liganding properties. When the native rabbit 

ALOX15 was incubated at different pH (6.0, 7.4, and 9.0) its iron content remained 

unchanged (85–90%). These unpublished data suggest that the iron is stably liganded and 

that there is no pH-dependent loss in iron content under near-physiological conditions.

For human ALOX15 a broad temperature optimum (20° C - 35° C) was observed for linoleic 

acid oxygenation (Segraves and Holman, 2003) and these results correlated with data 

obtained in thermal stability assays of the enzyme (Mei et al., 2008). In the absence of 

substrate, rabbit ALOX15 is stable over long time intervals only at lower temperatures (<10° 

C). At higher temperatures (> 20° C) it undergoes structural fluctuations and loses catalytic 

activity (Mei et al., 2008). However, refolding experiments (changes in the CD-spectra 
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determined as readout parameter) indicated that structural alterations induced by short-time 

exposure to 30° C were completely reversible. In contrast, further temperature elevations 

(45° C) induced irreversible changes (Mei et al., 2008). Similar results were obtained when 

the catalytic activity was assayed and additional experiments at other temperatures suggested 

that the threshold temperature (loss of reversibility) was around 35° C for this enzyme (Mei 

et al., 2008).

3.2.4. Activation of ALOX15 by membrane binding—In vitro membrane binding 

studies and membrane oxygenase activity assays indicated that rabbit ALOX15 binds to 

different types of biomembranes, such as plasma membranes, mitochondrial membranes and 

endoplasmic membranes (Kuhn et al., 1990a; Kuhn et al., 1990b; van Leyen et al., 1998; 

Walther et al., 2002; Walther et al., 2004) and immunohistochemical staining (Kühn, 

unpublished data) did not provide any evidence for preferential binding to any type of 

subcellular membranes. This is a marked difference to human ALOX5, which preferentially 

binds to the nuclear envelope (Radmark et al., 2015). Membrane binding of ALOX15 

proceeds in a calcium dependent manner (Brinckmann et al., 1998; Walther et al., 2004) and 

strongly augments the specific fatty acid oxygenase activity of the enzyme without 

impacting its reaction specificity (Lankin et al., 1985; Brinckmann et al., 1998). In contrast, 

to ALOX5, for which specific calcium binding sites have been identified (Bindu et al., 2004; 

Schroder et al., 2014), ALOX15 does not carry such high affinity calcium binding sites. In 

vitro membrane binding assays and site directed mutagenesis of surface exposed 

hydrophobic amino acids, which have been mapped to both, the N-terminal ß-barrel (Tyr15, 

Phe70, Leu71) and the catalytic domain (Trp181, Leu195) suggested their importance for 

reversible membrane binding (Walther et al., 2004). The role of calcium needed as essential 

cofactor for membrane binding remains unclear but it was hypothesized that the positively 

charged calcium ions might neutralize negative charges of the membrane phospholipids, 

reducing electrostatic repulsive forces, which may counteract membrane binding (Walther et 

al., 2004).

3.3. Substrate specificity

3.3.1. Free polyenoic fatty acids as ALOX15 substrates—Most LOX-isoforms 

strongly prefer free polyenoic fatty acids as substrates and this is also the case for ALOX15 

orthologs. Among the naturally occurring polyenoic fatty acids linoleic acid, alpha- and 

gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid are 

well accepted. Monoenoic fatty acids (oleic acid) and saturated fatty acids of comparable 

chain length (stearic acid, arachidic acid) are not oxygenated as indicated by oxygraphic 

measurements. However, they function as weak competitive inhibitors. The molar turnover 

numbers of purified rabbit and human ALOX15 vary between 5–50 s−1 depending on the 

quality of enzyme preparations. Polyenoic fatty acids carrying a hydrophilic group close to 

the omega-end are not well oxidized by rabbit ALOX15 (Ivanov et al., 1998; Walther et al., 

2001). Although there are no direct structural data for ALOX15-substrate complexes 

currently available, models for ALOX15-fatty acid complexes have recently been worked 

out (Toledo et al., 2010; Toledo et al., 2011) on the basis of the X-ray coordinates (Gillmor 

et al., 1997). According to these models the substrate fatty acid slides into the hydrophobic 

pocket with its methyl end ahead so that the hydrogen to be abstracted during the initial 
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elementary reaction, is located in close proximity to the catalytic non-heme iron (Kuhn et 

al., 1986b; Rickert and Klinman, 1999). According to recent MD simulations, linoleic acid 

and arachidonic acid share common overall orientation at the active site. However, 

arachidonic acid is bound closer to the active site helix α18 and has a limited degree of 

motional freedom. In contrast, the tail of linoleic acid fluctuates more freely and adopts a 

number of energetically similar conformations at the active site (Toledo et al., 2010; Toledo 

et al., 2011).

Site directed mutagenesis on human ALOX15 suggested that Arg403 may interact with the 

negatively charged carboxylate of the substrate fatty acid (Gan et al., 1996). Mutagenesis 

studies revealed that Arg403Leu exchange induces strong impairment of the catalytic 

activity for free fatty acids (Gan et al., 1996) and similar results have later been obtained for 

the rabbit ortholog (Di Venere et al., 2013). However, interpretation of these data remains 

controversial since catalytic inactivity can have a number of mechanistic reasons.

Although polyunsaturated fatty acids appear to penetrate the 15-LOXs active site with their 

methyl end ahead, other substrates were suggested to bind in an inverted orientation (Van Os 

et al., 1981; Kuhn et al., 1986b). Initial evidence for such an inverse, head-to-tail substrate 

orientation was provided when the oxygenation of 15S-HpETE by soybean lipoxygenase-1 

was studied (Van Os et al., 1981). The major reaction products were identified as (8S,15S,

5Z,9E,11Z,13E)-8,15-dihydroperoxy-5,9,11,13-eicosatetraenoic acid (8S,15S-DiHpETE) 

and (5S,15S,6E,8Z,11Z,13E)-5,15-dihydroperoxy-6,8,11,13-eicosatetraenoic acid (5S,15S-

DiHPETE) and the stereochemistry of the reaction was compatible with an inverse substrate 

orientation. To provide evidence for a similar inverse substrate alignment the oxygenation of 

15S-HETE by rabbit ALOX15 was explored (Schwarz et al., 1998). This substrate was 

oxygenated at carbon 5 and carbon 14 of the fatty acid backbone suggesting the possibility 

of simultaneous straight (oxygenation at C14) and inverse (oxygenation at C5) substrate 

alignment. Methylation of the substrates carboxylic group strongly augmented the reaction 

rate and shifted the product pattern almost completely to 5S-lipoxygenation. Introduction of 

a bulky glycerol moiety reversed the kinetic effects of methylation and induced preferential 

C14-oxygenation (Schwarz et al., 1998). These data are consistent with the concept of an 

inverse substrate orientation. With a defined substrate there may be a binding equilibrium 

between “normal” (methyl terminus ahead) and inverse alignment (carboxylate ahead). This 

binding equilibrium may be influenced by functional groups on either end of the fatty acid 

backbone (Schwarz et al., 1998).

3.3.2. Phospholipids and cholesterol esters are ALOX15 substrates—Purified 

rabbit ALOX15 oxygenates phospholipids (Schewe et al., 1975) and cholesterol esters 

(Belkner et al., 1991) containing polyunsaturated fatty acids. In fact, rabbit ALOX15 has 

first been discovered because of its phospholipid oxidizing capability (Schewe et al., 1975). 

Although the reaction rates of phospholipid oxidation are at least one order of magnitude 

lower then the rate of free polyenoic fatty acid oxygenation, specific reaction products 

(Table 1) have been analyzed for different phospholipids and cholesterol esters. These data 

suggest that the enzyme tightly controls the oxygenation reaction. On the other hand, 

oxygenation of phospholipids by ALOX15 is somewhat surprising since in silico docking 

studies indicated that binding of a phospholipid molecule in the substrate binding pocket is 
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hardly possible without major rearrangement of the active site structure. The volume of the 

substrate-binding pocket is simply not big enough to accommodate a complete phospholipid 

molecule without steric clashes (Fig. 3). Thus, specific oxygenation of phospholipids by 

rabbit ALOX15 can only be explained if the enzyme exhibits a high degree of motional 

flexibility allowing substantial rearrangement of the active site to enable phospholipid 

binding. This is apparently not the case for the secretable LOX of Pseudomonas aeruginosa 
(Lu et al., 2013). The active site of this enzyme is big enough to bind a phospholipid 

molecule. In fact, the enzyme was crystallized with a phospholipid molecule bound in the 

substrate-binding pocket (Garreta et al., 2013). We recently compared rabbit ALOX15 and P. 
aeruginosa LOX site-by-site and found similar phospholipid oxygenase activities for both 

enzymes when normalized to their arachidonic acid oxygenase activity (Banthiya, 

unpublished data).

3.3.3. Biomembranes und lipoproteins as ALOX15 substrates—The ALOX15 

orthologs of rabbits (Kuhn et al., 1990b), humans (Kühn et al., 1993) and pigs (Takahashi et 

al., 1993) are capable of directly oxygenating complex lipid protein assemblies such as 

biomembranes and lipoproteins. ALOX15 catalyzed oxygenation of membrane lipids was 

implicated in the maturational breakdown of mitochondria during reticulocyte–erythrocyte 

transition and inhibition of ALOX15 delayed organelle degradation in rabbit reticulocytes 

(Schewe et al., 1975; Schewe et al., 1986; Grullich et al., 2001). Specific ALOX15 products 

have been detected in membranes of rabbit reticulocytes (Kuhn and Brash, 1990) and the 

oxidation degree of membrane lipids in mitochondria was significantly higher then in the 

plasma membranes (Kuhn et al., 1990a) suggesting a preferential in vivo activity of the 

enzyme on mitochondrial membranes. Addition of rabbit ALOX15 to purified rat liver 

mitochondrial membranes in vitro induced disruption of the organelle, inactivation of the 

respiratory chain and the release of matrix enzymes (Rapoport and Schewe, 1986). In other 

in vitro models of ALOX15-membrane interaction the enzyme integrated into the 

membranes of various organelles, allowing release of proteins from the organelle lumen and 

access of proteases to both, lumenal and integral membrane proteins (van Leyen et al., 

1998). Taken together, the catalytic activity of ALOX15 on biomembranes provides a 

mechanism, by which the maturational degradation of cellular organelles and restructuring 

of biomembranes can be explained (Rapoport and Schewe, 1986; van Leyen et al., 1998).

The oxidative hypothesis of atherosclerosis (Witztum and Steinberg, 1991) suggests that 

oxidative modification of lipoproteins plays a major role in the pathogenesis of this disease. 

According to this scenario low density lipoprotein is oxidized by enzymatic and non-

enzymatic reactions to an atherogenic species, which is rapidly taken up by monocytes/

macrophages via scavenger receptor mediated pathways. Since these pathways are not 

feedback-controlled, excessive uptake of oxidized low-density lipoproteins renders 

monocytes/macrophages to lipid-laden foam cells, which accumulate in the subendothelial 

space of the arteries forming fatty streaks that constitute early atherosclerotic lesions (Libby, 

2012). In reconstituted molecular systems, purified ALOX15 is capable of oxidizing the 

ester lipids of low-density lipoproteins to specific ALOX15 products (Belkner et al., 1993) 

and as dominant substrates the cholesterol esters of the lipoprotein core have been identified. 

The ALOX15 derived hydroperoxy lipids subsequently induce free-radical mediated 
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secondary reactions, which render the product pattern more unspecific at longer incubation 

periods (Upston et al., 1997; Belkner et al., 1998). The possible involvement of ALOX15 in 

the formation of oxidized low-density lipoprotein was the basis for the pro-atherogenic 

character of the enzyme and expression silencing studies in mice confirmed this activity in 

various mouse atherosclerosis models (Cyrus et al., 1999; George et al., 2001; Zhao et al., 

2005). In human atherosclerotic lesions ALOX15 is expressed only at low levels and thus, 

the patho-physiological role of the enzyme was challenged (Spanbroek et al., 2003; Gertow 

et al., 2011).

3.4. Product specificity

The LOX reaction constitutes a special type of lipid peroxidation and differs from non-

enzymatic reactions in several respects, such as higher reaction rate, limited substrate 

selectivity, mechanisms of regulatory interference and the high product specificity. Non-

enzymatic lipid peroxidation converts a given substrate to a complex array of primary 

oxygenation products (mixture of various positional and optical isomers) whereas LOXs 

usually generate a single product isomer.

3.4.1. Product specificity with polyenoic acids—ALOX15 oxygenates the 

naturally occurring polyenoic fatty acids predominantly at the n-6 position and this reaction 

requires initial hydrogen abstraction from the n-8 carbon atom. Linoleic acid is converted to 

13-HpODE, whereas arachidonic acid is oxidized at C15 forming 15S-HpETE. Interestingly, 

small amounts (ranging from 3–10% of the total product mixture) of 12S-HpETE are also 

formed. When first described, this dual positional specificity (Bryant et al., 1982) of rabbit 

ALOX15 was quite surprising since singular positional specificity has been hypothesized for 

all LOX-isoforms. However, later on dual positional specificity was confirmed for the 

recombinant ALOX15 orthologs of men (Sloane et al., 1991a; Kühn et al., 1993), mice 

(Bürger et al., 2000), rats (Watanabe and Haeggstrom, 1993) and orangutans (Vogel et al., 

2010) and a mechanistic scenario explaining the dual positional specificity was provided. 

According to this concept fatty acid substrates are aligned at the active site of LOX in such a 

way that hydrogen abstraction from two different bisallylic methylenes (C13 and C10 of 

arachidonic acid) is possible (Kuhn et al., 1990c; Kuhn et al., 1991; Ivanov et al., 2010).

For most LOXs initial hydrogen abstraction and subsequent oxygen insertion proceed in an 

antarafacial manner but for other fatty acid oxygenases a suprafacial relation was determined 

(Maas and Brash, 1983; Garscha et al., 2007; Wennman et al., 2014). However, the 

molecular basis for this property is unclear and remains a matter of discussion. Another 

unsolved problem of the ALOX15 reaction is the direction of the radical rearrangement (2nd 

elementary reaction in Fig. 1). During non-enzymatic peroxidation of linoleic acid the 

carbon centered fatty acid radical formed by initial hydrogen abstraction can rearrange in 

two opposite directions ([+2] rearrangement leading to linoleic acid 13-lipoxygenation vs. 

[−2] rearrangement leading to 9-lipoxygenation), but for ALOX15 only [+2] rearrangement 

occurs. Quantum chemical calculations using a completely solvated model of rabbit 

ALOX15 suggested that both [+2] and [−2] rearrangements are similarly likely (Suardiaz et 

al., 2013). However, there appear to be differences in the energy barriers for oxygen 

insertion at the [+2] vs. the [−2] position. It was concluded that oxygen insertion at the [n-2] 
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position (C9 of linoleic acid) may sterically be hindered by surrounding amino acids 

Leu597, Gln548 and Phe175 (Suardiaz et al., 2013; Suardiaz et al., 2014a; Suardiaz et al., 

2014b) so that only C13 oxygenation is possible.

3.4.2. Product specificity with complex substrates—Esterified polyenoic fatty 

acids (phospholipids, cholesterol esters) are oxygenated with a lower degree of specificity 

(Kuhn et al., 1990b). Although 13S-HpODE and 15S-HpETEare the major oxygenation 

products formed when rabbit ALOX15 was incubated in vitro with mitochondrial 

membranes, there is a significant share of unspecific side products, which together may 

account for up to 30 % of the total product mixture. These side products include (9E,

11E)-13-hydroperoxy-9,11-octadecadienoic acid [13-HpODE(E,E)], (10E,12Z)-9-

hydroperoxy-10,12-octadecadienoic acid [(9-HpODE)] and (10E,12E)-9-

hydroperoxy-10,12-octadecadienoic acid [(9-HpODE(E,E)]. It should be stressed at this 

point that highly specific product patterns were only observed at short (5–15 min) incubation 

periods (Belkner et al., 1998). At longer incubation times the product specificity is markedly 

decreased (Upston et al., 1996; Belkner et al., 1998; Heydeck et al., 2001). The mechanistic 

basis for the time dependent alterations in product specificity has not been explored in detail 

but two experimental details need to be considered: i) ALOX15 undergoes suicidal 

inactivation and long-term incubations in the presence of substrate completely inactivates the 

enzyme. ii) The hydroperoxy lipids formed by ALOX15 during early stages of long-term 

incubations may induce free radical mediated secondary reactions leading to an unspecific 

product pattern. To initiate such secondary reactions redox-active catalysts (metal ions, 

vitamine E) are required which are constituents of biomembranes and lipoproteins.

3.4.3. Alteration of product specificity by substrate modification—The reaction 

specificity of ALOX15 is not an absolute enzyme property but depends on the chemistry of 

the substrate, which impacts substrate alignment at the active site. For instance, 15S-HETE 

is oxygenated mainly at C15 of the substrates carbon backbone, but methylation of the 

carboxylic group strongly favors oxygen insertion at C5 (Schwarz et al., 1998). A similar 

effect was observed when a bulky group (phenyl, t-butyl) was introduced into the methyl tail 

of the substrate (Walther et al., 2001).

When arachidonic acid isomers differing from each other by the position of their double 

bonds (4,7,10,13-eicosatetraenoic acid, 5,8,11,14-eicosatetraenoic acid , 6,9,12,15-

eicosatetraenoic acid , 7,10,13,16-eicosatetraenoic acid , 8,11,14,17-eicosatetraenoic acid ) 

were used as substrate for rabbit ALOX15 (Fig. 4) variable product patterns were analyzed 

(Kuhn et al., 1990c) and the results of these experiments can be summarized as follows: i) 

4,7,10,13-eicosatetraenoic acid was oxygenated with a singular positional specificity and 

oxygen was almost exclusively introduced at C14. ii) 5,8,11,14-eicosatetraenoic acid (native 

arachidonic acid) was oxygenated with dual positional specificity and 15S-HpETE and 12S-

HpETE were the major oxygenation products in a ratio of about 85:15. iii) 6,9,12,15-

eicosatetraenoic acid was oxygenated with a pronounced dual positional specificity since 

oxygen was introduced in similar quatities at C14 (46%) and at C11 (54%). iv) As 

4,7,10,13-eicosatetraenoic acid 7,10,13,16-eicosatetraenoic acid was oxidized with singular 

positional specificity and oxygen was again introduced only at C14. v) As for 5,8,11,14-
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eicosatetraenoic acid a dual positional specificity was observed for 8,11,14,17-

eicosatetraenoic acid oxygenation and oxygen insertion proceeded at C15 (80%) and C10 

(20%). This data clearly indicate that the reaction specificity depends on the fatty acid 

structure, which impacts substrate alignment at the active site (Kuhn et al., 1990c).

3.4.4. Alteration of product specificity by site-directed mutagenesis

3.4.4.1. Triad concept of reaction specificity: If the structure of the enzyme substrate 

complex is important for the reaction specificity, it should be possible to specifically modify 

the enzyme structure and thus, induce alterations in the reaction specificity. Multiple amino 

acid sequence alignments of 12- and 15-lipoxygenating LOXs suggested that the amino 

acids at the positions 416, 417 and 418 of human ALOX15 might be important for the 

reaction specificity. When smaller residues were introduced at these positions of human 

ALOX15 12-lipoxygenating enzymes were created (Sloane et al., 1991b). From their data 

the authors concluded that this region of the primary structure may impact substrate 

alignment at the active site. Later on similar strategies were employed for rabbit, mouse and 

rat ALOX15 (Borngraber et al., 1996; Borngraber et al., 1999; Pekarova et al., 2015) and the 

triad concept of positional specificity of ALOX15 orthologs was developed (Fig. 5). This 

concept suggests that Phe353, Ile418/Met419 and Ile593 form the bottom of the substrate-

binding pocket and that the geometry of their side chains determine how deep a fatty acid 

may slide into the active site (Ivanov et al., 2010). Alanine-scan mutagenesis of the four 

candidate specificity determinants (Phe353, Ile418, Met419, and Ile593) indicated that 

Ile418 and Phe353 are most important for the positional specificity of rabbit ALOX15. In 

contrast, Ile593 and Met419 are only of minor importance (Borngraber et al., 1999). On the 

basis of mutagenesis data three regions of the primary structure are important for the 

positional specificity of ALOX15 orthologs: (i) The region around Ile418 and Met419 

(Sloane determinant) (Sloane et al., 1991b; Sloane et al., 1995); (ii) The region around F353 

(Borngräber 1 determinant) (Borngraber et al., 1996); and (iii) The region around I593 

(Borngräber 2 determinant) (Borngraber et al., 1999). Site-directed mutagenesis studies on 

12- and 15-lipoxygenating ALOX15 orthologs of men (Sloane et al., 1995), rabbits 

(Borngraber et al., 1999), rhesus monkeys (Vogel et al., 2010), orangutans (Vogel et al., 

2010), rats (Pekarova et al., 2015) and pigs (Suzuki et al., 1994) support the triad concept. 

The relative importance of the triad constituents varies for different isoenzymes. For human 

and orangutan ALOX15 orthologs Phe353 and Ile418 (numbering according to the rabbit 

ALOX15) play a major role since single mutations of these amino acids to less-space filling 

residues convert the LOX to an almost completely 12-lipoxygenating enzyme. Consequently, 

these residues are considered first-order determinants for these enzyme orthologs.

3.4.4.2. A-vs-G concept of reaction specificity: Multiple amino acid alignments of 

various LOXs with known reaction specificity indicate that most S-LOXs contain an Ala at a 

critical position, whereas R-LOXs contain a Gly instead (Coffa and Brash, 2004; Coffa et 

al., 2005b; Schneider et al., 2007). Mutagenesis studies on different S-LOXs indicated that 

an Ala-to-Gly exchange increases the share of R-HETE isomers (Coffa and Brash, 2004; 

Coffa et al., 2005a). The molecular basis for the observed specificity alterations is not 

entirely clear, but an impact of the amino acid side chain geometry on intra-enzyme oxygen 

movement was suggested (Schneider et al., 2007; Newcomer and Brash, 2015). When 
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similar mutagenesis studies were carried out on ALOX15 orthologs form rabbits, men, 

rhesus monkeys, orangutans and mice only minor alterations in the reaction specificity were 

observed (Jansen et al., 2011). The major arachidonic acid oxygenation product of the 

Ala404Gly mutants remained 15S-H(p)ETE, whereas 11R-H(p)ETE only contributed 

smaller amounts to the product mixture. The zebrafish expresses an unusual 12-

lipoxygenating LOX-isoform, which carries a Gly at this critical position. Thus, the enzyme 

was predicted to exhibit R-lipoxygenating activity. However, when it was expressed as 

recombinant protein arachidonic acid 12S-lipoxyenation was observed (Haas et al., 2011; 

Jansen et al., 2011). These data suggest that this LOX-isoform does not follow the Ala-vs-

Gly concept.

4. Molecular biology of ALOX15

4.1. Structure of mammalian ALOX15 genes

The human ALOX15 gene is located on the short arm (p13.3) of chromosome 17 in a gene 

cluster, which also contains the genes encoding for the other LOX isoforms except for 

ALOX5 (the ALOX5 gene is localized on the long arm of chromosome 10). It spans more 

than 11 kbp and consists of 14 exons and 13 introns. The corresponding mouse gene 

(alox15) is localized in a synthenic region on chromosome 11. The promoter region of the 

human ALOX15 gene was cloned and potential binding sites for transcription factors were 

identified (Kelavkar et al., 1998). Interestingly, the promoter region does not carry a TATA- 

nor a CAAT box suggesting a housekeeping character for this gene. However, the tissue-

specific expression pattern and the tightly controlled expression regulation on transcriptional 

and post-transcriptional levels are hardly consistent with this conclusion. When we searched 

the 5’-flanking region of the human ALOX 15 gene with the Champion ChiP Transcription 

Factor Database program (http://www.sabiosciences.com/chipqpcrsearch.php?app=TFBS) 

for potential transcription factor binding sites, we found that 36 of such sites were localized 

between 20 kb upstream and 10kb downstream of the transcription initiation site. A similar 

search for the 5’-flanking region of mouse and rat alox15 genes only revealed 10 potential 

binding sites. Interestingly, these sites were conserved between the two rodents. When we 

compared the lists of potential transcription factor binding sites in the promoter region of the 

human, mouse and rat LOX15 gene we found that the following transcription factor binding 

sites were shared by the three genes: GCNF, GCNF-1, GCNF-2, Ahr, NF1. However, it 

remains unclear whether these binding sites are of any functional relevance.

4.2. Genetic variability of human ALOX15 gene

Completion of the 1000 human genome project (www.1000genomes.org) revealed 78 single 

nucleotide polymorphisms (global allele frequency >1%) in the ALOX15 gene. Considering 

the fact that the ALOX15 gene consists of about 11,000 base pairs, an average SNP 

frequency of one SNP per 150 base pairs was calculated. A genome wide comparison of the 

SNP frequencies for human genes indicates the average occurrence of one SNP per 100–300 

base pairs. Thus, the human ALOX15 gene is characterized by an average genetic 

variability.

Ivanov et al. Page 15

Gene. Author manuscript; available in PMC 2019 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.sabiosciences.com/chipqpcrsearch.php?app=TFBS
http://www.1000genomes.org/


Human ALOX15 consists of 662 amino acids and 94 non-synonymous coding variations are 

described in the 1000 Human genome database. In addition, eight nonsense mutations have 

been identified, which are likely to lead to catalytically silent truncated enzyme variants 

(Horn et al., 2013). His360, His365, His540, His544 and the C-terminal Ile662 function as 

direct ligand for the catalytic non-heme iron (Gillmor et al., 1997) but neither of these 

residues was affected by genetic variations. Human ALOX15 exhibits dual positional 

specificity (see 3.3.1) and the side chains of Phe352, Ile417, Ile592 play a major role for this 

enzyme property (Ivanov et al., 2010). Analyzing the data obtained in the 1000 Genome 

database we found a rare variation at Phe352, in which the bulky Phe is exchanged to a less 

space-filling Leu (rs143365387), which is present at this position in the mouse ortholog. 

According to the triad concept (Ivanov et al., 2010), this enzyme variant should be a 12-

lipoxygenating enzyme species and previous mutagenesis studies confirmed this conclusion 

(Borngraber et al., 1999). Variations at the other two positions of the triad determinants have 

not been found (Horn et al., 2013).

Among the 94 non-synonymous coding variations listed in the 1000 Human genome 

database only two (Pro617Ser, Thr560Met) have a global allele frequency of > 1 % and are 

therefore classified as SNPs (Horn et al., 2013). In addition to these SNPs three selected rare 

mutant enzyme variants (Arg205Gln, Gly422Glu, Gly422Arg) have been characterized with 

respect to their functional properties (Horn et al., 2013). Thr560 and Gly422 are localized 

inside the core of the protein and the Thr560Met and Gly422Glu mutants are catalytically 

inactive. In contrast, Arg205 and Pro617 are surface exposed and the Arg205Gln and the 

Pro617Ser mutants exhibit similar reaction kinetic properties as the wildtype enzyme. 

Membrane binding upregulates the catalytic activity of ALOX15 but is also required for 

oxygenation of the membrane lipids (Lankin et al., 1985; Brinckmann et al., 1998). Surface 

exposed hydrophobic amino acids such as Tyr15, Leu70, Leu71, Lys180 and Leu194 have 

been implicated in membrane binding (Walther et al., 2002; Walther et al., 2004) and rare 

naturally occurring mutants of these residues have been described in the 1000 Human 

genome project (Horn et al., 2013). In silico docking studies and molecular dynamic 

simulations with different fatty acid substrates suggested that Arg402 and Phe414 

(numbering for human ALOX15) might be involved in substrate binding. For Arg402 two 

rare genetic variations have been identified in the 1000 Genome database [Arg402Gln 

(TMP_ESP_17_4536752) and Arg402Trp (rs144038526)]. We found that Arg402Trp has a 

reduced catalytic activity (36 % residual activity) while its reaction specificity was not 

affected.

4.3. Tissue specific expression of ALOX15 and transcriptional expression regulation

In humans ALOX15 is constitutively expressed at high levels in immature red blood cells, in 

eosinophils and in airway epithelial cells (Nadel et al., 1991). Lower expression levels have 

been reported for polymorphonuclear leukocytes of different species (Narumiya et al., 1982; 

Vanderhoek and Bailey, 1984), alveolar macrophages (Levy et al., 1993), vascular cells 

(Takayama et al., 1987), uterus (Lei and Rao, 1992), the male reproductive system (Fischer 

et al., 2005), various parts of the brain (van Leyen et al., 2006; Han et al., 2015) and in 

atherosclerotic lesions (Yla-Herttuala et al., 1990).
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Erythrocytes of various species (men, rabbits, mice, rats) do not express ALOX15. However, 

during experimental and natural anemia expression of the enzyme is upregulated in 

immature red cells (Ludwig et al., 1988; Kroschwald et al., 1989; Schewe et al., 1990). In 

rabbits, anemia-induced ALOX15 expression is not restricted to red cells but was also 

detected in peripheral monocytes, lung, spleen, kidney and liver, but not in skeletal muscle 

and various parts of the brain (Trebus et al., 2002). Although the mechanism of this systemic 

ALOX15 induction remains unclear, anemia induced cytokines might be involved. 

Erythropoietin, which is strongly induced during experimental anemia, might be a suitable 

candidate but in vitro incubation of human peripheral monocytes with erythropoietin did not 

induce ALOX15 expression (Kuhn et al., unpublished data).

Human peripheral blood monocytes do not express ALOX15. However, the Th2-cytokines 

interleukin-4 and interleukin-13 (IL4, IL13) (Conrad et al., 1992; Nassar et al., 1994) 

strongly upregulate ALOX15 expression in these cells. In fact, microarray experiments 

indicated that the ALOX15 gene is the most strongly upregulated gene product of the IL4 

response in human peripheral monocytes (Chaitidis et al., 2005). Although the mechanism 

of IL4 induced upregulation of ALOX15 expression is not completely understood, several 

constituents of the signal transduction cascade have been identified. Competition assays with 

an IL4 receptor antagonist suggested involvement of the IL-4/13 cell surface receptor 

(Brinckmann et al., 1996). Moreover, phosphorylation and acetylation of the transcription 

factor STAT6 by histone acetyltransferase CREB-binding protein/p300 has been implicated 

(Shankaranarayanan et al., 2001). The ALOX15 promoter involves putative STAT6 binding 

sites (Liu et al., 2012) and serial promoter deletion studies and STAT6 binding site mutations 

suggested their functionality. Additional regulatory events include phosphorylation of Jak2 

and Tyk2, p38 MAPK induced phosphorylation of STAT1 and STAT3 and activation of 

PKCd (Roy and Cathcart, 1998; Xu et al., 2003; Xu et al., 2004). More recently, ERK½ 

protein kinase as well as the transcription factors Elk1, Egr-1 and CREB have been 

implicated in the IL13 induced signaling cascade (Bhattacharjee et al., 2013). Although the 

IL4- and IL13-induced signaling cascades leading to increased ALOX15 expression share 

common elements, the signaling pathways are distinct (Bhattacharjee et al., 2013). 

Interestingly, IL4 does not induce ALOX15 expression in all peripheral monocytes since 10–

40% of cells remain ALOX15 negative (Kuhn and O’Donnell, 2006). The reasons for this 

heterogeneity are unclear, but may be related to the maturation stage of the cells and/or their 

metabolic states (Tsao et al., 2014). IL4 does also induce upregulation of ALOX15 
expression in A549 airway epithelial cells (Brinckmann et al., 1996) and orbital fibroblasts 

(Chen et al., 2006). In A549 cells, the Ku antigen, which is induced in response to IL4/13 

stimulation, binds to the ALOX15 promoter and induces expression of ALOX15 (Kelavkar 

et al., 2000). However, this is clearly not the only mechanism of IL4/13 induced 

transcriptional upregulation of ALOX15. In a recent study (Han et al., 2014) a role of 

histone H3 methylation was suggested. Following IL4 stimulation demethylation of H3 was 

observed and this reaction was catalyzed by the H3K27me2/3-specific demethylase UTX. In 

fact, siRNA induced expression silencing of UTX attenuated IL4-induced ALOX15 
expression. These data indicate that epigenetic processes are involved in IL4-induced 

expression regulation of the ALOX15 gene.
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ALOX15 expression is silenced on transcriptional levels in cancer cells and can be 

reactivated by histone deacetylase inhibitors (Zuo et al., 2009). Although the molecular basis 

for transcriptional repression is not entirely clear here again histone modification has been 

implicated (Zuo et al., 2008). More detailed studies on the underlying mechanism suggested 

that the nucleosome remodeling and histone deacetylase repression complex (NuRD) may 

play a critical role. In cancer cells NuRD is recruited to the ALOX15 promoter and 

expression silencing of NuRD components activated ALOX15 expression. Thus, ALOX15 
expression can be silenced on epigenetic levels and histone deacetylases can activate 

transcription of the ALOX15 gene by interfering with NuRD recruitment (Zuo et al., 2009).

The tissue specific expression of the mouse ALOX15 ortholog has not been well 

characterized. The major cellular sources of this enzyme are residential mouse peritoneal 

macrophages. Interestingly, thioglycollate elicitation in vivo decreased the share of alox15 

positive cells to about 10% (Kuhn and O’Donnell, 2006). On the other hand, murine 

peripheral monocytes, alveolar macrophages and bone marrow derived macrophages express 

alox15 only at low levels (Kuhn and O’Donnell, 2006). These data suggest that alox15 might 

selectively be induced by mechanisms specific for the peritoneal cavity. On the other hand, 

in human peritoneal macrophages, which were prepared from human ascitis puncture fluid, 

we did not obtain any evidence for dominant ALOX15 expression (Kuhn, unpublished data). 

In humans (Nadel et al., 1991) and cattle (De Marzo et al., 1992) ALOX15 is high level 

expressed in bronchoepithelial cells but in mice alox15 expression in the airway epithelium 

is much lower. Thus, there are clearly species-specific differences in the tissue-specific 

expression patterns of ALOX15 orthologs but the mechanistic details for the differences 

remain elusive.

4.4. ALOX15 mRNA

In 1987 an initial report partly characterizing the cDNA of rabbit ALOX15 was published 

(Thiele et al., 1987) and its complete primary structure was released in 1989 (Fleming et al., 

1989). The sequence comprises some 3600 bases and involves an open reading frame, which 

encodes for 663 amino acids. Like the human ALOX5 cDNA (Matsumoto et al., 1988) the 

human and rabbit ALOX15 messengers contain a rather short (28 bases) 5’-untranslated 

region (5’-UTR). In contrast, the 3’-UTR is much longer (almost 1600 bases for the rabbit 

enzyme) and involves a cytidine-rich repetitive motif (ten consecutive copies with the 

consensus sequence C4PuC3TCTTC4AAG) localized in close proximity to the stop codon. 

This sequence motif was named differentiation control element (DICE) since it has been 

implicated in maturation-dependent expression regulation of the enzyme (Reimann et al., 

2002; Messias et al., 2006).

The human ALOX15 mRNA (Table 2) comprises some 2700 bases and thus, is considerably 

shorter than the rabbit messenger. The major reason for this is the relatively short (704 

bases) 3’-UTR, which only contains a truncated version of the DICE sequence. The open 

reading frame of human ALOX15 mRNA encodes for 662 amino acids. The difference in 

the amino acid sequence between rabbit and human ALOX15 is due to an insertion of a Glu 

residue in the rabbit sequence, which is localized in the unstructured loop region 

interconnecting the two domains of the enzyme (see 5.2.). As for the rabbit ortholog the 5’-

Ivanov et al. Page 18

Gene. Author manuscript; available in PMC 2019 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UTR is rather short (15 bases). For the human enzyme an alternative transcript has been 

suggested (Table 2), which encodes for a N-terminally elongated variant of the protein. On 

the genomic level the coding information for this N-terminal extra peptide is localized in the 

short 5’-UTR of the normal transcript and in an additional exon (exon 0) localized some 540 

base pairs upstream from the original CAP-site. The biological relevance of this alternative 

transcript and of the corresponding protein has not been explored.

The murine alox15 messengers (mouse, rat) are very similar to each other and resemble the 

human ALOX15 mRNA in size and composition. The 3’-UTR is even smaller than that of 

the human messenger and the DICE element is structurally not conserved. The degree of 

amino acid identity to the human ALOX15 is only 75% and some of the observed amino 

acid differences are responsible for the different reaction specificity of the murine enzymes.

4.5. Translational regulation of ALOX15 expression

ALOX15 mRNA is present in young rabbit reticulocytes but no functional enzyme can be 

detected in these cells (Thiele et al., 1982). As mechanistic basis for this unusual observation 

regulatory proteins have been suggested, which bind to the DICE sequence localized in the 

3’-UTR of the ALOX15 mRNA. In vitro translation assays indicated that protein binding of 

regulatory proteins to DICE prevents translation of the mRNA (Ostareck-Lederer et al., 

1994) and the regulatory proteins have been identified as hnRNP K and hnRNP E1 

(Ostareck et al., 1997). Transfection of the two proteins into HeLa cells silenced the 

translation of reporter mRNAs carrying the repetitive element of the rabbit ALOX15 mRNA 

in their 3’-untranslated region (Ostareck et al., 1997). Silenced LOX mRNA specifically co-

immunoprecipitated with hnRNP K and addition of recombinant hnRNP K and/or hnRNP 

E1 causes inhibition of 80S ribosome assembly on the ALOX15 mRNA. These data suggest 

a specific cytoplasmic function for hnRNPs as translational suppressor proteins in early 

rabbit reticulocyte development. In later stages of red cell maturation these regulatory 

proteins may then be degraded proteolytically and functional ALOX15 is expressed. Similar 

translational control mechanisms have recently been described for lipopolysaccharide 

induced toll-like receptor 4 signaling (Liepelt et al., 2014). For a long time it remained 

unclear whether similar translational regulation may also occur in human systems since the 

DICE element is only present as 4-fold repetitive version in the 3’-UTR of human ALOX15 

mRNA. However, more recent mechanistic studies confirmed translational regulation of 

human ALOX15 mRNA in the erythroid cell line K562 (Naarmann et al., 2008; Naarmann 

et al., 2010), which involves the DEAD-box RNA helicase 6 (DDX6). This RNA helicase 

specifically interacts with hnRNP K/E1 in a DICE-dependent manner and was co-localized 

with ALOX15 mRNA to P-body-like RNP granules. These data suggest that in premature 

human erythroid cells translational silencing of ALOX15 mRNA is maintained by DDX6 

mediated storage in ribonuclear protein granules. Similar translational control mechanisms 

may be assumed for IL4-treated human umbilical vein endothelial cells (HUVECs). In vitro 

cultured HUVECs do not express ALOX15. However, after 3 days of IL4 exposure ALOX15 

mRNA was detected (RT-PCR) but no functional ALOX15 protein could be found (Lee et 

al., 2001).
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Multiple nucleotide alignments of the 3’-UTR of rabbit, mouse and rat ALOX15 suggested 

absence of the DICE element in the murine messengers and this opens the question whether 

translational expression regulation of murine alox15 orthologs follows similar maturation 

dependent kinetics as shown for rabbit and human orthologs. More recent binding studies 

exploring the minimal consensus sequence required for hnRNP K/E binding to RNA 

indicated that the complete DICE sequence is not needed for efficient binding (Moritz et al., 

2014). Instead, 3–6 repetitive CCCC or UCCC elements appear to function as minimal 

binding sequence with binding constants in the nM range. When we inspected the 3’-UTRs 

of mouse and rat alox15 mRNA we confirmed the existence of several CCCC and UCCC 

repeats in the two messengers (Fig. 6) but it remains to be explored whether these repetitive 

sequences are of functional relevance.

5. Structural biology of ALOX15 and comparison with other LOX isoforms

5.1. Protein-chemical properties of ALOX15

5.1.1. Amino acid composition, molecular weight and isoelectric point—
Human ALOX15 consist of a single polypeptide chain (662 amino acids) and has a 

molecular weight of ~75 kDa. The enzyme contains 11 cysteine residues but no disulfide 

bridge. The primary structure of the human enzyme shares a high degree (75–85%) of 

sequence identity with the corresponding orthologs of other mammals, which includes the 

archaic human subspecies H. neandertalensis and H.denisovan (Chaitidis et al., 2013; Adel 

et al., 2015). For native and recombinant rabbit ALOX15 an isoelectric point (pI) of 5.50 

(Rapoport et al., 1979) was determined but the human ortholog has an experimental pI of 

5.85 (Kühn et al., 1993).

5.1.2. Iron content, iron ligand sphere and functional role of non-heme-iron—
As fatty acid dioxygenases ALOX15 orthologs contain one mole non-heme iron per mole 

enzyme. During the catalytic cycle the iron shuttles between its ferric and ferrous form. The 

iron ligand sphere consists of 1st- and 2nd order ligands. In rabbit ALOX15 four histidines 

(His361, His366, His541, His545), the C-terminal Ile and a water molecule (alternatively a 

hydroxyl ion) constitute the primary iron ligands (Fig. 7A) and mutagenesis studies 

suggested their functionality. Extended X-ray absorption fine structure spectroscopy 

suggested a distorted octahedral iron ligand sphere for rabbit ALOX15 (Kuban et al., 1998), 

which was consistent with the crystal structure (Gillmor et al., 1997; Choi et al., 2008). 

According to these data His361 and the C-terminal Ile663 determine octahedron’s 

longitudinal axis, whereas His366, His541, His545 and a water molecule (hydroxyl ion) may 

constitute the edges of the octahedron’s ground square. The second order iron ligands, 

particularly Glu357 and Gln548 hydrogen-bridge the first order ligands. Gln548Leu 

exchange, which disrupts the hydrogen bond network, induced a loss in catalytic activity 

suggesting that this mutation might alter the structure of the iron cluster (Ivanov et al., 

2004).

When LOXs are isolated from native and/or recombinant sources the iron is present as 

ferrous ion and in this configuration the enzyme is catalytically inactive. To initiate fatty 

acid oxygenation the enzyme must be activated to a ferric form (probably a Fe3+-OH−-
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complex), which is capable of catalyzing hydrogen abstraction from a bisallylic methylene 

group of the fatty acid substrate. During this reaction the hydroxyl anion abstracts a 

hydrogen atom from the fatty acid. However, the electron is not tightly bound at the proton 

but tunnels to the ferric iron in a concerted proton tunneling-electron tunneling process 

(Lehnert and Solomon, 2003).

5.1.3. Lack of post-translational modification and proteolysis resistance—
When rabbit ALOX15 was first purified from immature red blood cells it was suggested that 

the enzyme contains 5% of its molecular weight as carbohydrates (Rapoport et al., 1979), 

but this conclusion could not be confirmed in later experiments. The recombinant enzyme 

expressed in E. coli is fully active and these data suggest that glycosylation may not be 

required for its catalytic activity. Although the primary structure contains a number of 

potential phosphorylation sites there is no evidence that protein phosphorylation/

dephosphorylation constitutes a regulatory element of cellular ALOX15 activity. ALOX15 is 

capable of binding to biomembranes, but there is no lipid anchor attached to the protein. 

There is no experimental evidence for sizeable N-myristoylation, S-palmitoylation, 

farnesylation or geranylation of the enzyme.

Purified rabbit ALOX15 is surprisingly stable when digested with proteases in vitro. Even 

long-term incubations (up to two hours) of purified rabbit ALOX15 with 0.5% trypsin did 

only lead to minor impairment of the catalytic activity with absolute conservation of the 

product specificity (Wiesner and Kuhn, unpublished data). On the other hand, SDS-PAGE of 

the cleavage mixture indicated almost complete disappearance of the native enzyme and the 

formation of a large number of proteolytic cleavage peptides indicating a high degree of 

proteolysis. These data suggest that the enzyme rapidly undergoes proteolysis but that the 

3D-structure is sufficiently stabilized by non-covalent interactions to allow specific fatty 

acid oxygenation.

5.2. Crystal structure of ALOX15

5.2.1. Overall shape and global structure of rabbit ALOX15—Crystallization of 

the rabbit ALOX15 has already been reported in 1990 (Sloane et al., 1990), but its 3D-

structure was only solved 7 years later as enzyme inhibitor complex (Gillmor et al., 1997). 

Although an overall resolution of 2.4 Å was reached important structural elements have not 

been specified in the original electron density map. More recent re-evaluation of the original 

X-ray coordinates suggested a mixture of two structurally distinct conformers: i) A ligand-

free conformer (conformer A), in which the central cavity of the enzyme harboring the non-

heme iron was empty. ii) A ligand-bound conformer (conformer B), in which the central 

cavity of the enzyme was occupied by the exogenous inhibitor (Choi et al., 2008). 

Monomeric rabbit ALOX15 has a cylindrical shape (height of 10 nm) with an elliptic ground 

square (longer diameter 6.1 nm, shorter one of 4.5 nm).

5.2.2. N-terminal β -barrel domain—The single polypeptide chain of rabbit ALOX15 

folds into a two-domain structure: a small N-terminal β-barrel domain and a larger mostly 

helical catalytic domain. The small N-terminal domain comprises 110 amino acids and is 

composed of 8 β-sheets. Its size and structure are similar to the C-terminal β-barrel domains 
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of mammalian lipases (Winkler et al., 1990), which have been implicated in membrane 

binding of these enzymes (May et al., 2000). Gene technical deletion of the β-barrel domain 

significantly impaired but did not abolish the membrane binding capacity of the recombinant 

enzyme (Walther et al., 2002). More detailed site-directed mutagenesis suggested that 

surface-exposed hydrophobic amino acids in both domains are involved in membrane 

binding (Walther et al., 2004; Walther et al., 2011). The N-terminal ß-barrel domain of 

ALOX15 has not only been implicated in membrane binding but may also constitute a 

regulator of the catalytic activity. Gene technical truncation of this structural subunit of the 

rabbit ALOX15, human ALOX15 and other relevant ortologs resulted in reduction of the 

catalytic efficiency of arachidonic acid oxygenation and more rapid suicidal inactivation of 

the mutants. These data suggested a potential role of the N-terminal β-barrel domain in the 

regulation of catalytic turnover (Romanov et al., 2006; Walther et al., 2011). The two 

structural subunits of ALOX15 are covalently interconnected by a flexible oligopeptide, 

which might allow interdomain movement.

5.2.3. C-terminal catalytic domain—The C-terminal catalytic domain of ALOX15 

(residues 114–663) consists of 21 helices, which are interrupted by a small β-sheet sub-

domain (Gillmor et al., 1997). The center of the C-terminal domain involves two long 

helices, which carry four of the five protein iron ligands. The putative substrate-binding 

pocket is a boot-shaped cavity, which is accessible from the protein surface. Arg403 lines 

the entrance into the substrate-binding pocket and the side chains of Phe353, Ile418, and 

Ile593 define the bottom of the active site. The walls of the substrate-binding cavity are lined 

by 23 predominantly hydrophobic amino acids from six different helices (α2, α7, α9, α10, 

α16, and α18) and by the loop connecting the helices α9 and α10. In the ligand-free 

conformer (conformer A), the side chain of Leu597, which is localized at the C-terminus of 

helix α18 protrudes into the substrate-binding cavity limiting its depth and volume. 

According to the X-ray data (Choi et al., 2008) ligand binding at the active site induces two 

major structural alterations: i) The external helix α2 is dislocated (Fig. 7B). ii) Helix α18 

including Leu597 retreats from the cavity enlarging the volume of the substrate-binding 

pocket. Unfortunately, for rabbit and human ALOX15 the functional importance of Leu597 

has not been studied in detail. Combined quantum mechanics/molecular mechanics 

calculations as well as molecular dynamics simulations for the Leu597Ala mutant suggested 

the possibility of an alternative binding mode of the substrate (arachidonic acid), which was 

associated with an inversion of the stereochemistry of 15-lipoxygenation from S to R 

(Suardiaz et al., 2014b), However, preliminary site-directed mutagenesis studies did not 

confirm this conclusion (Ivanov, unpublished data). In fact, in these experiments the major 

lipoxygenation product of arachidonic acid was 15S-H(p)ETE.

5.2.4. Intraenzyme oxygen movement—Dioxygen is a small apolar molecule, which 

freely penetrates biomembranes. However, its water solubility of rather low and thus, 

complex living organisms require special oxygen carrier proteins for effective oxygen 

transport. For a long time it was believed that because of its chemical properties (small size, 

hydrophobic character) oxygen is more or less uniformly distributed in proteins (Calhoun et 

al., 1983). However, more recent studies suggested asymmetric oxygen distribution inside a 

number of oxygen metabolizing enzymes (Scott and Gibson, 1997; Chu et al., 2000; 
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Ostermann et al., 2000) including soybean LOX1 (Minor et al., 1996; Knapp et al., 2001; 

Knapp and Klinman, 2003) and the existence of preformed oxygen diffusion channels. To 

identify potential routes for oxygen diffusion in rabbit ALOX15 an experimental strategy 

involving structural modeling, molecular dynamics simulations, site-directed mutagenesis 

and kinetic measurements were applied (Saam et al., 2007). For the substrate free enzyme a 

high oxygen affinity area (global energetic minimum of the probability of oxygen 

occupancy) was identified and this region was localized opposite to the non-heme iron. 

Interestingly, this area was localized in close proximity to carbon atom 15 of arachidonic 

acid in a three-dimensional model of the enzyme-substrate complex. The energetic 

computations revealed that the probability of oxygen occupancy in this high oxygen affinity 

area is 7-fold higher than in the surrounding of carbon 11 of the arachidonic acid backbone, 

which is consistent with preferential arachidonic acid 15-lipoxygenation. Three major 

channels interconnecting the protein surface with the high oxygen affinity area have been 

suggested for the substrate-free protein. The first channel starts at the bottom of the 

substrate-binding pocket and is completely closed in the enzyme–substrate complex. The 

second channel follows the substrate-binding pocket and is also blocked upon substrate 

binding. The third channel interconnects the opposite side of the protein surface with the 

high oxygen affinity area and remains open after substrate binding. To provide experimental 

evidence for the functionality of this potential oxygen access channel, Leu367, which 

appears to be critical for oxygen conductivity of this path, was mutated to a more space 

filling Phe. For the Leu367Phe mutant a 10-fold increased Michaelis constant for oxygen 

and 20-fold reduction in the catalytic efficiency (kcat/KMO2) of the enzyme was observed 

but there was no alteration in the reaction specificity (Saam et al., 2007). These data suggest 

that oxygen penetration from the protein periphery into the high oxygen affinity area may be 

impaired by Leu367Phe exchange but that the mutant enzyme completely controlled the 

stereochemistry of the reaction. The steric effects of Leu367Phe exchange together with a 

reorientation of the hydrogen-bonding network of associated water molecules have been 

suggested as molecular basis for impaired oxygen conductivity of this channel (Saam et al., 

2007). Although oxygen access channels have been suggested for other LOX-isoforms 

(Knapp et al., 2001; Newcomer and Brash, 2015) more work in needed to precisely define 

them.

5.3. Structural flexibility of rabbit ALOX15

X-ray crystallography provides valuable information on the overall structure of 

biomacromolecules but in crystals the motional flexibility is limited. On the other hand, in 

aqueous solutions the macromolecules are more flexible and this allows structural 

rearrangement in response to alterations of the external milieu (temperature, pH, protein 

concentration) and/or in response to presence or absence of effector molecules (substrates, 

inhibitors, activators). A number of spectroscopic studies, such as small angle X-ray 

scattering (Hammel et al., 2004; Shang et al., 2011), dynamic fluorescence studies and 

fluorescence resonance energy transfer measurements (Mei et al., 2008; Di Venere et al., 

2013), as well as various computational methods, such as translation, libration and screw 

rotation motion detection (Shang et al., 2011), molecular dynamics simulations and quantum 

mechanics/molecular mechanics calculations (Suardiaz et al., 2014b) have been applied to 

explore the motional flexibility ALOX15. Taken together, the results suggest a high degree 
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of structural dynamics for rabbit ALOX15 in aqueous solutions. Three elements, which 

contribute to this structural flexibility (rearrangement upon lgand binding, interdomain 

movement, protein dimerization) are briefly discussed below.

5.3.1. Structural rearrangements upon substrate/ligand binding—Ligand 

binding at the active site appears to lead to structural rearrangement of the enzyme. 

Comparison of the crystal structures of conformer A (ligand free ALOX15) and conformer B 

(inhibitor RS7 bound at the active site) of rabbit ALOX15 (Choi et al., 2008) suggested that 

inhibitor binding induces conformational alterations. Helices α2- and α18- are particularly 

affected. The α18-helix contains Leu597, the side chain of which has been suggested to 

control the shape and the size of the cavity (Gillmor et al., 1997). In the inhibitor-bound 

form the side chain is displaced providing space for the ligand. Substrate docking studies 

and molecular dynamics simulations suggested that displacement of α18-helix is required 

for proper substrate binding (Toledo et al., 2011). According to these docking studies 

linoleic acid and arachidonic acid share a similar overall alignment at the active site, but the 

degree of motional flexibility of the methyl tail is higher for linoleic acid. For both fatty 

acids molecular dynamics simulations suggested a correlation between motional flexibility 

of helix α18 and substrate fatty acid binding (Toledo et al., 2010) but experimental 

confirmation of this hypothesis is pending.

5.3.2. Interdomain movement—The two domains of rabbit ALOX15 are covalently 

interconnected by a flexible linker peptide, which does not fold into a stable secondary 

structure. In addition to this covalent linkage the two domains contact each other via a 1600 

Å2 interdomain contact plane and the majority of the amino acids present on both sites of the 

contact plane carry hydrophobic side chains. Initial small angle X-ray scattering (SAXS) 

measurements on aqueous solutions of wild-type rabbit ALOX15 and its N-terminal 

truncation mutant, which lacks the N-terminal ß-barrel domain, suggested a high degree of 

interdomain movement (Hammel et al., 2004). In fact, superposition of the crystal structure 

with the low-resolution SAXS model showed almost perfect alignment of the catalytic 

domain but revealed a mismatch in the region of the N-terminal β-barrel domain. Such 

mismatch was not observed for the N-terminal ß-barrel truncation mutant. Since SAXS data 

may be interpreted in different ways (Putnam et al., 2007) and since no interdomain 

movement was observed for other LOX isoforms (Dainese et al., 2005) the initial SAXS 

measurements on rabbit ALOX15 were repeated under variable experimental conditions and 

the following results were obtained (Shang et al., 2011): i) At pH 6.8 and in the absence of 

salt interdomain movement was largely repressed and the low resolution SAXS structure did 

match the crystal structure of the ligand-free conformer. ii) At pH 8.0 and in the presence of 

salt (200 mM NaCl), the N-terminal domain appears to swings away from the catalytic 

domain resulting in significant expansion of the molecule. More recent molecular dynamics 

simulation (Moin et al., 2011) and site directed mutagenesis studies at the interdomain 

interface (Ivanov et al., 2012) confirmed the principal possibility of interdomain motion.

5.3.3. Dimerization—In the crystal structure of the rabbit ALOX15–inhibitor complex 

(PDB 2P0M entry) the enzyme was present as protein dimer, in which the hydrophobic 

Leu179, Leu183, Leu188, and Leu192 form a cluster, which resembles a leucine-zipper like 
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motif (Alber, 1992). In addition, Trp181 of the α2-helix, which has been previously 

identified as a key membrane-binding determinant of the C-terminal domain (Walther et al., 

2002) and His585 of helix α18 contribute to the adhesive forces between two monomers 

(Fig. 7C). Modelling (Shang et al., 2011) of the monomer-monomer interface revealed that 

association of conformer A (unliganded) with conformer B (liganded) has a solvation free 

energy of −25 kcal/mol and hence, is thermodynamically favored over other monomer 

combinations (conformer A + conformer A, conformer B + conformer B).

To explore whether ALOX15 dimers may also occur in aqueous solutions SAXS 

measurements were carried out under different experimental conditions. Although at low 

protein concentrations (< 1mg/ml), at low ionic strength and low pH (6.8) ALOX15 is 

mainly present as hydrated monomer, SAXS experiments suggested a monomer–dimer 

equilibrium (Fig. 8). At higher protein concentrations (>1 mg/ml), in the presence of salt 

(200 mM NaCl) and at higher pH (8.0) the monomer-dimer equilibrium was strongly shifted 

toward ALOX15 dimers (Shang et al., 2011). In addition, the impact of an active site ligand 

(13S-HODE) on the monomer-dimer equilibrium was tested (Fig. 8). When we compared 

the experimental SAXS patterns obtained for ligand-free and ligand-containing rabbit 

ALOX15 with theoretical patterns calculated from the crystal structures, we observed 

significant discrepancies (Ivanov et al., 2012), which allowed the following conclusions: (i) 

Ligand-free rabbit ALOX15 is present in aqueous solutions predominantly (85%) as protein 

monomers. ii) Addition of 13S-HODE shifted the monomer-dimer equilibrium strongly 

towards protein dimers. In fact, in the presence of 13S-HODE 95% of the enzyme was 

present as dimers. (iii) In the refined dimer model, the N-terminal domain appears to swing 

away from catalytic subunit. Thus, interdomain movement might be considered a 

prerequisite for enzyme dimerization. (iv) In contrast to wild-type ALOX15 the presence of 

13S-HODE did hardly induce dimerization for the Trp181Glu+His585Glu double mutant. 

With this enzyme variant oligomer formation was observed (Fig. 8). These data suggest the 

importance of Trp181 and His585 for intermonomer interaction.

6. Biological role of ALOX15

6.1. Physiological roles of ALOX15

6.1.1. Principal mechanisms for exhibiting bioactivity—The classical concept of 

the arachidonic acid cascade suggests that eicosanoid synthesizing enzymes such as ALOX5 

and COX-isoforms exhibit their biological functions via the formation of bioactive signaling 

molecules (prostaglandins, leukotrienes, lipoxins etc.). This may also be the case for 

ALOX15 since a number of biological activities have been reported for products of the 

ALOX15 pathway (Kuhn, 1996; Powell and Rokach, 2015). However, there are at least two 

additional scenarios, by which ALOX15 orthologs may exhibit their bioactivities (Fig. 9A): 

i) Structural and functional modification of complex lipid-protein-assemblies such as 

biomembranes and lipoproteins. Since ALOX15 orthologs are capable of oxidizing 

polyenoic fatty acids containing ester lipids even if they are incorporated in biomembranes 

and lipoproteins (see 3.2.3.) the enzymes have been implicated in the process of 

restructuring cellular organelles and in the metabolism of lipoproteins. ii) As intracellular 

lipid peroxidizing enzyme ALOX15 is involved as pro-oxidant in the regulation of the 
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cellular redox equilibrium. Since the cellular redox state strongly impacts the activity of 

redox dependent transcription factors catalytic activity of ALOX15 orthologs must be 

considered as regulator of cellular gene expression and thus, their catalytic activity may alter 

the cellular phenotype. In fact, transfection-induced overexpression of ALOX15 in U937 

cells profoundly alters the gene expression pattern of these cells (data have been deposited in 

the NCBI GEO database, accession number GSE8173). More detailed information on the 

biological relevance of ALOX15 orthologs is provided in Fig. 9B and each of these topics is 

briefly discussed below.

6.1.2. Red cell maturation—Normal erythrocytes do not contain sizable amounts of 

ALOX15. However, when erythropoiesis is challenged (Rapoport and Schewe, 1986) by 

repeated bleeding or by forced hemolysis (phenylhydrazine injection) immature red blood 

cells (reticulocytes) express large amounts of ALOX15. In fact, rabbit stress reticulocytes 

are the richest natural source of ALOX15 and model calculations suggested that up to 4 mg 

of ALOX15 protein is present in 1 ml of packed rabbit reticulocytes (Rapoport et al., 1979). 

Interestingly, the enzyme is almost undetectable in young stress reticulocytes but during in 

vitro maturation of these cells expression of the enzyme parallels the maturational decline of 

cellular respiration (Hohne et al., 1983). These anti-parallel biological dynamics (increase in 

ALOX15 expression vs. decrease in cellular respiration) and the observation that isolated 

ALOX15 in vitro induces structural decomposition of rat liver mitochondria (Schewe et al., 

1977) implicated ALOX15 in maturational breakdown of mitochondria during late 

erythopoiesis. Consistent with this hypothesis, oxidation products formed by ALOX15 were 

found in reticulocyte membranes (Kuhn and Brash, 1990). In vitro studies with the isolated 

rabbit ALOX15 showed that the enzyme does not just bind to mitochondrial and other 

organelle membranes and oxidizes the membrane lipids (Kuhn et al., 1990b), but also 

directly permeabilizes them, forming pores in the membrane (van Leyen et al., 1998). 

Freshly isolated reticulocytes matured in vitro degrade their mitochondria more slowly in the 

presence of a LOX inhibitor (Rapoport and Schewe, 1986; Grullich et al., 2001; Blanc et al., 

2007). However, functional inactivation of the alox15 gene in mice did not lead to major 

functional defects in erythropoiesis (Sun and Funk, 1996). This negative outcome of the 

expression silencing strategy may be explained by the fact that in addition to ALOX15-

dependent intracellular degradation (Rapoport and Schewe, 1986), there are at least two 

alternative mechanisms for mitochondrial degradation in erythroid cells (Gronowicz et al., 

1984): i) engulfment and digestion within autophagic vacuoles (Kent et al., 1966), and ii) 

exocytosis of mitochondria as exosomes (Griffiths et al., 2012). More detailed studies on 

erythropoiesis under both stressed and non-stressed conditions are needed to explore the 

relative contribution of each of the mitochondrial degradation pathways.

6.1.3. Brain development and synaptic signaling—ALOX15 orthologs are 

expressed in both rat (Watanabe et al., 1993) and canine brain (Nishiyama et al., 1992) but 

the expression levels are rather low. 12-H(p)ETE, the major arachidonic acid oxygenation 

product of the murine alox15 orthologs, has been implicated as signaling mediator in axon 

guidance suggesting a direct function of the enzyme in brain development (de La Houssaye 

et al., 1999; Ross et al., 2000; Mikule et al., 2002; Nishiyama et al., 2003). 12-H(p)ETE 
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functions as second messenger (Piomelli, 1991), modulating the signals of other stimuli, 

such as the axon guidance molecule semaphorin 3A (Pekcec et al., 2013).

In addition to these effects in brain development ALOX15 has been implicated in synaptic 

signaling modulating long-term depression (Normandin et al., 1996; Feinmark et al., 2003; 

DeCostanzo et al., 2010) and long-term potentiation (Piomelli et al., 1987a; Piomelli et al., 

1987b), which are key elements of interneuronal communication. However, alox15 knockout 

mice do not show any behavioral defects (Sun and Funk, 1996), suggesting that either these 

effects can be bypassed, or the knockouts have found ways to compensate the alox15 defect.

6.1.4. Adipocyte differentiation—White adipocytes, the major cell type of adipose 

tissue, differentiate from mesenchymal stem cells and a complex network of regulatory 

mediators controls adipogenesis (Gustafson et al., 2015). Initial evidence for the 

involvement of LOX pathways in adipocyte differentiation originated from in vitro 

maturation experiments of primary rat preadipocytes (Shillabeer et al., 1998). In these in 

vitro maturation experiments inhibitor studies suggested that metabolites of both, the 

cyclooxygenase and lipoxygenase pathways, regulate preadipocyte differentiation. However, 

it remained unclear which of the different LOX-isoforms were involved and the mechanistic 

basis for LOX-involvement has not been explored (Shillabeer et al., 1998). 3T3-L1 cells are 

frequently employed as cellular model of adipocyte differentiation (Madsen et al., 2003) and 

the ALOX15 inhibitor baicalein inhibits adipocyte maturation of 3T3-L1 cells in vitro 

(Hallenborg et al., 2010). Although the mechanism of this effect has not been studied in 

detail peroxisome proliferation activating receptor gamma (PPARγ) has been implicated. 

PPARgamma plays an important role in this regulatory network of adipogenesis (Lefterova 

et al., 2014) and co-activators of this nuclear receptor play a major role in adipogenesis. 13-

HODE and 15-HETE, the major oxygenation products of ALOX15 catalyzed oxygenation of 

linoleic acid and arachidonic acid respectively, have been suggested as PPAR-gamma co-

activators (Huang et al., 1999; Shappell et al., 2001). PPAR gamma agonists prevented 

baicalein-induced inhibition of adipogenesis (Hallenborg et al., 2010) and IL4-dependent 

induction of ALOX15 expression upregulated the cellular activity of PPAR gamma (Huang 

et al., 1999). These findings suggested a physiological role of ALOX15 in the generation of 

endogenous PPAR-gamma ligands. Although the required co-activator concentrations are 

rather high and the specificity of this effect has not been studied in detail, these findings 

suggest a physiological role of ALOX15 in PPAR-gamma dependent adipocyte maturation. 

Moreover, 15-HETE induced angiogenesis in adipose tissue has been implicated in tissue 

growth (Soumya et al., 2013).

In addition to ALOX15 other LOX-isoforms, such as ALOXE3, ALOX12 and ALOX5 have 

been implicated in adipogenesis (Cole et al., 2013). For instance, forced expression of 

ALOXE3 or addition of ALOXE3 products (hepoxilins) stimulated adipogenesis and RNAi-

mediated expression knockdown prevented adipocyte differentiation (Hallenborg et al., 

2010). Although these data need to be confirmed for in vivo adipogenesis the results 

suggested that ALOXE3 might constitute an important player in this process and that 

specific ALOXE3 inhibitors might be useful to interfere with this process.
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6.1.5. Epididymal spermatogenesis and fertilization—Rat testes microsomes 

oxidize linoleate and arachidonate derivatives and the corresponding enzyme has been 

purified to apparent electrophoretic homogeneity (Shahin et al., 1978). More detailed 

analysis of the reaction products indicated the formation of a 2:1 mixture of 13- and 9-

HODE as well as 13-hydroxy-12-oxo-octadec-cis-9-enoic acid. This product mixture 

suggested the presence of LOX and a hydroperoxide isomerase in the microsomes 

(Grossman et al., 1979). Although the functional relevance of these products has not been 

explored they have been implicated in sperm development. Spermatogenesis proceeds 

according to a complex developmental program in which a diploid progenitor germ cell 

transforms into highly specialized spermatozoa (Keber et al., 2013). Mammalian 

spermatozoa complete their morphogenesis in the epididymis and a prominent hallmark of 

epididymal sperm maturation is the proximal-distal migration down the sperm flagellum of 

the cytoplasmic droplet. Since alox15 is present in the cytoplasmic droplet the enzyme has 

been implicated in spermatogenesis (Fischer et al., 2005; Moore et al., 2010). In boars 

ALOX15 has even been suggested as fertility marker (Lovercamp et al., 2007). Compared 

with wildtype mice spermatozoa of ALOX15 deficient animals retained the cytoplasmatic 

droplet in the epididymis suggesting defective sperm maturation. Aberrant epididymal 

sperm maturation might contribute to the reduced fertility and smaller litter size of alox15 
deficient mice (Moore et al., 2010). Except for ALOX15 a secretable phosphoplipase A2 

(Pla2g3) has been implicated in epididymal sperm maturation (Sato et al., 2010). Although 

testicular spermatogenesis in Pla2g3-deficent mice was normal, epididymal spermatozoa 

displayed hypomotility and their ability to fertilize intact oocytes was markedly impaired. 

Moreover, the gonads of Pla2g3−/− mice contained less alox15 metabolites when compared 

with wildtype controls suggesting a concerted action of Pla2g3 and alox15 during late sperm 

maturation (Sato et al., 2010).

In addition to epididymal sperm maturation alox15 has also been implicated in the 

degradation of paternal mitochondria after fertilization (Sutovsky et al., 2004). Maternal 

inheritance of mitochondrial DNA has long been considered a paradox in embryogenesis but 

recent data clearly document that paternal mitochondria enter oocytes during fertilization but 

are then targeted for degradation. In this degradation process the ubiquitin-proteasome 

system and alox15 have been implicated, but alox15 appears not to be essential (Sutovsky et 

al., 2004).

When a sperm approaches an oocyte during fertilization, the membrane surounding the 

acrosome (cap-like structure in the anterior half of the sperm’s head) fuses with the plasma 

membrane of the sperm. This membrane fusion exposes the content of the acrosome 

releasing a number of enzymes capable of breaking through the egg’s coating envelope 

(zona pelucida). The acrosome reaction initiates a number of restructuring events within the 

zona pelucida preventing the penetration of additional sperms. During in vitro fertilization 

the acrosome reaction can be induced by arachidonic acid and two different unspecific LOX-

inhibitors (NDGA, ETYA) partially prevented this reaction. In contrast, inhibitors of the 

COX pathway were ineffective. This data suggested the involvement of ALOX15 in the 

acrosome reaction and the formation of 15-HETE was consistent with this conclusion (Lax 

et al., 1990). However, later experiments did not confirm this hypothesis (Mack et al., 1992).
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6.1.6. Regulation of sexual hormone secretion and ovulation—Leydig cells are 

the main testosterone-producing cell in the male gonades and the luteinizing hormone (LH) 

formed in the pituitary gland constitutes the major endocrine stimulus of testosterone 

biosynthesis (Ezcurra and Humaidan, 2014). In vitro studies on testosterone biosyntheseis 

by isolated rat testis Leydig cells indicated that different LOX-inhibitors (NDGA, ETYA, 

caffeic acid, esculetin) inhibited LH-stimulated steroid synthesis in a dose-related manner 

suggesting the involvement of the LOX-pathway in testosterone production (Mele et al., 

1997). Although these results confirmed previous data obtained in related experimental 

setups (Cooke et al., 1984; Dix et al., 1984; Dix et al., 1985) the identity of the implicated 

LOX-isoforms and the underlying mechanism has not been explored. Similarly, LOX 

inhibitors prevent the release of LH and prolactin from the anterior pituitary gland 

suggesting a possible involvement of the lipoxygenase pathway (Conte et al., 1986; Kiesel et 

al., 1987) but here again, the chemical identity of the LOX-isoform has not been tested. 

However, prolactin release from pituitary cells was induced by 15-HETE suggesting the 

involvement of ALOX15 (Rabier et al., 1987; Rabier et al., 1988). In porcine anterior 

pituitary cells the 12-lipoxygenating porcine ALOX15 is expressed and imunohistochemical 

double staining suggested a co-localization of the enzyme with luteinizing hormone and 

follicle-stimulating hormone (Ikawa et al., 1996). When primary cultures of porcine anterior 

pituitary cells were incubated with 12-HpETE or 13-HpODE a significant increase in the 

release of these two hormones was observed. Interestingly, 12-HETE and 13-HODE were 

ineffective suggesting that the cellular redox state may be important for hormone release 

(Ikawa et al., 1996).

Eicosanoids have been implicated as regulators in ovulation and inhibition of their synthesis 

results in ovulatory failure. The ALOX15 product 15-HETE was significantly elevated prior 

to ovulation and systemic administration of the ALOX15 inhibitor NDGA suppressed this 

process (Downey et al., 1998). Synthesis of 15-HETE by cultured granulosa and theca 

interna cells was reduced by the presence of the ALOX15 inhibitor NDGA. These results 

suggest ALOX15 metabolites of arachidonic acid may be involved in ovulation.

6.1.7. Epithelial and endothelial barrier function—The permeability of the arterial 

endothelium is important for the pathogenesis of vascular diseases and ALOX15 has been 

implicated in its regulation (Kundumani-Sridharan et al., 2013). 15S-HETE, the major 

ALOX15 metabolite of arachidonic acid oxygenation, induced endothelial barrier 

permeability via Src and Pyk2-dependent tyrosine phosphorylation of zonula occludens 2 

proteins and their dissociation from the tight junction complexes. Ex vivo studies revealed 

that exposure of arteries from wildtype mice to arachidonic acid led to Src-Pyk2-dependent 

zonula occludens-2 tyrosine phosphorylation, tight junction disruption, and macrophage 

adhesion, whereas the arteries from alox15 knockout mice were protected from these effects. 

Moreover, high-fat diet induced arterial expression of alox15 led to tight junction disruption 

and macrophage adhesion but functional inactivation of the alox15 gene prevented these 

effects. These findings implicated alox15 in high-fat diet-induced endothelial tight junction 

disruption suggesting a role of the enzyme in arterial barrier function (Kundumani-Sridharan 

et al., 2013). More detailed mechanistic studies indicated that 15S-HETE, the major alox15 

oxygenation product of arachidonic acid, disrupts endothelial tight junctions by stimulating 
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tyrosine phosphorylation of zona occludens-2 proteins, which initiates dissociation from 

claudins 1/5 (Chattopadhyay et al., 2014). In addition, 15S-HETE enhances phosphorylation 

of zona occludens-1 proteins phosphorylation via PKCε-mediated MEK1-ERK½ activation, 

which also causes dissociation from occludin, disrupting vascular endothelial tight junctions 

(Chattopadhyay et al., 2014). Taken together, these data suggest that alox15 products induce 

phosphorylation of zonula occludens-1 and −2, which leads to impairment of arterial tight 

junctions formation disrupting the endothelial barrier function. As alternative mechanism for 

alox15 dependent induction of endothelial dysfunction phosphorylation of junction adhesion 

molecule A at Tyr164, Tyr218, and Tyr280 was suggested (Chattopadhyay et al., 2015). This 

phosphorylation, which involves activation of Src and Pyk2 protein kinases, as well as 

enhanced expression of xanthinoxidase, induces dissociation of the junction adhesion 

molecule A from occludin causing disruption of the tight junction (Chattopadhyay et al., 

2015). Similar observations were made for retinal endothelial cells (Othman et al., 2013). In 

this model alox15 metabolites induce endothelial cell barrier dysfunction via NADPH-

oxidase dependent mechanisms, which involve suppression of protein tyrosine phosphatase 

and activation of the VEGF-receptor 2 signaling pathway. Taken together, the involvement 

of three different oxidizing enzymes (ALOX15, xanthinoxidase, NADPH-oxidase) in 

vascular endothelial tight junction formation suggest the importance of the cellular redox 

state for the endothelial barrier function but the detailed mechanisms remain to be explored.

6.1.8. Autophagy—Autophagy is catabolic pathway responsible for the degradation of 

dysfunctional cellular components via lysosomal degradation (Glick et al., 2010; Zhang, 

2013; Lemasters, 2014). The breakdown of cellular components is locally destructive but 

promotes cellular survival under certain conditions. Autophagy allows simultaneous 

degradation and recycling of cellular components. During autophagy cytoplasmic 

constituents are isolated from the rest of the cell within a double-membraned vesicle 

(autophagosome), which subsequently fuses with a lysosome. There are different forms of 

autophagy such as macroautophagy, microautophagy and chaperone-mediated autophagy. In 

the context of disease, autophagy has been considered an adaptive response to stress 

promoting survival but may also promote cell death and morbidity. Recently, it was shown 

that peritoneal macrophages prepared from ALOX15 deficient mice contain defective 

mitochondria and numerous cytoplasmic vacuoles containing electron dense material 

(Morgan et al., 2015). These data suggest defects in the autophagic pathway or in membrane 

processing in these cells. If these data can be reproduced in other cells and tissues ALOX15 

may play a more general role in autophagy.

6.2. Pathological roles of ALOX15

6.2.1. Inflammation—Of the six human LOX-isoforms ALOX5 (Radmark et al., 2015) 

and ALOX15 (Kuhn and O’Donnell, 2006) have been implicated in the pathogenesis of 

inflammation. ALOX5 is involved in the biosynthesis of pro-inflammatory leukotrienes (Liu 

and Yokomizo, 2015) and ALOX5 inhibitors (Berger et al., 2007) and leukotriene receptor 

antagonists (Zhang et al., 2014) are currently available for prescription for treatment of 

bronchial asthma. For ALOX15 both, pro- and anti-inflammatory activities have been 

reported (Kuhn and O’Donnell, 2006; Kuhn et al., 2014) in various animal inflammation 

models but its role in different kinds of human inflammation remains to be explored.

Ivanov et al. Page 30

Gene. Author manuscript; available in PMC 2019 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6.2.1.1. Pro-inflammatory properties of ALOX15: The major arachidonic acid 

oxygenation products of ALOX15 (15-HETE, 12-HETE, 13-HODE) exhibit pro-

inflammatory activities in various inflammation models (Kuhn, 1996). For instance, in rabbit 

skin 15-HpETE was reported to induce inflammation (Higgs et al., 1981). The 

pathophysiological responses to nasal antigen challenge were also related to an increased 

release of 15-HETE (Ramis et al., 1991). For isolated human polymorphonuclear leukocytes 

the ALOX15 product 13-HODE was shown to exhibit chemotactic activity at concentrations 

as low as 10−10 M (Henricks et al., 1991). As compared with leukotriene B4, 13-HODE was 

about half as potent. 5-Oxo-15-HETE, a more complex ALOX15 metabolite, also exhibited 

chemotactic activity (Schwenk et al., 1992).

Incubation of human eosinophils, which express ALOX15 at high levels, with arachidonic 

acid leads to the formation of conjugated trienes carrying a glutathione residue (Feltenmark 

et al., 2008). Because of its cellular origin this metabolite, which constitutes the 14,15-

equivalent of leukotriene C4, was named eoxin C4. In analogy to leukotriene C4 eoxin C4 is 

further metabolized to 14,15-eoxin D4 and eoxin E4 by consecutive cleavage of the 

glutathionyl moiety. In vitro, eoxins induce increased permeability of endothelial cell 

monolayers suggesting pro-inflammatory activity. In this cellular inflammation model 

eoxins were 100 times more potent than histamine and almost equally potent as cysteinyl 

leukotrienes (Feltenmark et al., 2008). These ALOX15 metabolites have later been 

implicated as pro-inflammatory mediators in airway inflammation and Hodgkin lymphoma 

(Claesson, 2009; Sachs-Olsen et al., 2010).

The pro-inflammatory effects of ALOX15 may not be restricted to the formation of 

mediators increasing the inflammatory properties of immune competent cells. The effects of 

ALOX15 metabolites on the arterial barrier function (Kundumani-Sridharan et al., 2013; 

Othman et al., 2013; Chattopadhyay et al., 2015) are also of pro-inflammatory character and 

here alterations in the cellular redox state might be considered as mechanistic link (see 

6.1.7.). Moreover, disruption of the alox15 gene protects hyperlipidemic mice from 

nonalcoholic fatty liver disease (Martinez-Clemente et al., 2010). In this model alox15 
deficient mice developed a lower degree of hepatic steatosis and these alterations were 

paralleled by a decrease in hepatic inflammatory markers such as reduced macrophage 

infiltration, decreased levels of tumor necrosis factor α, monocyte chemoattractant protein-1 

and interleukin-6 and −18 expression (Martinez-Clemente et al., 2010). However, it remains 

unclear whether the primary ALOX15 products induce all these pro-inflammatory 

alterations.

6.2.1.2. Anti-inflammatory properties of ALOX15: Inflammatory resolution is an active 

process aimed at reestablishing normal tissue homeostasis (Freire and Van Dyke, 2013). It is 

initiated by alterations of the cellular composition in the inflamed tissue and by alterations in 

the pattern of inflammatory mediators. Formation of pro-inflammatory leukotrienes is 

downregulated whereas biosynthesis of anti-inflammatory mediators is switched on. These 

anti-inflammatory hormones include a number of ALOX15 products such as lipoxins 

(Sachs-Olsen et al., 2010), resolvins (Spite et al., 2014), protectins (Serhan and Petasis, 

2011) and maresins (Serhan et al., 2012). These mediators induce a number of basic anti-

inflammatory elementary processes such as reduction of leukocyte migration (Fierro et al., 
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2003), normalization of vascular permeability (Ereso et al., 2009), apoptosis of pro-

inflammatory neutrophils (El Kebir and Filep, 2013) and differentiation of anti-

inflammatory M2 macrophages capable of phagocytosing apoptotic neutrophils, bacterial 

remnants and necrotic debris (Ohira et al., 2010). Pro-resolving eicosanoids and docosanoids 

are multiple oxygenation products of arachidonic acid, eicosapentaenoic acid and 

docosahexaenoic acid and their biosynthesis involves ALOX5, ALOX12, ALOX15 as well 

as aspirin modified COX-isoforms (Sala et al., 2010). However, the anti-inflammatory 

properties of ALOX15 should not be limited to their involvement in the biosynthesis of 

lipoxins, resolvins, maresins and protectins. The primary products of linoleic and 

arachidonic acid oxygenation [13S-H(p)ODE, 15S-H(p)ETE] do also exhibit anti-

inflammatory activities in various inflammation models (Kuhn, 1996). Moreover, ALOX15 

products activate PPAR signaling (Altmann et al., 2007; Limor et al., 2008), which 

stimulates anti-inflammation via alternative mechanisms (Martin, 2010). Oxidized 

phospholipids, which may be formed by ALOX15 catalyzed oxygenation of membrane 

lipids (Kuhn et al., 1990b), are capable of preventing the binding of agonists to toll-like 

receptors and thus, prevent activation of the innate immune response (Oskolkova et al., 

2010).

Unilateral somatic gene transfer of an ALOX15 minigene in an experimental model of 

glomerulonephritis suppresses inflammation and preserved kidney function in the 

transfected kidney (Munger et al., 1999). Although the mechanism of this effect has not 

been explored in detail the data are consistent with an anti-inflammatory effect of ALOX15. 

Functional silencing of the ALOX15 induced uncontrolled inflammation and tissue 

damaging in two different experimental models of arthritis and these data are consistent with 

an anti-inflammatory and tissue-protective role of the enzyme (Kronke et al., 2009a). 

Although peritoneal macrophages of these animals produced significantly reduced levels of 

lipoxin A4 it remains unclear whether the formation of these pro-resolving mediators is the 

major reason for the anti-inflammatory effect. Alternatively, it was suggested that ALOX15 

may play an important role in development of osteoclasts but here again the molecular 

mechanisms are not well understood (Kronke et al., 2009b).

6.2.2. Cardio-vascular diseases

6.2.2.1. Blood pressure regulation: ALOX15 has been implicated in the regulation of 

vascular tone and thus, may play a role in blood pressure regulation and hypertension 

(Nasjletti, 1998; Chawengsub et al., 2009; Zhu and Ran, 2012). Arachidonic acid induces 

endothelium-dependent relaxation of rabbit aorta and this effect was blocked by the LOX 

inhibitor NDGA (Pfister and Campbell, 1992). Similar effects have been reported for bovine 

coronary arteries (Rosolowsky and Campbell, 1993) and the inducing metabolites have been 

identified as the ALOX15 products 11,14,15- and 11,12,15-trihydroxyeicosatrienoic acids 

(Pfister et al., 1998). Chronic hypoxia and hypercholesterolemia enhanced ALOX15 

mediated vasorelaxation in rabbit arteries (Aggarwal et al., 2008; Aggarwal et al., 2009). 

More direct evidence for the in vivo relevance of ALOX15 in blood pressure regulation was 

recently provided by experiments with alox15 knockout mice (Kriska et al., 2012). Although 

systolic blood pressures did not differ between these mice and wild-type controls alox15−/−-

mice exhibited higher resistance towards L-NAME- and high-salt-induced hypertension than 
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corresponding controls. The alox15 inhibitor nordihydroguaiaretic acid attenuated this 

resistance suggesting the involvement of lipid peroxidation. The molecular basis for this 

effect has not been explored and it remains unclear of whether or not it is related to the 

vasomotor properties of alox15 products. Interestingly, injection of wild-type peritoneal 

macrophages, which are a major source of alox15 in mice, into alox15 knockout animals 

abolished their resistance toward L-NAME-induced hypertension. Inversely, wildtype mice 

acquired resistance to L-NAME-induced hypertension after depletion of macrophages by 

clodronate injection (Kriska et al., 2012).

6.2.2.2. Atherogenesis: In the early 1990s the hypothesis of oxidative modification of low 

density lipoprotein (LDL) was introduced (Witztum and Steinberg, 1991; Chisolm and 

Steinberg, 2000) and the updated version of this theory was critically reviewed more 

recently (Steinberg, 2009). This hypothesis suggested that oxidized LDL exhibits strong pro-

atherogenic activities because it is rapidly taken up by macrophages via scavenger receptor 

mediated pathways. Since these pathways are not feedback-controlled excessive intercellular 

lipid deposition may occur and macrophages develop into lipid-laden foam cells. These cells 

then accumulate in the subendothelial space of the arteries to form fatty streaks which are 

considered early atherosclerotic lesions (Perrotta, 2013). ALOX15 is capable of oxidizing 

LDL (Belkner et al., 1998) and other lipoproteins (Pirillo et al., 2006). In atherosclerotic 

lesions of rabbits (Kuhn et al., 1994) and humans (Folcik et al., 1995; Kuhn et al., 1997) 

esterified 13S-HODE has been detected but the biosynthetic origin of this compound has not 

been clarified. Several studies employing alox15 knockout mice supported a pro-atherogenic 

role of alox15 (Cyrus et al., 1999; Cyrus et al., 2001; George et al., 2001; Huo et al., 2004; 

Zhao et al., 2005; Poeckel et al., 2009). On the other hand, overexpression of the enzyme in 

two rabbit and one mouse atherosclerosis models suggested an anti-atherogenic effect of the 

enzyme (Shen et al., 1996; Trebus et al., 2002; Merched et al., 2008). In the transgenic 

mouse model it was suggested that alox15 activity in the local milieu afforded 

atheroprotection via the formation of pro-resolving mediators (Merched et al., 2008) and this 

was later on suggested as more general paradigm (Hersberger, 2010). Taken together, the 

role of ALOX15 in atherosclerosis remains controversial (Kuhn et al., 2005a; Wittwer and 

Hersberger, 2007) and the contradicting data may be related to differences in the various 

animal atherosclerosis models and/or to the different dietary supplementation strategies 

employed. Systemic stem cell knockout of the alox15 gene may not necessarily lead to an 

inverse effect as macrophage specific overexpression of the enzyme.

In advanced human atherosclerotic lesions ALOX15 is only expressed at low levels 

(Spanbroek et al., 2003; Gertow et al., 2011). However, these data do not necessarily exclude 

involvement of the enzyme in atherogenesis because of the following reasons: i) If ALOX15 

is involved in maturation and differentiation of macrophages it might contribute to 

atherogenesis without being expressed in the lesion. ii) If the enzyme is involved in early 

stages of macrophage differentiation functionally different macrophages are generated and 

thus, lesional foam cell formation may be impacted. iii) If the enzyme is expressed in cells 

not present in the lesions it might contribute to systemic LDL oxidation, which is considered 

a risk factor for atherogenesis. iv) If ALOX15 is only involved in early stages of lesion 

formation (Kuhn et al., 1994; Kuhn et al., 1997) it may be absent in advanced lesions but 
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still might contribute to early stages of lesion development. In all these cases expression 

silencing and pharmacological intervention with the ALOX15 pathway may impact lesion 

formation without expression of ALOX15 in advanced lesions.

ALOX15 is not only capable of oxidizing LDL to an atherogenic species but it also 

oxygenates high-density lipoproteins (HDL). ALOX15 mediated oxidation of HDL3 impairs 

activation of endothelial nitric oxide synthase (Cutuli et al., 2014). Moreover, ALOX15 

oxidized HDL upregulates expression of the lectin-like oxidized low-density lipoprotein 

receptor 1 in human endothelial cells (Pirillo et al., 2012) and both effects may be 

considered pro-atherogenic. On the other hand, in vitro ALOX15-modified HDL3 failed to 

inhibit the TNF-alpha-induced inflammatory response in human endothelial cells (Pirillo et 

al., 2008). HDL is an anti-atherogenic lipoprotein since it is involved in reverse cholesterol 

transport. Forced ALOX15 expression in mouse macrophages (J774 cells) increases the 

degradation of macrophage ATP-binding cassette transporter G1, which has been implicated 

in reverse cholesterol, transport. These findings provide evidence that ALOX15 may 

contribute to atherogenesis by impairing the cholesterol efflux from lipid laden foamy 

macrophages (Nagelin et al., 2008). On the other hand, similar experiments with ALOX15 

overexpression in RAW macrophages induced increased cholesterol mobilization and 

augmented reverse cholesterol transport (Weibel et al., 2009). This anti-atherogenic effect 

was paralleled by an increased expression of ABC-transporters, which play an important 

role in reversed cholesterol transport. These data suggest that overexpression of human 

ALOX15 in RAW macrophages promotes reversed cholesterol transport, which is an anti-

atherogenic effect.

6.2.3. Carcinogenesis and metastasis—ALOX15 and ALOX15B have been 

implicated in many aspects of carcinogenesis, such as angiogenesis, inflammation and 

metastasis and this was shown for solid tumors and hematologic malignancies (Pidgeon et 

al., 2007; Klil-Drori and Ariel, 2013). However, the precise roles of the two enzymes have 

not been clarified since tumor-promoting and tumor suppressing activities have been 

reported (Klil-Drori and Ariel, 2013). Transgenic mice overexpressing ALOX15 in 

endothelial cells (Harats et al., 2005) under the regulation of the murine preproendothelin-1 

promoter were protected from tumor growth and metastasis in two different cancer models 

(mammary gland and Lewis lung carcinoma). This inhibition was concomitant with a higher 

number of apoptotic cells in the transgenic mice and with impaired neoangiogenesis in the 

tumor tissue (Harats et al., 2005). The anti-apoptotic enzyme glutathione peroxidase 4 

(GPx4) is an endogenous inhibitor of ALOX15 (Schnurr et al., 1996) and inactivation of 

GPx4 caused rapid cell death. In vitro, GPx4 deficient fibroblasts form tumor spheroids and 

subcutaneous implantation of these spheroids induced solid tumors in mice, which were 

characterized by an increase in microvessel density (Schneider et al., 2010). 

Pharmacological inhibition of alox15 successfully reversed tumor development and 

normalized the vessel architecture suggesting alox15 as regulator of tumor angiogenesis.

Transfection of HCT116 colon carcinoma cells with ALOX15 induced activation of the 

ERK protein kinase, which increased the rate of cell proliferation. These data suggest a pro-

carcinogenic activity of the enzyme (Yoshinaga et al., 2004). Treatment of these cells with 

NDGA (non-specific LOX inhibitor with antioxidant properties) appeared to block ERK 
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activation, which is consistent with the pro-carcinogenic activity of ALOX15 (Yoshinaga et 

al., 2004). However, since cell cycle regulation is redox sensitive (Chiu and Dawes, 2012) 

the observed effect of NDGA might not directly be related to ALOX15 inhibition. In other 

cellular models of colorectal carcinoma (HCT116, HT29) ALOX15 exhibited anti-

carcinogenic properties, which was related to inhibition of the anti-apoptotic effect of the 

inflammatory transcription factor nuclear factor kappa B (Cimen et al., 2011). Here again, 

the molecular basis for the observed anti-carcinogenic affect is not completely understood 

but overexpression of ALOX15 inhibited the degradation of the inhibitor of kappa B, 

impaired nuclear translocation of p65 and p50, decreased DNA binding in the nucleus and 

reduced the transcriptional activity of NF-κB (Cimen et al., 2009; Cimen et al., 2011).

Unresolved chronic inflammation is a key process in tumor progression (Janakiram and Rao, 

2014) and thus, pro-resolving lipid mediators (eicosanoids and related metabolites of other 

polyenoic fatty acids) such as lipoxins (Ryan and Godson, 2010), resolvins (Lee and Surh, 

2012) and maresins (Dalli et al., 2013) have been implicated in carcinogenesis (Janakiram et 

al., 2011). Resolving eicosanoids are generally believed to exhibit anti-tumor activities 

(Wendel and Heller, 2009). Chronic inflammation of colonic mucosa creates a pro-

carcinogenic milieu and patients suffering from ulcerative colitis exhibit defective lipoxin 

biosynthesis (Mangino et al., 2006). Thus, the lack of pro-resolving mediators may drive 

malignant transformation of normal epithelial cells during chronic inflammation. On the 

other hand, under certain conditions these mediators may also act in a pro-carcinogenic 

manner. For instance, depletion of regulatory T cells induced by cyclophosphamide 

treatment of patients with large established tumors caused significant tumor progression and 

this effect was suggested to be mediated by an increase in lipoxin A4 levels (Zhang et al., 

2010).

6.2.4. Metabolic disorders

6.2.4.1. Obesity and metabolic syndrome: ALOX15 has been implicated in adipocyte 

differentiation (see 6.1.4.) and thus, the enzyme may play a role in obesity and in the 

pathogenesis of metabolic syndrome. In mice a lipid rich-diet increased the number of 

macrophages in the visceral adipose tissue (Nunemaker et al., 2008). However, this increase 

was significantly lower in alox15 deficient animals when compared with wildtype controls. 

Moreover, the pancreatic islets of alox15 knockout mice were protected from diet-induced 

hyperplasia and from reduced glucose-stimulated insulin secretion when compared with 

wildtype controls (Nunemaker et al., 2008). When we performed similar feeding 

experiments with our colony of alox15 knockout mice we were unable to show that systemic 

alox15 deficiency protects mice from the development of insulin resistance of peripheral 

tissues (skeletal muscle, visceral adipose tissue).

Gene expression profiles indicated expression of various LOX-isoforms in human white 

adipose tissue (Lieb et al., 2014). Interestingly, high-level expression of ALOX15 was only 

found in the omental adipose tissue whereas only small amounts of ALOX15 mRNA and 

protein were detected in subcutaneous fat (Dobrian et al., 2010). Immunohistochemical 

stainings indicated that the major cellular sources of ALOX15 were not the adipocytes but 

rather the stromal vasculature (Dobrian et al., 2010). These data are consistent with previous 
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observation suggesting that invaded macrophages are the major source of ALOX15 in mouse 

visceral adipose tissue (Sears et al., 2009). Western-type high fat diet induces latent adipose 

tissue inflammation in wildtype mice, which is indicated inter alia by a massive infiltration 

of macrophage into the visceral adipose tissue. In contrast, in alox15 knockout mice the 

degree of macrophage infiltration was significantly reduced. These data implicate alox15 in 

high fat diet induced adipose tissue inflammation, which appears to be important for the 

pathogenesis of obesity and for the development of insulin resistance of visceral adipose 

tissue (Sears et al., 2009). Despite the observation that alox15 expression is limited in 

adipocytes fat specific knockdown of alox15 expression significantly reduced high fat diet 

induced inflammation of pancreatic islets (Cole et al., 2012).

Although the underlying mechanisms remain unclear these results suggest a crosstalk 

between alox15 expression in adipose tissue and inflammation of pancreatic islets. From 

these data it was concluded that inhibition of alox15 expression in adipose tissue might offer 

systemic protection from obesity-induced consequences and that blocking alox15 activity in 

adipose tissue might constitute a novel therapeutic principle for the treatment of type 2 

diabetes (Cole et al., 2012).

Nonalcoholic fatty liver disease is a major hepatic consequence of the metabolic syndrome. 

Alox15 mRNA is upregulated in apoE-deficient mice, which are frequently employed as 

model for this disease (Ferre et al., 2009). However, the detailed role of alox15 in 

nonalcoholic fatty liver disease remains unclear. Adipose tissue and adipocytes from obese 

Zucker rats, which is a frequently employed rat model for the metabolic syndrome, show 

increased expression of alox15 (Chakrabarti et al., 2011) but the patho-physiological role of 

the enzyme has not been explored. An important question, which has not been answered 

conclusively, is how the alox15 expression is upregulated in the diet induced obesity models. 

Th2 cytokines induce expression of ALOX15 in various cell types (Heydeck et al., 1998; 

Schnurr et al., 1999) and the transcription factor PPAR-gamma has also been implicated. 

Since PPAR-gamma is activated by ALOX15 metabolites there may exist damaging feed 

forward mechanisms (Huang et al., 1999).

6.2.4.2. Diabetes mellitus: 12- and 15-lipoxygenating LOX-isoforms including ALOX15 

have been implicated in the pathogenesis of diabetes (Natarajan et al., 1993; Bleich et al., 

1998; Bleich et al., 1999; Laybutt et al., 2002; Chen et al., 2005; Nunemaker et al., 2008; 

Sears et al., 2009; Ma et al., 2010) but the molecular mechanisms for its involvement are not 

completely understood. ALOX15 products might function as signaling molecules but 

alternative mechanisms have also been discussed. Since ALOX15 is a pro-oxidative enzyme 

producing hydroperoxy lipids, ALOX15-induced oxidative stress and subsequent 

mitochondrial dysfunction might account for increased pathology detected in diabetic 

cardiomyopathy and other vascular disorders (Boudina and Abel, 2007). ALOX15 

expression is upregulated in both, cell culture and animal models of diabetes (Dobrian et al., 

2011). Insulin secretion of cultured human islet cells was reduced by nanomolar 

concentrations of 12S-HETE and 12S-HpETE and increased levels of 12S-HETE were 

linked to coronary artery disease in type 2 diabetic patients (Zhang et al., 2012). Although 

12S-HpETE is not the major product of human ALOX15 it is formed by the enzyme in 

smaller amounts (see 3.3.1.). However, in murine models 12S-HpETE is the dominant 
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alox15 product. Hepoxilin A3, a secondary arachidonic acid oxygenation product generated 

by 12-lipoxygenating LOX-isoforms including human and murine ALOX15 (Nigam et al., 

2007), induce insulin secretion in pancreatic beta cells and islets (Pace-Asciak, 2015). 

Furthermore, HXA3 protects the rat insulinoma cell line RINm5F against oxidative stress-

induced cell death, although the mechanism needs further investigation (Zafiriou et al., 

2011).

For type-1 diabetes only scattered information are currently available as to the pathological 

role of ALOX15. Female nonobese diabetic (NOD) mice are a suitable model for this 

disease (Zafiriou et al., 2011). Remarkably the NOD-ALOX15null strain, in which alox15 is 

absent, is almost completely protected from developing diabetic symptoms (McDuffie et al., 

2008). These results suggest that alox15 contributes to the pathology and mechanistically, 

this may be related to effects of alox15 on islet cell and/or macrophage functionality (Green-

Mitchell et al., 2013). Similarly, Alox15-deficient mice are more resistant to induction of 

type 1 diabetes by streptozotocin when compared with corresponding alox15 expressing 

controls (Bleich et al., 1999).

6.2.5. Neurological disorders—Neurons are especially vulnerable to oxidative stress, 

and oxidative stress-related pathology is a hallmark of several CNS diseases, including 

stroke, Parkinson’s and Alzheimer’s Disease. 12- and 15-lipoxygenating LOX-isoforms have 

been linked to apoptotic cell death of in vitro cultured primary neurons (Canals et al., 2003; 

Khanna et al., 2003; Zhang et al., 2004) as well as in several other brain-derived cells (Lovat 

et al., 2002; Lovat et al., 2003) and in mouse hippocampal cell lines (Pallast et al., 2009; 

Pallast et al., 2010). Similar apoptotic effects can be elicited in vivo by direct injection of 

arachidonic acid into the brain, which causes edema (Chan and Fishman, 1978; Chan et al., 

1983).

6.2.5.1. Periventricular leukomalacia (PVL): Periventricular leukomalacia (PVL) is a 

white matter injury in infants that is the dominant pathological factor for determining long-

term cognitive and motoric deficits in premature infants. ALOX15 expression is increased in 

the brains of PVL patients (Haynes and van Leyen, 2013) and several cell types including 

microglia and oligodendrocyte precursor cells were affected. Some of these cells were 

TUNEL-positive, suggesting that ALOX15 might contribute to disease pathology. This 

hypothesis is supported by cell culture studies, in which oligodendrocyte precursors were 

vulnerable to an ALOX15-dependent cell death when cultured in the absence of cysteine 

(Wang et al., 2004; van Leyen et al., 2008). It will be interesting to see if isoform-specific 

ALOX15 inhibitors are protective in animal models of PVL.

6.2.5.2. Stroke: The strongest evidence for any LOX isoform causing injury to the CNS 

exists in stroke (van Leyen, 2013). Arachidonic acid, which is increasingly liberated from 

phospholipids by cytosolic phospholipase A2 (cPLA2) under stroke conditions, provides the 

substrate and thus, may activate the ALOX15 pathway. Moreover, intracellular calcium rises 

under stroke conditions, which favors membrane binding and augments the catalytic activity 

of ALOX15 (Brinckmann et al., 1998). In addition, the protein levels of ALOX15 increase 

specifically in the penumbra region surrounding the core infarct. This brain region is 

vulnerable to ischemia-induced delayed cell death (van Leyen et al., 2006). The factors 
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leading to transcriptional up-regulation of ALOX15 expression in the ischemic brain have 

not been identified, but may include members of the STAT family of transcriptional 

activators, which regulate expression of the ALOX15 gene in several other cell types 

(Conrad and Lu, 2000). Increased ALOX15 in the ischemic cortex is accompanied by 

increased pro-apoptotic AIF, in both human stroke patients (Yigitkanli et al., 2013), as well 

as mouse models of stroke (Pallast et al., 2010). ALOX15 also co-localizes with MDA2, an 

antibody that recognizes malonedialdehyde-modified lysine residues suggesting increased 

lipid peroxidation in the penumbra area (Yigitkanli et al., 2013). Taken together, these 

findings document that ALOX15 is part of a major cell death pathway that is activated in the 

ischemic regions. Functional inactivation of the alox15 gene protected mice against stroke 

(Khanna et al., 2005; van Leyen et al., 2006), reduced leakage of the blood-brain barrier and 

minimized edema formation (Jin et al., 2008). These protective effects are replicated by pre-

treatment of the animals with LOX inhibitors. Since many of the conventional LOX 

inhibitors exhibit strong antioxidant activity newer inhibitors with low antioxidant activity 

(van Leyen et al., 2008; Rai et al., 2014) have been more recently applied and these 

compounds were protective even when given four hours after stroke induction (Yigitkanli et 

al., 2013).

In addition to the damaging effects of ALOX15 in the penumbra area the restorative 

potential of ALOX15-derived mediators including lipoxins and protectins has been explored. 

For example, the neuroprotective effects of rosiglitazone have been related to the formation 

of lipoxin A4 (Sobrado et al., 2009) and an agonist at the lipoxin A4 receptor induced 

neurovascular protection in a rat model of ischemic stroke (Hawkins et al., 2014). Since 12- 

and 15-lipoxygenating LOX have been implicated in lipoxin formation ALOX15 orthologs 

might be involved. Moreover, neuroprotectins, specifically neuroprotectin D, reduce tissue 

damage in animal models of stroke (Bazan, 2009). Since ALOX15 has been implicated in 

biosynthesis of neuroprotectin D1 from docosahexaenoic acid the enzyme may be involved 

in this protective effect. Interestingly, infusion of docosahexaenoic acid was also protective 

in experimental stroke (Belayev et al., 2011).

6.2.5.3. Alzheimer’s disease: ALOX15 expression is increased in the brains of 

Alzheimer’s patients (Pratico et al., 2004) and increased levels of 12- and 15-HETE were 

found in the cerebrospinal fluid of patients with Alzheimer’s pathology (Yao et al., 2005). 

Consistent with a damaging function of ALOX15 in Alzheimer’s disease the extent of the 

degenerative defects in a transgenic Alzheimer’s mouse model (tg2576) was reduced when 

alox15 was absent (Yang et al., 2010). In humans elevated ALOX15 expression was found 

when brains of Alzheimer’s patients were compared those with no pathology (Rao et al., 

2011). In contrast, ALOX15 expression was reduced in the hippocampus of Alzheimer’s 

patients and reduced neuroprotectin D1 levels paralleled this effect (Lukiw et al., 2005). 

There are several possible reasons for these discrepancies, which may be related to the 

complexity of disease progression. Further studies are needed to get a clearer picture of 

differential LOX expression and its consequences in Alzheimer’s brains.

In cell culture models, an amyloid beta-derived peptide was found to cause cell death in 

primary neurons. This effect was blocked by LOX inhibition and similar protective effects 

were described when an antisense oligonucleotide targeting alox15 expression was 
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employed (Lebeau et al., 2001; Lebeau et al., 2004). In contrast, expression of miRNA125b, 

a micro-RNA silencing translation of ALOX15 mRNA, was increased in Alzheimer’s 

patients. When primary neuroglia cells were treated with amyloid ß1–42 protein increased 

levels of miRNA125b led to down-regulation of ALOX15 expression. Silencing the 

expression of miRNA125b restored ALOX15 expression and protected these cells from 

damage (Zhao et al., 2013). Unfortunately, it remains unclear whether there is a direct 

causative link of these cellular in vitro studies to Alzheimer’s pathology.

6.2.5.4. Multiple sclerosis and other neurodegenerative diseases: As indicated above 

ALOX15 metabolites have been identified as co-activators of PPAR-gamma and agonists of 

this signaling pathway reduce clinical severity of experimental allergic encephalomyelitis, 

an animal model of human multiple sclerosis. In alox15 deficient mice the pathology of 

experimental allergic encephalomyelitis was significantly worsened implicating this enzyme 

as protective regulator in pathogenesis of this disease (Emerson and LeVine, 2004). We 

repeated these experiments with our strain of alox15-deficient mice and obtained 

comparable results (Fig. 11). On the other hand, pharmacological interference with an 

ALOX15 inhibitor (systemic application of baicalein) attenuated the clinical symptoms of 

experimental autoimmune encephalomyelitis in mice (Xu et al., 2013). Baicalein treatment 

reduced activation of microglia, suppressed glial phagocytosis and impaired the cerebral 

production of proinflammatory cytokines. Mechanistically, baicalein treatment did not affect 

ALOX15 expression but significantly reduced the formation of ALOX15 metabolites and led 

to increased expression of PPARβ/δ in microglia. These data suggest that functional 

inactivation of the ALOX15 pathway activates PPARβ/δ signaling, which is protective for 

autoimmune encephalomyelitis in mice. Thus, pharmacological interference of the ALOX15 

pathway might be developed as innovative therapeutic concept in the treatment of multiple 

sclerosis (Xu et al., 2013).

In other degenerative diseases of the central nervous system, much remains to be studied 

about possible ALOX15 involvement in the respective pathology. There is little information 

about whether ALOX15 may play a role in pathogenesis of amyelotrophe lateral sclerosis, 

Parkinson’s and Huntington’s disease. Although oxidative stress and increased lipid 

peroxidation has been implicated in the pathogenesis of virtually all neurodegenerative 

disorders (Mhatre et al., 2004) it remains unclear whether or not ALOX15 may contribute. 

Pharmacological interference studies suggested a role of lipid peroxidation in the 

pathogenesis of Huntington’s disease (Kumar et al., 2011) and an inhibitor of COX1, COX2 

and ALOX5 pathways induced protective effects in an animal model of Huntington’s disease 

(Lee et al., 2011). However, a possible role for ALOX15 has not been explored.

After spinal cord injury, ALOX15 was increased 25-fold in rats, compared to a 1.7-fold 

upregulation detected for COX-2 (Di Giovanni et al., 2003). But whether or not this increase 

contributes to the injury is presently unknown.

7. Evolutionary aspects of ALOX15

As indicated above LOXs occur in two of the three domains of terrestrial life (see 2.1.) but 

they rarely occur in lower single- and multi-cellular organisms (Horn et al., 2014). In highly 
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developed plants and animals occur LOXs more frequently and most mammalian species 

express various LOX-isoforms (Horn et al., 2014).

7.1. Mammalian ALOX15 orthologs

In mammals two subtypes of ALOX15 orthologs can be differentiated according to their 

enzymatic properties. Lower mammals such as mice (Sun and Funk, 1996), pigs (Yoshimoto 

et al., 1990) and cattle (De Marzo et al., 1992) express 12-lipoxygenating ALOX15 

orthologs whereas humans (Sloane et al., 1991a) and orangutans (Vogel et al., 2010) express 

15-lipoxygenating enzyme species. The structural basis for the variable positional specificity 

of ALOX15 orthologs has been explored and the triad concept (Ivanov et al., 2010) suggests 

that Phe353, Ile418/Met419 and Ile593 (numbering for rabbit ALOX15) form the bottom of 

the substrate binding pocket. If these positions are occupied by amino acids carrying bulky 

side chains (Phe353+Ile418/Met419+Ile593) arachidonic acid 15-lipoxygenation is 

catalyzed. In contrast, if one or more of these positions is occupied by a less bulky residue 

(Leu353+Val418Met419+Val593 for mouse alox15; Leu353+Ala418/Met419+Val593 for rat 

alox15; Phe353+Val418/Val419+Ile593 for pig ALOX15; Phe353+Val418/Val419+Ile593 

for macaca ALOX15) arachidonic acid 12-lipoxygenation results. The naturally occurring 

variability in reaction specificity of ALOX15 orthologs (Horn et al., 2014) can simply be 

mimicked by Ile418Ala exchange in human ALOX15. Wildtype human ALOX15 

oxygenates arachidonic acid mainly at C15 but its Ile418Ala mutant mainly catalyzed 

arachidonic acid 12-lipoxygenation [Adel et al., 2015 submitted]. Recent MD simulations 

have confirmed this experimental finding for rabbit ALOX15 and the substrate fatty acid 

appears to slide deeper into the substrate-binding pocket of the mutant enzyme. However, 

these spatial alterations may not be the only reason for the drastic changes in reaction 

specificity but energetic aspects (lower energetic barriers for the formation of the transition 

states) may also contribute [Adel et al., 2015 submitted].

7.2. Change in reaction specificity of ALOX15 orthologs during primate evolution

ALOX15 orthologs of higher mammals [H. sapiens (Sloane et al., 1991a), H. neandertals 
(Chaitidis et al., 2013), H. denisovans (Adel et al., 2015), P. pygmeus (Vogel et al., 2010)] 

mainly catalyze arachidonic acid 15 lipoxygenation. In contrast, lower mammals [M. 
musculus (Sun and Funk, 1996), R. norwegicus (Pekarova et al., 2015), Sus scrofa 
(Yoshimoto et al., 1990)] and even lower primates (Vogel et al., 2010) exhibit arachidonic 

acid 12-lipoxygenation activity. This data suggested that the reaction specificity of ALOX15 

orthologs might have systematically been changed from 12- to 15-lipoxygenation during late 

primate evolution and that this evolutionary change might have happened between macaca 

and orangutans (Adel et al., 2015 submitted). Unfortunately, the positional specificity of 

ALOX15 orthologs of chimpanzee, gorilla, gibbon and baboon remains to be determined 

experimentally but arachidonic acid 15-lipoxygenation can be predicted on the basis of their 

primary structure. In contrast, 12-lipoxygenation may be predicted for baboon ALOX15. For 

gibbon ALOX15 prediction of the reaction specificity is not possible but preliminary data 

from our lab suggest almost equal amounts of 12- and 15-HpETE. If our predictions can be 

confirmed by more detailed experimental data one may conclude that in lower mammals 

(mice, rats, pigs, baboon, macaca) 12-lipoxygenating ALOX15 enzymes are expressed. In 

contrast, in higher mammals (gorilla, orangutan, chimpanzee, human subspecies) 15-
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lipoxygenating ALOX15 isoforms are present (Johannesson et al., 2010) and gibbons may 

constitute a transition species. The only known exception from this rule are rabbits but here 

12- and 15-lipoxygenating ALOX15 species are expressed in a tissue specific manner 

(Berger et al., 1998). Unfortunately, the biological relevance of this evolutionary switch in 

the reaction specificity still remains unclear.

8. Isoform-specific ALOX15 inhibitors

Lipoxygenase inhibitors have frequently been used to characterize the biological role of 

these enzymes in various animal disease models. However, in the absence of supporting 

results obtained with alternative loss-of-function (knockout mice or siRNA-induced 

expression knockdown) and/or gain-of-function (LOX-overexpressing transgenics or LOX 

transfectants) strategies these results should be interpreted with care because of two reasons:

i. Isoform-specificity: Many LOX inhibitors used in the literature (NDGA, CDC, 

AA861, baicalein, PD146176) do not exhibit a pronounced isoform-specificity. 

Most of them inhibit several ALOX-isoforms and thus, it is hardly possible to 

conclude on the basis of the outcome of inhibitor studies, which LOX-isoform is 

involved in a biologically relevant process. On the other hand, testing the 

isoform-specificity of a LOX inhibitor is of major biological relevance. For 

instance, an ALOX5 inhibitor, which will be developed as anti-asthmatic drug 

(Hofmann and Steinhilber, 2013), should not significantly impact the activity of 

ALOX12B. Otherwise problems with skin development may occur (Epp et al., 

2007; Krieg et al., 2013) and the drug is likely to have unwanted side effects. 

Most experts are well aware of this problem but scientists not so experienced in 

LOX biology do sometimes not appreciate this problem. A second issue related 

to isoform-specificity is the way how isoform specificity of a LOX inhibitor is 

determined. In the past the assay systems employed to test isoform specificity 

were not strictly comparable and this may lead to misinterpretations. Lysates of 

rat basophilic leukemia cells were frequently used as ALOX5 source and platelet 

lysates were employed for testing ALOX12 activity (Sendobry et al., 1997). 

These assay systems are not strictly comparable since the inhibitor may 

differently be metabolized in the two assay systems and foreign proteins may 

bind the inhibitors in different ways. To avoid such problems inhibitor studies 

should always be carried out with purified recombinant enzyme preparations 

(Rai et al., 2010; Kenyon et al., 2011). Alternatively, the different LOX isoforms 

of one species (human, mouse, rats) should be expressed in a single eucaryotic 

overexpression system (such as COS or HEK cells) and the cellular lysate may 

be employed as enzyme source. Recently, a systematic study was carried out, in 

which all 12-lipoxygenating rat LOX isoforms were overexpressed in HEK cells 

and an array of commercially available LOX inhibitors was tested using the cell 

lysates (Gregus et al., 2013). The data obtained indicate that these commercial 

LOX-inhibitors (NDGA, CDC, AA861, baicalein, PD146176) only exhibited a 

low degree of isoform specificity although some of them have previously been 

suggested as isoform-specific inhibitors. Most surprisingly, PD146176, which 

has been employed in experimental strategies as ALOX15 specific inhibitor 
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(Sendobry et al., 1997) did not at all inhibit rat alox15 (Gregus et al., 2013). For 

the time being, it remains unclear why this compound effectively inhibits rabbit 

and human ALOX15 but not the rat ortholog. The reasons may be related to the 

different positional specificities of the two ALOX15 orthologs but more detailed 

experiments are needed to support this conclusion. Irrespective of the lacking 

mechanistic data the results clearly indicate the possibility that an inhibitor that 

effectively interferes with human ALOX15 may not inhibit orthologous enzymes 

of other species (species-specificity). To avoid misinterpretations the inhibitory 

potency of ALOX15 inhibitors used as probes to test the role of this LOX 

isoforms in a biological process should always be confirmed in the 

corresponding assay system. A good example for an experimental strategy, 

which follows these specificity criteria was the recent report by Rai and co-

workers (Rai et al., 2014), which indicated that certain oxazole-4-carbonitrile 

based LOX inhibitors share a high inhibitory potency for human and mouse 

ALOX15 but hardly inhibit other mammalian LOX-isoforms.

ii. Off-target effects of LOX-inhibitors: Some frequently employed ALOX15 

inhibitors (NDGA, gallic acids) exhibit anti-oxidative properties and thus, may 

directly impact the cellular redox homeostasis. Since the cellular redox state is 

important for regulating the gene expression pattern on genetic (Brune et al., 

2013) and epigenetic (Goswami, 2013; Kim et al., 2013) levels, it is difficult to 

discriminate which of the two functions (LOX inhibition vs. redox activity) is the 

major reason for an observed biological effect. Consequently, results obtained 

with these types of ALOX15 inhibitors must be interpreted with care and to 

avoid misinterpretation, the inhibitor studies should always be confirmed by 

alternative loss-of-function strategies. Characterizing the redox activity of a 

potential ALOX15 inhibitor is not a trivial task and depends on the experimental 

assay systems. There is a large number of enzymatic and non-enzymatic 

oxidation systems and a given compound might be effective in one of them but 

ineffective in other systems. Since it is impossible to test the anti-oxidative 

properties of a potential ALOX15 inhibitor in all of these assay systems the 

employed systems must clearly be specified.

9. Open questions and perspectives

In recent years the structural biology of LOX became a quickly developing area in LOX 

research and crystal structures for a number of LOX-isoforms have been solved during the 

past 10 years (Newcomer and Brash, 2015). However, there is only scattered direct structural 

information for LOX-substrate complexes. A phosphorylation-mimicking mutant of a 

stabilized version of human ALOX5 was crystallized with arachidonic acid bound at the 

catalytic center (Gilbert et al., 2012) and the X-ray coordinates suggested an inverse head-to-

tail substrate alignment, which explains the 15-lipoxygenating activity of this enzyme 

variant. Unfortunately, 15-lipoxygenating activity of phosphorylation mimicking mutants of 

ALOX5 orthologs of different vertebrate species could not be confirmed (Adel et al., 2014) 

so that it remains unclear whether the X-ray data represent a catalytically productive 

structure. More recently, the crystal structure of the coral 8R-LOX-arachidonic acid complex 
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was solved at 2.0 Å resolution and the X-ray coordinates suggested a catalytically competent 

conformation (Neau et al., 2014). Unfortunately, for the time being no crystal structure is 

currently available for ALOX15-substrate complexes. However, the recent methodological 

advances in LOX crystallization suggest that corresponding X-ray data will soon become 

available for wildtype ALOX15 orthologs and relevant mutants with altered positional 

specificity.

Another unsolved problem in structural ALOX15 research is the capability of ALOX15 

orthologs to specifically oxygenate complex ester lipids, such as phospholipids and 

cholesterol esters (Kuhn et al., 1990b; Belkner et al., 1991; Takahashi et al., 1993). Recent 

molecular docking studies suggested that binding of a phospholipid molecule at the active 

site of rabbit ALOX15 is sterically impossible without major rearrangements in the active 

site architecture. Rabbit ALOX15 exhibits a high degree of motional flexibility (Shang et al., 

2011) but whether this flexibility is high enough to allow proper binding of phospholipids at 

the active site remains to be explored. A similar problem exists for the 15-lipoxygenating 

soybean LOX1, which appaers to be structurally more stable than the rabbit enzyme 

(Dainese et al., 2005). This enzyme is also capable of specifically oxidizing phospholipids 

(Brash et al., 1987) but here again docking studies indicate steric clushes for phospholipid 

binding at the active site. Direct X-ray data on an ALOX15-phospholipid complex would 

shed light on the structural rearrangements that are required for ALOX15-catalyzed specific 

phospholipid oxygenation.

Although LOXs are oxygen-metabolizing enzymes there is apparently no targeted oxygen 

binding at the substrate free enzyme. In silico studies (Saam et al., 2007) suggested a region 

of high oxygen occupancy probability and several paths via which molecular dioxygen may 

reach this area. Although mutagenesis data support this concept there is no direct 

experimental proof for heterogeneous oxygen distribution within the LOX protein and for a 

targeted intra-enzyme oxygen movement. To obtain such data X-ray crystallographic studies 

under high oxygen or xenon concentrations should be carried out (Svensson-Ek et al., 2002; 

Cohen et al., 2006).

Because of their lipohydroperoxidase activity LOXs have been implicated in the formation 

of free radicals and the LOX-superoxide connection has been a matter of discussion for 

several years. Back in the mid 1970 it was reported that superoxide dismutase effectively 

inhibited linoleic acid oxygenation by soybean LOX1 (Richter et al., 1975). Moreover, a 

soybean LOX-superoxide complex has been implicated in the oxidation of furan derivatives 

by this enzyme (Boyer et al., 1979) but the detailed mechanism of superoxide production 

was not explored. In another experimental approach it was suggested (Roy et al., 1995) that 

LOXs are capable of cooxidizing glutathione in the presence of linoleic acid and 

simultaneously generate superoxide anions. However, here again the molecular basis for 

superoxide production has not been explored. More recently, a number of inhibitors have 

been developed which inhibit different LOX-isoforms but also function as superoxide 

scavengers (Pontiki and Hadjipavlou-Litina, 2007; Cretu et al., 2013; Ben-Nasr et al., 2015). 

Although these data suggest that there might be a connection between the lipoxygenase/

lipohydroperoxidase reaction and superoxide formation, the mechanistic basis for this 

connection remains elusive. According to our current understanding of the lipoxygenase 
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reaction these enzymes do not activate molecular dioxygen (Fig. 1A) and the radical 

intermediartes formed remain largely enzyme bound. Thus, a direct formation of superoxide 

during the lipoxygenase reaction is rather unlikely. However, the lipohydroperoxidase 

activity of LOXs involves the formation of fatty acid radicals (Fig. 1B), which may induce 

secondary superoxide production. It would be worth to further explore under which 

experimental conditions LOXs may serve as effective sources for free radicals.

Inhibitor studies and characterization of the performance of alox15 deficient mice in a 

number of mouse disease models provided valuable information on the physiological and 

patho-physiological role of ALOX15. The recent observation that alox15 may play a role in 

vascular endothelial tight-junction formation (Kundumani-Sridharan et al., 2013; 

Chattopadhyay et al., 2014) implicates the enzyme in regulation of vascular permeability, 

which is of biological relevance for the pathogenesis of inflammatory diseases. 

Unfortunately, it has not been explored whether ALOX15 might also be involved in 

epithelial tight-junction formation. In contrast to the vascular endothelium, epithelial cells 

(airway epithelium, enteral epithelium) have more pronounced tight junctions, which 

contribute to the primary defense mechanism preventing the penetration of pathogens or 

microparticles. Moreover, these tight junctions counteract the release of dedifferentiated 

epithelial cells, which is an important step of metastasis. If ALOX15 is also involved in 

epithelial tight-junction formation the enzyme may play a role in the pathogenesis of 

inflammatory bowel and lung diseases and in metastasis of enteral and pulmonal carcinoma.

The biological relevance of variable positional specificity of ALOX15 orthologs (major 15-

lipoxygenating vs. major 12-lipoxygenating ALOX15 orthologs) remains a matter of 

discussion. Since orthologous enzymes should have the similar functions in different species 

one may conclude that ALOX15 orthologs do not exhibit their biological activity via the 

formation of signaling molecules (see 6.1.1.). However, the recent observation of a systemic 

change in positional specificity of ALOX15 orthologs during late primate evolution (see 

6.1.2.) suggests that this change might constitute a targeted evolutionary response. 12- and 

15-lipoxygenating enzymes have been implicated in the biosynthesis of proresolving 

mediators such as lipoxins (Hu et al., 2012), resolvins (Spite et al., 2014) and maresins 

(Serhan et al., 2012; Serhan et al., 2015). However, it has not been explored whether 12-

lipoxygenating or 15-lipoxygenating ALOX15 orthologs exhibit a higher biosynthetic 

capacity for these pro-resolving mediators. If, for instance, 15-lipoxygenating ALOX15 

orthologs exhibit an augmented lipoxin biosynthesizing capacity the evolutionary switch in 

positional specificity of ALOX15 orthologs might be regarded as optimizing strategy for 

inflammatory resolution. In other words, lower mammals expressing a 12-lipoxygenating 

ALOX15 should have a lower resolution capacity when compared with highly developed 

species expressing 15-lipoxygenating ALOX15.

The development of isoform-specific ALOX15 inhibitors would clearly advance the research 

on the biological role of ALOX15 orthologs since reliable pharmacological interference 

studies could be carried out with such substances. Unfortunately, for the time being 

comprehensively validated isoform-specifc ALOX15 inhibitors are not commercially 

available. There are LOX inhibitors, for which isoform specificity have been claimed, but 
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the experimental data indicating isoform-specificity are sometimes not well documented. 

Moreover, possible non-target effects of these compounds have not been well explored.
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List of non-standard abbreviations

LOX lipoxygenase

AA arachidonic acid

EPA 5,8,11,14,17-eicosapentaenoic acid

DHA 4,7,10,13,16,19-docosahexaenoic acid

13S-H(p)ODE (13S,9Z,11E)-13-hydro(pero)xyoctadeca-9,11-dienoic acid

15S-H(p)ETE (15S,5Z,8Z,11Z,13E)-15-hydro(pero)xyeicosa-5,8,11,13-

tetraenoic acid

12S-H(p)ETE (12S,5Z,8Z,10E,14Z)-12-hydro(pero)xyeicosa-5,8,10,14-

tetraenoic acid

11R-H(p)ETE (11R,5Z,8Z,12E,14Z)-11-hydro(pero)xyeicosa-5,8,12,14-

tetraenoic acid

IL4(13) interleukin-4(13)

DDX6 DEAD-box RNA helicase 6 (DDX6)

hnRNP K/E1 heterogeneous ribonucleoprotein particle K/E1

DICE differentiation control element

SAXS small angle X-ray scattering

PPAR peroxisome proliferation activating receptor

LH luteinizing hormone

NDGA nordihydroguaiaretic acid

LDL low density lipoprotein

HDL high density lipoprotein

GPx4 glutathione peroxidase-4

CDC cinnamyl-3,4-dihydroxy-α-cyanocinnamide
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GC/MS gas chromatography/mass spectrometry
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Highlights

• the human genome involves six lipoxygenase genes including ALOX15

• ALOX15 specifically oxygenates phospholipids and biomembranes

• ALOX15 exhibits a high degree of structural flexibility

• ALOX15 plays a role in differentiation and in pathogenesis of various 

diseases

• evolutionary change in reaction specificity optimizes membrane oxygenase 

activity.
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Fig. 1. Catalytic activities of ALOX15 orthologs.
A) The lipoxygenase reaction consists of 4 elementary reactions (hydrogen abstraction, 

radical rearrangement, dioxygen insertion, peroxy radical reduction). To initiate the reaction 

the ferrous LOX is first activated by peroxide-dependent oxidation to a ferric form [modified 

from (Ivanov et al., 2010)]. B) The lipohydroperoxidase activity is initiated when a lipid 

hydroperoxide (ROOH) is bound at the active site of the enzyme. The enzyme then catalyzes 

a homolytic cleavage of the hydroperoxy bond, which leads to the formation of an oxygen-

centered alkoxy radical, a hydroxyl and oxidizes the ferrous iron to a ferric form. Then the 

enzyme binds a linoleic acid molecule (or an alterative reductant such as guaiacol) and 

releases a carbon-centered linoleic radical. This reaction reduces the ferric LOX back to its 

ferrous form to start the next catalytic cycle. The released radical intermediates may then 

initiate free radical secondary reactions leading to the formation of mixed oxygenated and 

non-oxygenated linoleic acid dimers. C) The leukotriene synthase activity of various LOX-

isoforms involved a homolytic cleavage of the hydroperoxy group and a hydrogen abstracton 

from a bisallylic methylene. These consecutive reaction steps lead to the formation of a fatty 

acid biradical, which stabilizes by epoxide formation.
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Fig. 2. Kinetic progress curve of arachidonic oxygenation by pure rabbit ALOX15.
When peroxide-free fatty acids are used as substrates the kinetic progress curve of the 

ALOX15 reaction can be separated in three periods. i) Kinetic lag-phase: The oxygenation 

reaction starts with a kinetic lag-phase, in which product formation increases with time. ii) 

Linear phase: The lag phase is followed by a more or less linear part of the progress curve, 

in which the reaction rate does not change. iii) Suicidal inactivation phase: During the final 

part of the progress curve the reaction rate decreases with time, which has been related to 

suicidal inactivation of the enzyme.
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Fig. 3. Molecular docking studies of a phospholipid molecule at the active site of rabbit ALOX15.
To construct these images the following sets of X-ray coordinates (PDB entries) were 

employed: rabbit ALOX15 (2POM), soybean LOX-1 (1YGE), and phospholipid (4G32). 

The GOLD program with default parameters was used for docking the phospholipid into the 

active sites of rabbit ALOX15 conformers and soybean LOX1. For preparation of images the 

Accelrys Discovery Studio 4.0 Visualizer was employed. The amino acids labeled represent 

examples for steric clashes with the phospholipid substrate. A) rabbit ALOX15 (non-

liganded conformer), B) rabbit ALOX15 (liganded conformer, C) soybean LOX1. The 

docking studies were carried out by Kumar Reddy Kakularam from the Department of 

Animal Sciences, School of Life Science, University of Hyderabad (India) and the National 

Institute of Animal Biotechnology, Hyderabad (India). Permission for publication was 

granted.
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Fig. 4. Reaction specificity of rabbit ALOX15 with arachidonic acid isomers.
The different arachidonic acid isomers are aligned at the active site of rabbit ALOX15 in 

such a way that different bisallylic methylenes are located in close proximity to the enzyme 

bound non-heme iron so that hydrogen abstraction from these carbon atoms is possible. For 

instance, for the 4,7,10,13-isomer (ω−7) hydrogen is abstracted only from C12 and oxygen 

is inserted only at C14 (n+2 radical rearrangement). With this substrate rabbit ALOX15 

exhibits a singular positional specificity as indicated by product analysis (GC/MS). With 

arachidonc acid (5,8,11,14-isomer, ω−6) the iron is located between the bisallylic 

methylenes C13 and C10 (but closer to C13) and thus, hydrogen can be abstracted from both 

carbon atoms with strong preference of the C13 bisallylic methylene. Oxygen is then 

preferentially (85%) inserted at C15 but to a lesser extent (15%) also at C12 (n+2 radical 

rearrangement in both cases). With this substrate the enzyme exhibits a dual positional 

specificity. For the 6,9,12,15-isomer (ω−5) an even more pronounced dual positional 

specificity was observed since oxygen was inserted in similar quantities at C17 and C14.
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Fig. 5. Triad concept of positional specificity of ALOX15 orthologs.
For ALOX15 orthologs arachidonic acid slides into the substrate-binding pocket with its 

methyl end ahead and is bound at the active site by hydrophobic interactions and probably 

by π-π-interactions of the substrates double bonds with aromatic active site amino acids. 

The amino acids, which align with Phe353, Ile418 and Ile593 of the rabbit enzyme, form the 

bottom of the substrate binding pocket and the methyl terminus of the fatty acid substrate 

interacts with the side chains of these amino acids. For the 15-lipoxygenating rabbit 

ALOX15 these positions are occupied by bulky residues (Phe353, Ile418, Ile593) so that the 

substrate fatty acid does not penetrate as deep into the substrate-binding pocket (left side of 

the images). Thus, the bisallylic methylene C13 of the arachidonic acid is bound in close 

proximity to the catalytic non-heme iron and this alignment results in major 15-

lipoxygenation. In 12-lipoxygenating ALOX15 orthologs (mouse, rats, pigs, cattle) either of 

these positions is occupied by a less space-filling amino acid, which allows the substrate 

fatty acid to penetrate deeper into the active site (right side of the image) and the black 

arrows indicate the direction of substrate movement. This movement approaches the 

bisallylic methylene C10 of arachidonc acid to the non-heme iron so that hydrogen 

abstraction from C10 becomes possible. In the 12-lipoxygenating panel (right side of the 

image) the amino acid exchanges are indicated, which lead to alterations in the reaction 

specificity during in vitro mutagenesis.
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Fig. 6. Presence of 4-fold C repeats in the 3’-UTR of murine ALOX15 mRNA.
The murine alox15 mRNAs do not contain the repetitive DICE element, which has been 

implicated in translational regulation of the rabbit and human ALOX15 mRNA. Instead on 

the genomic level various 4-fold C-repeats (CCCC or TCCC) are present and these 

sequences may functionally substitute for the lacking DICE element.
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Fig. 7. Structural properties of rabbit ALOX15.
(A) Iron ligand sphere of rabbit ALOX15. Four histidines (His361, His366, His541, 

His545), the N-terminal Ile/663 and a water molecule are the 1st order iron ligands of rabbit 

ALOX15 (B). Overlay of the two structures (ligand-free conformer, ligand-bound 

conformer) of the rabbit ALOX15. Ligand-free conformer A is indicated in grey and ligand-

bound structure (conformer B) in yellow. The non-heme iron is also shown. It can be seen 

that helix 2 is strongly dislocated upon ligand binding by about 12 Å. Rotation of the active 

site helix 18 can also be seen. (C) Crystal structure of rabbit ALOX15 dimers. In the crystals 

rabbit ALOX15 forms heterodimers consisting of a ligand-free (conformer A) and a ligand-

bound (conformer B) monomer. Inset: The residues contributing to the interaction between 

the two monomers are indicated and a number of leucine and tryptophane residues 

contribute. The program VMD 1.4.8 version (University of Illinois) and the coordinates of 

rabbit LOX complex (PDB code: 2P0M) were used to create these images.
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Fig. 8: Ligand induced oligomerization of rabbit ALOX15 and impact of interdomain interface 
mutants on enzyme oligomerization.
Low-resolution models of rabbit ALOX15 were calculated on the bases of small angle X-ray 

scattering data in the absence (upper panel) and presence (lower panel) of a 10-fold molar 

excess of 13S-HODE as active site ligand. Structural models of ALOX15 dimers were 

generated by rigid body refinement applying P2 symmetry on conformers A keeping the 

intermonomer interface as shown in the crystal structure (PDB code: 2P0M). For the 

tetramer model of the Leu183Glu+Leu192Glu mutants in complex with 13(S)-HODE P222 

symmetry was considered. The four catalytic domains are shown in gray, N-terminal 

domains in red and the α2 helixes in orange. The tetrameric structure shows significant 

difference to the dimers with P2 symmetry. Images were modified according to (Ivanov et 

al., 2012).
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Fig. 9. Biological relevance of ALOX15.
(A) Principle mechanisms, by which ALOX15 orthologs exhibit their bioactivity. (B) 

Physiological and patho-physiological processes, in which ALOX15 orthologs have been 

implicated.
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Fig. 10. Alox15-deficient mice suffer from more severe experimental autoimmune encephalitis 
when compared with alox15 sufficient controls.
Experimental autoimmune encephalitis (EAE) was induced in 8–10 week old female alox15-

deficient mice (LOX-KO; n=7) and corresponding wildtype controls (WT; n=7) by 

subcutaneous immunization with 200 µg MOG35–55 peptide (purity >95%, Pepceuticals, 

Leicester, UK) emulsified in an equal volume of PBS and complete Freund’s adjuvant 

containing 6 mg/ml Mycobacterium tuberculosis H37Ra (Difco, FranklinLakes, NJ). 

Bordetella pertussis toxin (200 ng, PTX, List Biological Laboratories, Campbell, CA) was 

administered intraperitoneally at day 0 and 2 post-immunization. Mice were weighed and 

scored daily as follows: 0 = no disease; 1 = complete tail paralysis; 2 = abnormal gait, 

hindlimb paresis; 3 = hindlimb plegia; 4 = paraplegia and forelimb weakness; 5 = moribund 

or death due to EAE. Mann-Whitney-U-test *=p<0.05. The experiments were carried out by 

Silvina Romero-Suarez and Carmen Infante-Duarte at the Institute for Medical Immunology, 

Charité Universitätsmedizin Berlin. Data were kindly provided and publication was allowed 

by the authors.
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Table 1

Major oxygenation products of ester lipid oxygenation by pure rabbit ALOX15

Lipid class lipid substrate main product

Phospholipds 1-palmitoyl,2-linoleoyl phosphatidyl choline 13S-HpODE

1-palmitoyl,2-arachidonyl phosphatidyl choline 15S-HpETE

1-palmitoyl,2-eicosapentaenoyl phosphatidyl choline 15S-HpEPE

1-palmitoyl,2-docosahexaenoyl phosphatidyl choline 17S-HpDHE

diacylglyceroles 1-stearyl,2-arachidonyl glycerole 15-HETE

1-stearyl,2-linoleoyl glycerole 13S-HpODE

Cholesterol esters cholesteryl linoleate 13S-HpODE

cholesteryl linolinate 13-HpOTE

cholesteryl arachidonate 15S-HpETE
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Table 2.

Structural comparison of rabbit, human, mouse and rat ALOX15 cDNA.

Parameter Rabbit Human Mouse Rat

cDNA size (bases) 3614 2707 2414 2707

Encoded amino acids 663 662 663 663

Amino acid identity (%) 81 100 74 75

5’-UTR (bases) 28 15 26 6

3’-UTR (bases) 1595 704 396 218

Elongated transcript − + − −

Presence of DICE ++ + − −
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