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Abstract

Deep learning approaches have achieved state-of-the-art performance in cardiac magnetic 

resonance (CMR) image segmentation. However, most approaches have focused on learning image 

intensity features for segmentation, whereas the incorporation of anatomical shape priors has 

received less attention. In this paper, we combine a multi-task deep learning approach with atlas 

propagation to develop a shape-refined bi-ventricular segmentation pipeline for short-axis CMR 

volumetric images. The pipeline first employs a fully convolutional network (FCN) that learns 

segmentation and landmark localisation tasks simultaneously. The architecture of the proposed 

FCN uses a 2.5D representation, thus combining the computational advantage of 2D FCNs 

networks and the capability of addressing 3D spatial consistency without compromising 

segmentation accuracy. Moreover, a refinement step is designed to explicitly impose shape prior 

knowledge and improve segmentation quality. This step is effective for overcoming image 

artefacts (e.g. due to different breath-hold positions and large slice thickness), which preclude the 
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creation of anatomically meaningful 3D cardiac shapes. The pipeline is fully automated, due to 

network’s ability to infer landmarks, which are then used downstream in the pipeline to initialise 

atlas propagation. We validate the pipeline on 1831 healthy subjects and 649 subjects with 

pulmonary hypertension. Extensive numerical experiments on the two datasets demonstrate that 

our proposed method is robust and capable of producing accurate, high-resolution and 

anatomically smooth bi-ventricular 3D models, despite the presence of artefacts in input CMR 

volumes.

Index Terms

Deep learning; bi-ventricular CMR segmentation; landmark localisation; non-rigid registration; 
label fusion; multi-atlas segmentation; shape prior; cardiac artefacts

I Introduction

CARDIAC magnetic resonance (CMR) imaging is the gold standard for assessing cardiac 

chamber volume and mass for a wide range of cardiovascular diseases [1]. For decades, 

clinicians have been relying on manual segmentation approaches to derive quantitative 

measures such as left ventricle (LV) volume, mass and ejection fraction. However, manual 

expert segmentation of CMR images is tedious, time-consuming and prone to subjective 

errors. It becomes impractical when dealing with large-scale datasets. As such, there is a 

demand for automatic techniques for CMR image analysis that can handle the scale and 

variability associated with large imaging studies [2], [3]. Recently, automatic segmentation 

based on deep neural networks has achieved state-of-the-art performance in the CMR 

domain [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. For example, in 

the Automatic Cardiac Diagnosis Challenge (ACDC) [18] the 8 highest-ranked segmentation 

methods were all neural network-based methods.

Theoretically, 3D neural network-based segmentation methods may be designed with 

arbitrarily deep architectures. In practice however, the size of cardiac images, especially that 

of high-resolution volumetric images [11], often presents a computational bottleneck at the 

training stage. To deal with this, shallow 3D network architectures [11] or fewer feature/

activation maps [5] are typically considered. Also, to reduce the computational burden, most 

methods extract the region of interest (ROI) containing the whole heart as a first step to 

reduce the volume size [8], [9], [10], [11], [14], [15], [17], or train a 2D network to 

separately segment each short-axis slice in the volume [12], [13], [14], [15], [16]. However, 

there are fundamental problems associated with each of these workarounds. For example, 

the use of shallow 3D network architectures or fewer feature maps is known to compromise 

segmentation accuracy. The ROI extraction approach is carried out using ROI detection 

algorithms, whose robustness remains questionable [8]. In addition, as no 3D context is 

taken into account, 2D network-based methods suffer from lack of 3D spatial consistency 

between the segmented slices (leading to lack of smoothness in the long-axis direction), and 

may result in a false positive prediction at an image slice containing non-ventricular tissues 

that are similar to target ventricles [8].
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Due to the limitations of standard clinical acquisition protocols, raw volumetric CMR 

images acquired from standard scans often contain several artefacts [19], including inter-

slice shift (i.e. respiratory motion), large slice thickness, and lack of slice coverage. Most 

deep learning methods do not routinely account for imaging artefacts [4], [5], [6], [7], [8], 

[9], [10], [12], [13], [14], [16]. As such, these artefacts are inevitably propagated onto the 

resulting segmentations. An example is given in Fig 1 e. The figure shows the segmentation 

of a 3D volume (whose short- and long-axis views are shown in Fig 1 a and b) using a state-

of-the-art CNN approach [13]. As can be seen, the segmentation Fig 1 e inherits the 

misalignment and staircase artefacts present in the original volumetric image due to cardiac 

motion and large slice thickness. Further, holes exist at the apical region of the 3D model 

due to incomplete slice coverage of the whole heart. Different approaches have been 

proposed to tackle each artefact accordingly before building a smooth model. For example, 

misalignment was corrected using quadratic polynomials [15] or rigid registration [20]; 

Large slice thickness can be addressed by super-resolution techniques [21]. However, few 

studies have addressed different artefacts directly from an image segmentation perspective. 

To date, we are aware of only one deep learning segmentation method [11] that takes into 

account different cardiac artefacts, but the method was tested on only simulated images of 

the LV, whose anatomy is less complex than the bi-ventricular anatomy. It is thereby still an 

open problem as to how to build an artefact-free and smooth bi-ventricular segmentation 

model from real artefact-corrupted CMR volumes with novel image segmentation methods.

For clinical applications, segmentation algorithms need to maintain accuracy across diverse 

patient populations with varying disease phenotypes. In the existing literature, however, 

most methods [5], [6], [9], [11], [12], [13], [14], [15] have been developed and validated 

over normal (healthy) hearts or mildly abnormal hearts. Few studies have focused on hearts 

with very significant pathology with altered geometry and motion compared to healthy 

hearts. In addition, most methods [4], [5], [6], [7], [9], [10], [12], [14], [15] tend to use small 

image datasets. For example, four representative MICCAI challenges, namely the 2009 

automatic LV segmentation challenge1 (also known as Sunnybrook cardiac data), the 2011 

LV segmentation challenge2 (organized as part of the STACOM workshop), the 2015 RV 

segmentation challenge [22] and the 2017 ACDC, were tested on only 30, 100, 48 and 100 

CMR datasets respectively. Given the small size of the datasets used for training and testing, 

whether the reported results can be generalised to larger cohorts remains questionable.

In this paper, we propose a segmentation pipeline to address the aforementioned limitations 

of current approaches. Specifically, we make the following contributions:

• We propose a multi-task deep learning network that simultaneously predicts 

segmentation labels and anatomical landmarks in CMR volumes. The network 

takes input volumetric images as multi-channel vector images (2.5D 

representation), requires no ROI extraction, and contains up to 15 convolutional 

layers. As such, the network has the computational advantage of 2D networks 

and is able to address 3D issues without compromising accuracy and spatial 

1http://www.cardiacatlas.org/challenges/lv-segmentation-challenge/
2http://www.cardiacatlas.org/studies/sunnybrook-cardiac-data/
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consistency. To our knowledge, this is the first work applying deep learning to 

CMR landmark localisation in a 3D context.

• We introduce anatomical shape prior knowledge to the network segmentation, 

which is a refinement step that is carried out using atlas propagation with a 

cohort of high-resolution atlases. As such, the pipeline is able to produce an 

accurate, smooth and clinically meaningful bi-ventricular segmentation model, 

despite the existing artefacts in the input volume. Moreover, due to the use of 

landmarks detected by the network, the proposed pipeline is entirely automatic.

• We demonstrate that the proposed pipeline can be readily generalised to 

segmenting volumetric CMR images from subjects with pulmonary hypertension 

(a cardiovascular disease). We thoroughly assess the effectiveness and robustness 

of the proposed pipeline using a large-scale dataset, comprising 2480 short-axis 

CMR volumetric images for training and testing. To our knowledge, this is one 

of the first CMR segmentation studies utilising a volumetric dataset of this size, 

and the technique introduced herein is the first automatic approach capable of 

producing a full high-resolution bi-ventricular model in 3D.

II Method

A Overview

The proposed automatic segmentation pipeline handles two types of CMR volumetric 

inputs: low-resolution (LR) and high-resolution (HR) volumes. Fig 1 illustrates the 

differences between them. The LR volume has a large slice thickness (10 mm), giving rise to 

a staircase effect in the long-axis3 view (Fig 1 b). Moreover, since the slices in Fig 1 b were 

acquired from multiple breath-holds, inconsistency of each breath-hold results in an inter-

slice shift artefact. In contrast, the cross plane resolution of the HR volume is 2 mm, making 

its long-axis image Fig 1 d relatively smooth. In addition, HR imaging requires only one 

single 20-25 second breath-hold and therefore it introduces no inter-slice shift artefact. 

However, HR imaging may not be feasible for pathological subjects who are unable to hold 

their breath for 20-25s during each scan. Since HR imaging acquisition generates artefact-

free cardiac volumes [23], it enables an accurate delineation of ventricular morphology, as 

shown in Fig 1 f. In comparison, Fig 1 e shows that the segmentation of an LR volume 

contains different cardiac artefacts [19] (e.g. inter-slice shift, large slice thickness, and lack 

of slice coverage). Note that the in-plane resolution of both HR and LR volumes is about 1.3 

× 1.3 mm, so their corresponding short-axis views Fig 1 a and c are of relatively high 

quality.

The proposed pipeline has three main components: segmentation, landmark localisation and 

atlas propagation. We term the proposed network used in the pipeline as the Simultaneous 

Segmentation and Landmark Localisation Network (SSLLN). Further, the related terms 

3In a standard CMR acquisition, short-axis and long-axis images are acquired separately, both of which have high in-plane resolution. 
However, in this paper, only CMR-acquired short-axis images are used, and a long-axis image denotes a vertical slice/cross-section of 
a stack of these short-axis images. Bigger gap between short-axis images would result in poorer resolution in the long-axis image. An 
example is given in Fig 1.
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SSLLN-HR and SSLLN-LR will be used to refer to versions of SSLLN trained with HR and 

LR volumetric data, respectively. In Fig 2, we illustrate the pipeline schematically. For an 

HR volume input, the trained SSLLN-HR is deployed to predict its segmentation labels as 

well as landmark locations. Since the HR volume input is artefact-free, the resulting 

segmentation is an accurate and smooth bi-ventricular 3D model. Afterwards, the HR 

volume and its corresponding SSLLN-HR outputs (landmarks and segmentation) are used as 

part of an HR atlas. For an LR volume input, the pipeline consists of two steps: First, the 

trained SSLLN-LR predicts an initial segmentation of the LR volume. In order to guarantee 

an artefact-free smooth segmentation output, a further refinement is carried out (second 

step). In this step, multiple selected HR atlases derived from SSLLN-HR are propagated 

onto the initial LR segmentation to form a smooth segmentation. This step explicitly fits 

anatomical shapes and is fully automatic due to the use of landmarks predicted from 

SSLLN-HR and -LR. We detail each of the two steps in the next two subsections.

B Learning segmentation labels and landmark locations

We treat the problem of predicting segmentation labels and landmark locations as a multi-

class classification problem. First, let us formulate the learning problem as follows: we 

denote the input volumetric training dataset by S = {(Ui, Ri, Li), i = 1, …, Nt}, where 

Ui = u j
i , j = 1, …, Ui  is the raw input CMR volume (Fig 3 left), 

Ri = r j
i , j = 1, …, Ri , r j

i ∈ 1, …, Nr  denotes the ground-truth segmentation labels for 

volume Ui (Nr = 5 representing 4 tissue types and a background as shown in Fig 3 right), 

Li = l j
i , j = 1, …, Li , l j

i ∈ 1, …, Nl  stands for the ground-truth landmark labels for Ui (Nl = 

7 representing 6 landmarks and a background as shown in Fig 3 middle), and Nt is the 

number of samples in the training data.

Note that |Ui| = |Ri| = |Li| is the total number of voxels in a CMR volume. We then define all 

network layer parameters as W. In a supervised setting, we propose to solve the following 

minimisation problem via the standard (back-propagation) stochastic gradient descent

W * = argmin
W

(LD W + αLL W + β W F
2 ), (1)

where α and β are weight coefficients balancing the three terms. LD (W) is the segmentation 

loss that evaluates spatial overlap with ground-truth labels. LL(W) is the landmark 

associated loss for predicting landmark locations. W F
2 , known as the weight decay term, 

represents the Frobenius norm on the weights W. This term is used to prevent over-fitting in 

the network. The training problem is to estimate the parameters W associated with all the 

convolutional layers and by minimising (1) the network is able to simultaneously predict 

segmentation labels and landmark locations. The definition of LD (W) above is first given as 

follows
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LD W = − ∑
i

2∑
k

∑
j

𝟙
r j
i = k

⋅ P(r j
i = k Ui, W)

∑
k

∑
j

𝟙
r j
i = k

2 + P2(r j
i = k Ui,W) + ϵ

, (2)

where 𝟙{·} is an indicator function. ϵ is a small positive value used to avoid dividing by zero. 

i, k and j respectively denote the training sample index, the segmentation label index and the 

voxel index. P r j
i = k Ui, W  corresponds to the softmax probability estimated by the network 

for a specific voxel j (subject to the restriction r j
i = k), given the training volume Ui and 

network weights W. Note that (2) is known as the differentiable Dice loss [24], in which the 

summations are carried out over all voxels, labels and training samples.

For landmark localisation in a CMR volume, the primary challenge is the extreme imbalance 

between the proportion of voxels belonging to landmark regions and the proportion 

belonging to non-landmark regions (the 6 landmarks are represented by 6 voxels, while all 

the remaining voxels (numbering in the millions) represent background). To solve this 

highly imbalanced classification problem, we propose the class-balanced weighted 

categorical cross-entropy loss

LL W = − ∑
i

∑
k

wk
i ∑

j ∈ Yk
i
logP(l j

i = k Ui, W) . (3)

Here k denotes the landmark label index, ranging from 1 to 7. Yk
i  represents the voxels in 

training sample i that belong to the region for which the value of landmark label index is k. 

To automatically balance landmark and non-landmark classes, we use a weight wk
i  for (3), 

where w j
i = 1 − Yk

i / Y i , k = 1, …, 7. Here Yk
i  denotes the number of voxels in Yk

i  while |Yi| 

represents the total number of voxels in training sample i. Let us explain how the weighting 

process works intuitively. For the voxel falling in any one of the 6 landmark locations, Yk
i  is 

1 and Yk
i / Y i  is close to zero. Therefore, 1 − Yk

i / Y i  is close to 1. On the other hand, 

∑ logP l j
i = k Ui, W  in (3) is very small as only one voxel contributes to this term. 

Therefore, the product wk
i ∑ logP l j

i = k Ui, W  ends up being a small value. In contrast, for a 

voxel falling in background area, 1 − Yk
i / Y i  is a very small value close to zero. 

∑ logP l j
i = k Ui, W  is however very large as almost all voxels (excluding the 6 landmark 

voxels) contribute to this term. Therefore, the product wk
i ∑ logP l j

i = k Ui, W  becomes a 

small value. As such. the losses resulting from the landmark and non-landmark voxels are 
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well balanced, which is crucial for successfully detecting merely 6 landmarks from a volume 

containing millions of voxels.

In Fig 4, we show the architecture of SSLLN. There are two major differences between our 

network architecture and existing 2D or 3D ones, which we highlight as novel contributions 

of this work. First, 2D networks [4], [5], [6], [7], [9], [10], [12], [13], [14], [15], [16] are 

often trained using 2D short-axis slices separately. Therefore, there is no 3D spatial 

consistency between the resulting segmented slices. 3D networks [5], [6], [7], [11], [24] 

often rely on 3D convolutions, which in practice leads to 5D tensors (e.g. batch size × [3D 

volume size] × classification categories) during forward and backward propagations and 

requires far more GPU memory than their 2D counterparts. Workarounds such as 

subsampling [25] or use of small batch size and fewer convolutional layers [5], [7], [11] are 

often considered when training 3D networks, but these either complicate the training process 

or cause loss of information and accuracy. Unlike 2D networks, our network treats each 

input CMR volume as a multi-channel vector image, known as ‘2.5D’ representation. In this 

sense, 3D volumes rather than 2D short-axis slices are used to train our network. As such, 

our network accounts for the spatial consistency between slices. Retaining the 3D spatial 

relationship is crucial for landmark localisation as landmarks encode spatial information. 

Unlike 3D networks, our network only involves 4D tensors (excluding the last layer). After 

the input volume passes through the first convolutional layer, the subsequent convolutional 

operations (excluding the last layer) in our network function exactly the same as those in 2D 

methods. Hence, the proposed network has the computational advantage of 2D networks, 

and also handles the input explicitly as a 3D volume (rather than a series of 2D slices), thus 

retaining accuracy and spatial consistency. This will be demonstrated later in Section III-C. 

We also note that other network architecture, such as the multi-view CNN [26] that parses 

3D data into different 2D components, may also suit our applications. Second, our network 

predicts segmentation labels and landmark locations simultaneously as we integrate the two 

problems into a unified image classification problem for which we tailored a novel loss 

function (1). We are not aware of any previous approach that detects cardiac landmarks 

using a deep learning-based classification method. This is also the first work that focuses on 

segmentation and landmark localisation simultaneously.

After the network is trained, given an unseen CMR volume f : Ω → ℝ#S (#S is the number 

of short-axis slices in the volume) defined on the domain Ω ⊂ ℝ2, we deploy the network on 

it and obtain the probability maps of segmentation (PS) and the probability maps of 

landmarks (PL) from the last convolutional layer. The binary segmentation and landmark 

labels are the indices of the maximum values of their probability maps along the channel 

direction, i.e. S = arg maxk=1,…,Nr PS and ℒ = arg maxk=1,…,NlPL.

C Introducing anatomical shape prior knowledge

Due to limitations of cardiac MR imaging, low-resolution (LR) volumetric training datasets 

often contain artefacts, such as inter-slice shift, large slice thickness, lack of slice coverage, 

etc. Inevitably, the deployment of SSLLN-LR trained from such a dataset causes the 

propagation of these artefacts to the resulting segmentation. An example can be found in Fig 

5 d and f. In this section, we introduce shape prior knowledge through atlas propagation to 
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overcome such artefacts in SSLLN-LR segmentation. In Fig 5, we outline the shape 

refinement framework, including initial affine alignment, atlas selection, deformable 

registration and label fusion. The framework involves using a cohort of high-resolution (HR) 

atlases produced from SSLLN-HR, each of which consists of an HR CMR volume (1.25 × 
1.25 × 2.0 mm), and its corresponding landmarks and segmentation labels. Next, we detail 

the framework.

Due to individual differences, the scanned heart often shows marked variations in size, pose 

and shape (as shown in Fig 5 a and d). This poses difficulty for existing image registration 

algorithms due to their non-convex nature. For this, the landmarks detected from SSLLN-

HR and -LR were used to initialise the subsequent non-rigid algorithm between target and 

each atlas, which is similar to [27], [28]. An affine transformation with 12 degrees of 

freedom was first computed between the target landmarks (predicted by SSLLN-LR) and the 

atlas landmarks (predicted by SSLLN-HR). In addition to initialising the non-rigid image 

registration, the resulting affine transformations were used to warp segmentations in all 

atlases to the target space for atlas selection. According to the normalised mutual 

information (NMI) scores between the target segmentation and each of affinely warped atlas 

segmentations, L most similar atlases can be selected to save registration time and to remove 

dissimilar atlases for label fusion.

Since the correspondences of structures across both target and atlas volumes are explicitly 

encoded in their segmentations, we only use segmentations for the following non-rigid 

registration. Let S and ln (n = 1, …, L) be the SSLLN-LR segmentation and the nth atlas 

segmentation, respectively. Let PS,ln (i, j) be the joint probability of labels i and j in S and ln, 

respectively. It is estimated as the number of voxels with label i in S and label j in ln divided 

by the total number of voxels in the overlap region of both segmentations. We then 

maximise the overlap of structures denoted by the same label in both S and ln by minimising 

the following objective function

Φn* = arg min 𝒞 S, ln Φn (4)

where Φn is the transformation between S and ln, which is modelled by a free-form 

deformation (FFD) based on B-splines [29]. 𝒞 (S, ln) = ∑i = 1
Nr PS, ln

(i, i) representing the 

label consistency [30].  in (4) is a similarity measure of how many labels, of all the labels 

in the atlas segmentation, are correctly mapped into the target segmentation. With the affine 

transformation as initialisation, a multi-scale gradient descent was then used to minimise the 

objective function (4). After the optimal Φn* is found, the segmentations and volumes in the 

nth atlas are warped to the target space. The process is repeated until n = L.

Lastly, we perform non-local label fusion to generate an accurate and smooth bi-ventricular 

model S for the imperfect SSLLN-LR segmentation S. Let us first denote the warped atlas 

volumes and segmentations as f n, ln′ n = 1, …, L , respectively. Here, n denotes the warped 

atlas index and L is the number of selected atlases. For each voxel x in the target LR volume 
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f, a patch fx centred at x can be constructed. The aim of the label fusion task is to determine 

the label at x in f using f n, ln′ n = 1, …, L . For each voxel x in fn, we define {(fn,y, ln,y)|n = 

1, …, L, y ∈ (x)}, where y denotes a voxel in the search window (x), fn,y denotes the 

patch centred at voxel y in the nth warped atlas, and ln,y denotes the corresponding label for 

voxel y. The resulting label at voxel x in the target volume f can be calculated as

Sx = arg max
k = 1, .., Nr

∑
n

∑
y ∈ 𝒩 x

e
−

f x − f n, y F
2

h ⋅δln, y, k (5)

where h denotes the bandwidth for the Gaussian kernel function and δln,y,k denotes the 

Kronecker delta, which is equal to one when ln,y = k and equal to zero otherwise. The 

equation (5) can be understood as a form of weighted voting, where each of the patches from 

each of the atlases contributes a vote for the label. It is a non-local method because it uses 

patch similarity formulation (i.e. Gaussian kernel function), which is inspired by the non-

local methods used in image denoising [31], inpainting [32], [33] and reconstruction [34]. It 

has been shown in [35] that, in a Bayesian framework, (5) is essentially a weighted K 
nearest neighbours (KNN) classifier, which determines the label by maximum likelihood 

estimation. By aggregating high-resolution atlas shapes in this way, an explicit anatomical 

shape prior can be inferred. The artefacts in the SSLLN-LR segmentation can thus be 

resolved, as shown in Fig. 5 j.

III Experiments

In this section, we cover extensive experiments to evaluate (both qualitatively and 

quantitatively) the performance of the proposed pipeline on short-axis CMR volumetric 

images. Dice index and Hausdorff distance [13] were employed for evaluating segmentation 

accuracy. Dice varies from 0-1, with high values corresponding to a better results. The 

Hausdorff distance is computed on an open-ended scale, with smaller values implying a 

better match. We also validate the performance using clinical measures (ventricular volume 

and mass) derived from the segmentations. In the following experiments, each component in 

the pipeline is studied separately.

A Clinical datasets

UK Digital Heart Project Dataset—This dataset4 (henceforth referred to as Dataset 1) is 

composed of 1831 cine HR CMR volumetric images from healthy volunteers, with 

corresponding dense segmentation annotations at the end-diastolic (ED) and end-systolic 

(ES) frames. The ground-truth segmentation labels were manually annotated by a pair of 

clinical experts working together, and each volume was only annotated by one expert at a 

time. For each volume at ED, 6 landmarks, as shown in Fig 3 middle, were manually 

annotated by a clinician (interuser 1). The raw volumes were derived from healthy subjects, 

scanned at Hammersmith Hospital, Imperial College London using a 3D cine balanced 

4https://digital-heart.org/
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steady-state free precession (b-SSFP) sequence [23] and has a resolution of 1.25 × 1.25 × 2 

mm. As introduced in Section II-A, HR imaging technique does not produce cardiac 

artefacts which are often seen in LR imaging acquisition [19].

Pulmonary Hypertension Dataset—This dataset (henceforth referred to as Dataset 2) 

was acquired at Hammersmith Hospital National Pulmonary Hypertension Centre, and 

composed of 649 subjects with pulmonary hypertension (PH) - a cardiovascular disease 

characterised by changes in bi-ventricular volume and geometry. PH subjects often have 

breathing difficulties, therefore HR imaging was impractical for the majority of patients in 

this cohort due to the relatively long breath-hold time required. Within the cohort, 629 of the 

649 patients were scanned using conventional LR image acquisition, and this manner of 

image acquisition (over multiple short breath-holds) often leads to lower-resolution volumes 

and inter-slice shift artefacts. In contrast, the remaining 20 subjects managed to perform a 

single breath-hold, and therefore HR volumes could be acquired for these subjects. Coupled 

with these HR volumes, LR volumes were also acquired during scanning, forming 20 pairs 

of LR and HR cine CMR volumes. The resolutions for LR and HR volumes are 1.38 × 1.38 

× 10 mm and 1.25 × 1.25 × 2 mm, respectively. For all 649 subjects, the manual ground-

truth segmentation labels at ED and ES were generated, and 6 landmarks at ED were also 

annotated.

B Preprocessing and augmentation

Image preprocessing was carried out to ensure: 1) the size of each volumetric image fits the 

network architecture; 2) the intensity distribution of each volume was in a comparable range 

so that each input could be treated equally importantly. As such, each of the HR volumes in 

Dataset 1 was reshaped to common dimensions of 192 × 192 × 80 with zero-padding if 

necessary, while each of LR volumes in Dataset 2 was interpolated to 1.25 × 1.25 × 2 mm 

and then reshaped to 192 × 192 × 80. For the best visual effect, the figures shown in 

experiments may be cropped manually. However, no ROI detection algorithm (for 

localisation of the heart) was used in image preprocessing. The intensity redistribution 

processes for both HR and LR volumes are the same. After reshaping, we first clipped the 

extreme voxel values (i.e. outliers) in each HR/LR volume. We defined outliers as voxel 

values lying outside of the 1st to 99th percentile range of original intensity values. Finally, 

the resulting voxel intensities of each volume were scaled to the [0, 1] range.

Since our network takes volumetric images as inputs, we performed 3D data augmentation 

on-the-fly during training. At each iteration, augmentation included rescaling of voxel 

intensities in the input volume, and a 3D random affine transformation of the volume and 

corresponding labels and landmarks. For simplicity, the affine transformation only involved 

in-plane translation, isotropic scaling and rotation along one random direction (x-, y- or z-

axis) at the central voxel of the volume. Neither shearing nor volume flipping was used. 

Data augmentation enables the network to see a large and diverse array of inputs by the end 

of training, and was implemented using the SimpleITK library in Python. With an Nvidia 

Titan XP GPU, training (50 epochs) took approximately 20 and 10 hours for Datasets 1 and 

2, respectively. For inference, segmentation (without shape refinement) of an HR/LR volume 

for a single subject at ED took < 1s.
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C Segmentation of high-resolution volumes

First, we conducted experiments using Dataset 1, which includes 1831 HR CMR volumes. 

We randomly split the dataset into two disjoint subsets of 1000/831. The first subset was 

used to train SSLLN-HR, and the second subset was used for testing the accuracy of 

segmentation and landmark localisation, respectively. During training, we only used ED 

instances (volumes, landmarks and segmentation labels). Note that the proposed SSLLN-HR 

is a multi-task network that simultaneously outputs labels and landmarks. Next we 

segmented a cardiac volume into 5 regions: the left ventricular cavity (LVC), right 

ventricular cavity (RVC), left ventricular wall (LVW), right ventricular wall (RVW) and 

background. Our method is the first one capable of producing a full HR bi-ventricular 

segmentation (LVC+LVW+RVC+RVW) in 3D.

In Fig 6, we compare SSLLN-HR with two baseline methods for segmentation. The first one 

is the 2D FCN proposed in [13], where the network5 was trained using each short-axis slice 

in the volume separately. The second one is the 3D FCN, whose architecture is similar as in 

Fig 4. To make the 3D FCN fit GPU memory, we halved the number of activation maps in 

each layer (excluding last one) and cropped the original image to a size of 112 × 112 × 64. 

To focus exclusively on segmentation accuracy, we removed the landmark localisation 

activation maps in the last layer of the 3D FCN. As Fig 6 shows, 2D FCN produces a jagged 

appearance as shown in the long-axis view image Fig 6 d, and there are ‘cracks’ in the 

corresponding 3D model as shown in Fig 6 e. This problem is due to the fact that the 2D 

method does not consider 3D context of the volumetric image, leading to a lack of spatial 

consistency between segmented slices. In contrast, both SSLLN-HR and 3D FCN account 

for the spatial consistency between slices, enabling smooth results. Visually, SSLLN-HR is 

comparable to 3D FCN. However, SSLLN-HR is less memory demanding and therefore can 

be directly implemented on non-cropped volumes with a faster training speed.

Table I provides a summary of quantitative comparisons between 2D FCN, 3D FCN and 

SSLLN-HR, with statistics derived from 831 subjects. Statistical significance of the 

observed differences in the evaluation metrics (Dice index and Hausdorff distance) between 

each pair of methods is assessed via the Wilcoxon signed-rank test. The results in the table 

demonstrate the high consistency between automated and manual segmentations. In terms of 

Dice and Hausdorff distance, SSLLN-HR and 3D FCN outperformed 2D FCN, and SSLLN-

HR achieved comparable performance to 3D FCN. Of note, all three methods achieved a 

relative low Dice score on the RVW anatomy. This is due to the thinness of RVW and the 

fact that the Dice index is more sensitive to errors in this structure. In Fig 7, boxplots 

visually depicting the results of Table are presented. As these plots show, the 2D method 

produced large variation across different segmentations for the four anatomies, resulting in a 

inferior accuracy than the 2.5D and 3D methods. SSLLN-SR achieved similar results to 3D 

FCN, with the segmentation accuracy of RVC and RVW slightly higher than that of 3D 

FCN.

5Code is publicly available at https://github.com/baiwenjia/ukbb_cardiac
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In Fig 8, we further compare the proposed SSLLN-HR with the 2D FCN. We selected 

batches of k consecutive short-axis slices in a volumetric image, with multiple settings of k 
(=5,13, and 20). In each case, we set intensities in the selected slices to zero, as shown in the 

1st column. The two methods under comparison were then applied to these partially zero-

filled volumes, and the results are given in 2nd-5th columns. As is evident, 2D FCN fails to 

segment these zero-filled slices, thus leaving gaps in the resulting 3D segmentations. In 

contrast, SSLLN-HR demonstrates robustness to missing slices and has the capability of 

‘inpainting’ these gap regions. However, as the gap (number of zero-filled slices) increases 

(from k=5 to k=20), the segmentation performance becomes worse. These results further 

illustrate that the proposed network retains 3D spatial consistency, which the 2D FCN is 

unable to achieve. Our method thus outperforms the 2D approach in this regard.

D Landmark localisation

To enable automatic alignment for subsequent non-rigid registration, we also predicted 

landmark locations (together with segmentation) for each input volume using SSLLN-HR. 

Same as above, we used the split subsets 1000/831 for training and testing. Note that 

SSLLN-HR was trained with manual landmarks carried out by inter-user 1 on each of the 

1000 subjects. For the 831 unseen test subjects, the automatically detected landmarks were 

compared with the manual ones from inter-user 1 using the point-to-point Euclidean 

distance. Also, to study inter-user variability of landmarking, a second expert (inter-use 2) 

was recruited to manually annotate landmarks for each of 831 test subjects. The annotations 

were then compared with those of inter-user 1.

Fig 9 first shows a visual comparison of automated and manual (inter-user 1) landmarks. Fig 

9 b shows the landmark locations predicted by our SSLLN-HR. As is evident, each 

landmark is represented by a few locally clustered voxels. The central gravity (represented 

by a single voxel) of each landmark in Fig 9 b can be computed by averaging the positions 

of the voxels forming the true landmark. The corresponding results are shown in Fig 9 c, 

where the two type of landmarks are superimposed. The respective colour coded single-

voxel landmarks are shown in Fig 9 d, which were used for initial point-to-point affine 

registration, as shown in Fig 5. In Fig 9 f, we superimposed the automated detected 

landmarks and manual landmarks (Fig 9 e). As can be seen, Fig 9 f demonstrates very good 

consistency between the automated and manual landmarks.

In Table II, we compare the landmark localisation errors between automated and manual 

methods, as well as between the two manual methods on 831 test volumes. Using inter-user 

1 as a baseline for comparison, we observe that the SSLLN-HR detections are more accurate 

than the annotations of inter-user 2. The point-to-point distance errors between SSLLN-HR 

and inter-user 1 vary only from 3.67±3.20 mm for Landmark-I to 8.18±6.91 mm for 

Landmark-II. In contrast, the errors between the two inter-users vary from 5.61±2.62 mm for 

Landmark-V to 17.4±9.27 mm for Landmark-II. This confirms that computer-human 

difference can be smaller than human-human difference.

Fig 10 provides a simple visualisation of the relative error distribution in the test sample of 

831 volumes. The two plots show the cumulative distribution of point-to-point distance error 

for each landmark. As can be seen, the curves in the right are more clustered and stacked 
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vertically than those in the left, indicating superior accuracy of landmark localisations by 

SSLLN-HR. For example, from the right plot we see that for all landmarks, about 92% of 

test volumes had point-to-point distance error of <20 mm. In contrast, only 60% of test 

volumes reached point-to-point distance error of ~20 mm, as shown in the left plot.

Fig 11 provides a 3D visualisation of landmarks for all the 831 volumes. These landmarks 

were acquired from inter-user 1, inter-user 2 and SSLLN-HR. This figure further illustrates 

that SSLLN-HR, trained from manual annotations of a human, excellently matches the 

performance of that human on an unseen test set. On the other hand, the discrepancy 

between human-human performance could be very large. Fig 11, together with Fig 9, Table 

II and Fig 10, provide an ample evidence that the proposed SSLLN-HR has the capability of 

detecting landmarks robustly and accurately, and that it tends to produce less variability in 

predictions relative to variability among human experts.

E Impact of landmarks

In this section, we show that landmarks localisation is a necessary step in our pipeline. In 

Fig 12, we compare the SSLLN-LR segmentation results refined by the non-rigid 

deformation with different initialisations of affine transformation. As shown in the 5th 

column of Fig 12, the non-rigid refinement failed completely if the affine transform is 

initialised from the tissue classes. In contrast, initialising it directly on the landmarks 

resulted in an accurate refinement, as shown in the last column of Fig 12. We propose two 

reasons for this observation: 1) the six anatomical landmarks defined in the study effectively 

reflect the underlying pose, size and shape of a heart. As such, warping a heart with 

landmark-based affine transformation produces a very robust initialisation for the subsequent 

non-rigid registration; 2) Computing an affine transformation from a pair of landmarks is a 

convex least squares problem, a unique solution to which exits. In contrast, initialising an 

affine transform directly on the tissue classes is a non-convex problem. As such, the warped 

result is sometimes sub-optimal, which may negatively impact the non-rigid registration and 

increase uncertainty of the registration method. Moreover, label-based affine registration is 

much more computational expensive than landmark-based affine registration as it needs to 

deal with millions of voxels in the 3D volumes. In the IRTK implementation6, it took 

~0.005s to compute an affine transformation on a pair of landmarks, whilst it took ~5s to 

perform an affine registration using the 3D segmentation labels with size 256 × 256 × 56.

We note that it may also be possible to detect landmarks automatically from segmentation 

labels. In this case, the accuracy of landmarks will be conditioned on the accuracy of 

segmentation. On the other hand, it may not be straightforward to determine which 

landmarks should be detected from segmentation labels for robust registration. As such, 

directly detecting the six landmarks defined in the study using the proposed network is 

neater and better.

6Code is publicly available at https://github.com/BioMedIA/IRTK
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F Experiments on simulated low-resolution volumes

To quantitatively assess the performance of SSLLN-LR and shape refinement (SSLLN-LR

+SR) in the pipeline (bottom path in Fig 2), we developed a method to simulate different 

types of artefacts seen in LR cardiac volumes. Specifically, in Fig 13 an HR volume and its 

manual segmentation were first downsampled from 1.25×1.25×2 mm to 1.25×1.25×10 mm, 

as shown in the 1st and 2nd columns. The downsampling produces a staircase artefact due to 

reduction in long-axis resolution. Moreover, the segmentation (Fig 13 d) around the apical 

region is now incomplete due to the lack of coverage of the whole heart. We further 

simulated inter-slice shift artefact by randomly translating each 2D short-axis slice 

horizontally. This step produced misalignment in the cardiac volume and its segmentation, 

as shown in the 3rd column.

Next, for training the SSLLN-LR, the LR volume Fig 13 e and its segmentation Fig 13 f 
were used as inputs. Note that our method is capable of producing an HR smooth 

segmentation model even from misaligned inputs such as the example in Fig 13 f. Since we 

have the smooth ground truth Fig 13 b for the simulated Fig 13 e, we can quantitatively 

assess the ability of our method to recover the original smooth shape. For these simulation 

experiments, we split Dataset 1 into subsets (1000/600/231). The first two subsets were 

corrupted with the simulated artefacts described above, which were used for training the 

SSLLN-LR and testing the proposed shape refinement (SC) component of the pipeline. The 

HR atlas shapes (segmented by SSLLN-HR) in the last cohort (n=231) were used to refine 

SSLLN-LR segmentations.

Here we highlight three reasons why we used SSLLN-HR network results as a reference 

atlas set for shape-refinement: 1) our SSLLN-HR is able to produce results that are very 

similar to the corresponding ground truth, as confirmed from Section III-C and III-D; 2) 

Once the SSLLN-HR is trained, it can be readily deployed on an external dataset (where HR 

atlases are not available) to create new HR atlases so as to facilitate the running of our 

pipeline; 3) The atlas set can be enriched by adding more SSLLN-HR results, which will 

increase the possibility to select better atlases for the sequential registration-based 

refinement.

In Table III, we compare the Dice index and Hausdorff distance between the SSLLN-HR 

and SSLLN-LR+SR results. SSLLN-HR was directly evaluated on 600 artefact-free HR 

volumes at ED in Section III-C, while SSLN-LR+SC was tested on the 600 corresponding 

simulated LR volumes where cardiac artefacts exist, as shown in Fig 13. Although SSLLN-

HR performs better than SSLLN-LR+SR, the performance gap between two approaches is 

minor. For LVC, LVW and RVC, the Dice index of SSLLN-HR is only about 0.2 higher than 

that of SSLLN-LR+SR. The Hausdorff distance of SSLLN-HR is about 0.5 mm smaller than 

that of SSLLN-LR+SR for all 4 regions. Again due to the thin structure of RVW, the mean 

Dice values of the two methods are relatively low: 0.662 and 0.557, respectively. This table 

shows that SSLLN-LR+SR achieves good segmentation results for imperfect LR input 

volumes, and the results are comparable to direct segmentation of artefact-free HR results.

In Table IV, we report the mean and standard deviation of the measurements derived from 

the two automated methods and manual segmentation. The table further demonstrates 
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SSLLN-LR+SR results are comparable to SSLLN-HR results, proving that our proposed 

method can produce results comparable to direct segmentation of artefact-free HR volumes, 

even though target segmentation volumes are of low resolution and contain artefacts. 

Moreover, the RVM measurement derived from the two methods is consistent with the 

manual RVM measurement, confirming adequate segmentation of RVW using the two 

methods despite relatively lower Dice scores, as shown in Table III

Next, we compare SSLLN-LR+SR with the 3D-seg model [11], 3D-UNet model [36], 

cascaded 3D-UNet and convolutional auto-encoder model (3D-AE) [37], 3D anatomically 

constrained neural network model (3D-ACNN) [11] as well as multi-atlas method7 (MAM) 

[38]. To ensure a fair comparison, we used the same 20 CMR volumes as in [11] and the 

quantitative results are summarised in Table V. Since 3D-ACNN only segments the left 

ventricle (LV), the table only shows the results for the endocardium and myocardium of LV. 

Among the methods compared, 3D-seg and 3D-UNet do not use shape information, while 

3D-AE and 3D-ACNN infer shape constraints using an auto-encoder during network 

training. As Dice shows, MAM is inferior to deep learning-based methods, shape-based 

models outperform those without shape priors, and our SSLLN-LR+SR achieved the best 

performance. We propose three main reasons for this: 1): SSLLN-LR+SR uses atlas 

propagation to impose a shape refinement explicitly while 3D-AE and 3D-ACNN impose 

shape constraints in an implicit fashion. When the initial segmentation by SSLLN-LR is of 

sufficiently adequate quality, such an explicit shape refinement is able to produce more 

accurate segmentation. 2): SSLLN-LR+SR is a 2.5D-based method which allows the use of 

deeper network architectures than the 3D-based methods (e.g. ACNN-seg only uses 7 

convolutional layers while SSLLN-LR+SR has 15), leading to improved segmentation 

accuracy. 3): SSLLN-LR+SR uses label-based non-rigid registration (4), which may be more 

accurate for segmentation purpose than the intensity-based non-rigid registration used in 

MAM.

G Experiments on pathological low-resolution volumes

In Section III-F, we have quantitatively studied the performance of the proposed SSLLN-LR

+SR using simulated LR cardiac volumes. In this section, we will use real LR volumes. In 

particular, we test SSLLN-LR+SR on volumetric data in patients with pulmonary 

hypertension (PH) in Dataset 2. PH leads to a progressive deterioration in cardiac function 

and ultimately death, due to RV failure. As such, it is critical to accurately segment different 

functional regions of the heart in PH so as to study PH patients quantitatively. Fig 14 shows 

the difference in two CMR volumes from a representative healthy subject and a PH subject. 

In health, the RV is crescentic in short-axis views and triangular in long-axis views, 

wrapping around the thicker-walled LV. In PH, the dilated RV pushes onto the LV causing 

deformation and loss of its circular shape. The abnormal cardiac morphology of PH heart 

poses challenges for existing segmentation algorithms.

For training and testing, we use Dataset 2 introduced in Section III-A. This dataset includes 

629 LR PH volumes and 20 pairs of LR and HR PH volumes. We randomly split the 629 

7Code is publicly available at https://github.com/baiwenjia/CIMAS

Duan et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 September 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://github.com/baiwenjia/CIMAS


volumes into two disjoint subset of 429/200. The first subset is used to train SSLLN-LR, 

while the second subset is used for visually testing the accuracy of SSLLN-LR+SR 

segmentations (due to lack of corresponding HR ground truths). The 20 LR volumes are also 

used to quantitatively evaluate SSLLN-LR+SR using their HR volumes as ground-truth 

references. 231 HR atlases appearing in Section III-C are used to refine SSLLN-LR 

segmentations.

200 greyscale PH volumes (1.38 × 1.38 × 10 mm) were segmented by SSLLN-LR+SR into 

HR smooth models (1.25 × 1.25 × 2 mm). Results were visually assessed by one clinician 

with over five years’ experience in CMR imaging and judged satisfactory in all cases. We 

propose three reasons why the shape refinement works for PH cases: 1) the landmark-based 

affine and non-rigid registrations are collectively able to capture both global and local 

deformations between subjects; 2) for the non-rigid registration, we used label consistency 

as a loss function (4). It is based on segmentation masks, which can provide stronger 

regional and edge information for an accurate registration; 3) multiple atlases (i.e. the most 

similar to the subject) were selected for registration and fusion, and these selected atlases 

together vote for the final result, which further prevents diseased cases producing healthy 

results.

In Fig 15 a-h and Fig 16, we show an exemplary bi-ventricular segmentation of a cardiac 

volume in PH. We visually compare SSLLN-LR+SR with 2D FCN [13] and two approaches 

(nearest neighbour interpolation (NNI) and shape-based interpolation (SBI) [30], [39]) that 

interpolate the 2D FCN results. Both 2D FCN and interpolation methods do not use 

anatomical shape information, so they performed worse than SSLLN-LR+SR in the long-

axis view, as confirmed in Fig 15 f-h. Due to the high in-plane resolution, similar results in 

the short-axis view were achieved by different methods, as shown in Fig 15 b-d. Moreover, 

we observed from Fig 16 that SSLLN-LR+SR gives a better 3D phenotype result which is 

smooth, accurate and artefact-free.

Next, we test SSLLN-LR+SR using 20 pairs of LR and HR cardiac volumetric images. In 

Fig 15 i-p, we first demonstrate a segmentation example on a pair of LR and HR volumes 

acquired from the same patient with PH. The original low-resolution volume (1.38 × 1.38 × 
10 mm) was segmented by SSLLN-LR+SR into a HR smooth model (1.25 × 1.25 × 2 mm). 

The smooth segmentation is then visually compared with the ground truth, obtained directly 

from segmenting the corresponding HR volume of the patient. As is evident, the paired 

segmentation results show a very good agreement in terms of their cardiac morphology. 

Further, Table VI is provided, which shows a quantitative comparison between the SSLLN-

LR+SR results and the ground-truth segmentations. The automated measurements are 

quantitatively consistent with the manual measurements. Comparing Table VI with Table IV, 

we observed that PH patients have a bigger RVC and a smaller LVC than healthy subjects, 

and that the RVW of PH patients is thicker than that of healthy subjects. Note that the Dice 

scores computed from the paired LR and HR volumes are not applicable here due to the fact 

that they were acquired from subjects scanned at different positions with different breath-

holds. We also note that p values in Table VI are relatively large. This is likely due to the 

relatively low sample size of the dataset used in this experiment, in addition to the fact that 

automatic and manual measurements are not substantially different.

Duan et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2019 September 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



IV Discussion and Conclusion

In this paper, we developed a fully automatic pipeline for shape-refined bi-ventricular 

segmentation of short-axis CMR volumes. In the pipeline, we proposed a network that learns 

segmentation and landmark localisation tasks simultaneously. The proposed network 

combines the computational advantage of 2D networks and the capability of addressing 3D 

spatial consistency issues without loss of segmentation accuracy. The pipeline also induces 

an explicit shape prior information, thus allowing accurate, smooth and anatomically 

meaningful bi-ventricular segmentations despite artefacts in the cardiac volumes. Extensive 

experiments were conducted to validate the effectiveness of the proposed pipeline for both 

healthy and pathological cases.

However, there still exist limitations in the pipeline. For example, the pipeline is a 2-stage 

approach, which is not end-to-end learning. In such a case, the network parameters learned 

in stage 1 might not be optimal to generate high-resolution smooth segmentations in stage 2. 

In addition, although the deployment of a trained network (SSLLN-HR or SSLLN-LR) in 

stage 1 took less than 1s, the shape refinement (SR) in stage 2 is relatively computationally 

expensive, which is a big disadvantage. SR combines the computational costs from atlas 

selection, target-to-atlas non-rigid image registration, and non-local label fusion. In our 

implementation, SR was performed in parallel for 5 selected atlases using multiple CPUs of 

a workstation and it took 15-20 mins per subject at ED.

In future work, we will investigate how to train a single network to compute smooth shapes 

from artefact-corrupted low-resolution cardiac volumes. A simple solution would be training 

an end-to-end super-resolution network, as in [21], but with the segmentation labels acquired 

from our pipeline as the ground truth inputs. We will also investigate how to improve the 

computational speed of Stage 2 in our pipeline. For example, a GPU-based non-rigid image 

registration toolbox8 could be utilised. Besides the GPU-based implementation, deep 

hashing [40], [41] may be explored to select relevant atlas subjects instead of the brute force 

search technique (i.e. nearest neighbour) currently used in our atlas selection process. 

Another direction will be to investigate how to adapt the proposed network architecture for 

different tasks. For example, a fully connected layer may be concatenated for classification 

of subjects into healthy versus pathological groups, which will be carried out simultaneously 

with segmentation and landmark localisation tasks. Our pipeline treats landmarks as voxels 

and classifies them. In future work, we will explore an alternative approach that treats 

landmarks as points and regresses their coordinates, which could be implemented with a 

fully connected layer.
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Figure 1. 
Illustrating the differences between a low-resolution CMR volume (top row) and a high-

resolution CMR volume (bottom row). The images in the short-axis view are shown in a and 

c, while those in the long-axis view are in b and d. The corresponding segmentations are 

given in e and f.
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Figure 2. 
Pipeline for automatic bi-ventricular segmentation of low- and high-resolution volumetric 

images. The pipeline includes segmentation, landmark localisation and atlas propagation. It 

is capable of producing accurate, high-resolution and anatomically smooth bi-ventricular 

models, despite existing artefacts in input CMR volumes.
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Figure 3. 
An exemplar raw volumetric CMR image, its ground-truth landmarks and segmentation 

labels, which are utilised as inputs to train the network in Fig 4. On the left, three short-axis 

slices in the volume are highlighted, corresponding to basal, mid-ventricular, and apical 

locations (from top to bottom) of the heart. In the middle, six landmarks are shown, coloured 

according to the following cardiac regions: the left ventricular lateral wall mid-point 

(yellow), two right ventricular insert points (red and blue), right ventricular lateral wall 

turning point (green), apex (pink) and centre of the mitral valve (cyan). Together, they reflect 

the size, pose and shape of the heart. On the right, a full anatomical bi-ventricular heart 

model is shown, coloured according to the left ventricular cavity (red), left ventricular wall 

(green), right ventricular cavity (yellow) and right ventricular wall (blue).
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Figure 4. 
The architecture of the proposed SSLLN with 15 convolutional layers. The network takes 

different CMR volumes as input, applies a branch of convolutions, learns image features 

from fine to coarse levels, concatenates multi-scale features and finally predicts the 

probability maps of segmentation and landmarks simultaneously. These probability maps, 

together with the ground-truth segmentation labels and landmark locations, are then utilised 

in the loss function in (1) which is minimised via the stochastic gradient descent. Here #S, 

#A, #C, #LK and GT represent the number of volume slices, the number of activation maps, 

the number of anatomies, the number of landmarks, and ground truth, respectively.
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Figure 5. 
A block diagram illustrating how to explicitly introduce an anatomical shape refinement to 

the SSLLN-LR segmentation. As is evident in j, such a shape refinement enables an 

accurate, smooth and clinically meaningful bi-ventricular segmentation model, despite the 

artefacts in the LR input volume d. The framework is fully automated due to the use of the 

landmarks detected from SSLLN-HR and -LR.
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Figure 6. 
Visual comparison of segmentation results by 2D slice-by-slice FCN, 3D FCN and SSLLN-

HR. a and b: two views of a high-resolution volume; c, d and e: results by 2D FCN; f, g and 

h: results by 3D FCN; i, j and k: SSLLN-HR. SAX and LAX denote short-axis and long-

axis, respectively.
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Figure 7. 
Boxplot comparison of segmentation accuracy between 2D FCN, 3D FCN and SSLLN-HR 

on 831 high-resolution short-axis volumetric images. The symbol ‘***’ denotes p ≪ 0.001, 

and ‘*’ denotes p < 0.1.
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Figure 8. 
Testing 3D spatial consistency of the 2D FCN and SSLLN-HR methods. 1st column: target 

segmentation volumes with zero-filled gaps of different sizes; 2nd and 3rd columns: 2D 

FCN results; 4th and 5th columns: SSLLN-HR results.
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Figure 9. 
Landmark localisation using the proposed network. a: input volume; b: landmarks detected 

by SSLLN-HR directly; c: single-voxel landmark extraction from each clustered landmark in 

b; d: colour coded single-voxel landmarks; e: ground-truth landmarks annotated by inter-

user 1; f: superimposed ground-truth (red) and automated (white) landmarks.
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Figure 10. 
Cumulative error distribution curves of landmark localisation errors. The left curves are 

derived from manual landmarks of inter-user 1 and inter-user 2, and the right curves are 

plotted based on automated (SSLLN-HR) and manual (inter-user 1) landmark localisations.
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Figure 11. 
Visualisation of landmarks in 3D. a: manual landmarks by inter-user 1; b: manual landmarks 

by inter-user 2; c: landmarks localised by the network, trained on the manual annotations of 

inter-user 1; d: superimposed a and b; e: superimposed a and c. It is evident that a and c 
overlap to a greater degree than b and c.
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Figure 12. 
Impact of using landmarks in the proposed pipeline. 1st column: SSLLN-HR segmentation 

of an HR atlas volume; 2nd column: SSLLN-LR segmentation of an LR volume; 3rd 

column: superimposed SSLLN-HR and SSLLN-LR segmentation labels; 4th column: 

SSLLN-HR segmentation affinely warped to the SSLLN-LR segmentation based on their 

labels; 5th column: final SSLLN-LR segmentation refined by the non-rigid registration 

initialised with the label-based affine transform; 6th column: SSLLN-HR segmentation 

affinely warped to the SSLLN-LR segmentation based on their landmarks localised by the 

network in Fig 4; 7th column: final SSLLN-LR segmentation refined by the non-rigid 

registration initialised with the landmark-based affine transform. The 1st, 2nd and 3rd rows 

respectively show the short-axis view, long-axis view and corresponding 3D visualisation of 

segmentation.
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Figure 13. 
Simulating cardiac artefacts in real scenarios. 1st column: artefact-free high-resolution 

cardiac volume and ground-truth labels. 2nd column: downsampled versions of volumes in 

the 1st column. 3rd column: inter-slice shift is added to the downsampled volumes in the 

2nd column.
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Figure 14. 
Illustrating the difference between a healthy subject (first two) and a PH subject (last two) 

from short- and long-axis views. Both subjects were scanned using low-resolution 

acquisition.
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Figure 15. 
Bi-ventricular segmentation of volumetric images from two PH patients. a and e: original 

low-resolution volume (two views) from patient I; b and f: 2D FCN+NNI results; c and g: 

2D FCN+SBI results; d and h: SSLLR-LR+SC results. i and m: original low-resolution 

volume from patient II; j and n: SSLLN-LR+SR results; k and o: original high-resolution 

volume from patient II; l and p: ground truth. The proposed SSLLN-LR+SR is not only 

insensitive to cardiac artefacts (inter-slice shift, large slice thickness, and lack of slice 

coverage), but also robust against pathology-induced morphological changes.
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Figure 16. 
Visualisation of a 3D bi-ventricular model obtained through segmenting the volumetric 

image from a PH patient. 1st column: 2D FCN results; 2nd column: 2D FCN+NNI results; 

3rd column: 2D FCN+SBI results; 4th colunm: SSLLR-LR+SC results. The proposed 

approach is capable of producing accurate, high-resolution and anatomically smooth bi-

ventricular models for pathological subjects.
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Table I

Dice index and Hausdorff distance derived from 2D FCN, 3D FCN, and SSLLN-HR for segmenting 831 high-

resolution short-axis volumetric images. The mean ± standard deviation are reported.

Dice Index (%) Hausdorff Dist. (mm)

2D FCN 3D FCN SSLLN-HR 2D FCN 3D FCN SSLLN-HR

LVC 0.950±0.022 0.963±0.010 0.962±0.015 2.584±1.108 2.037±0.413 2.203±0.922

LVW 0.836±0.060 0.888±0.024 0.873±0.034 3.927±1.712 3.028±1.062 3.242±0.992

RVC 0.887±0.061 0.917±0.025 0.929±0.026 6.614±4.032 4.748±1.253 4.171±1.527

RVW 0.633±0.132 0.732±0.073 0.755±0.068 8.252±3.644 6.184±1.403 5.996±1.424
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Table II

Point-to-point (P2P) distance error statistics in landmark localisation over 831 volumes. The second column 

shows the errors between automated (SSLLN-HR) and manual (inter-user 1) landmark localisations. The third 

column shows the errors between two manual (inter-user 1 and 2) annotations. The mean ± standard deviation 

in mm are reported. The description of the 6 landmarks is given in Fig 3.

Region Auto vs Man 1 Man 1 vs Man 2 p-value

Landmark-I (blue) 3.67±3.20 9.16±4.37 p ≪0.001

Landmark-II (green) 8.18±6.91 17.4±9.27 p ≪0.001

Landmark-III (red) 3.99±3.54 9.69±5.39 p ≪0.001

Landmark-IV (yellow) 5.77±4.15 11.7±5.87 p ≪0.001

Landmark-V (pink) 3.86±2.74 5.61±2.62 p ≪0.001

Landmark-VI (cyan) 5.15±2.82 14.6±5.44 p ≪0.001
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Table III

Comparison of Dice index and Hausdorff distance between SSLLN-HR and SSLLN-LR+SR (shape 

refinement). SSLLN-HR was validated on 600 high-resolution short-axis volumetric images from Dataset 1, 

whilst SSLLN-LR+SR was validated on 600 low-resolution volumes, simulated from the corresponding high-

resolution volumes.

Dice Index (%) Hausdorff Dist. (mm)

SSLLN-HR SSLLN-LR+SR p-value SSLLN-HR SSLLN-LR+SR p-value

LVC 0.960±0.015 0.940±0.024 p ≪0.001 3.396±0.505 4.045±0.675 p ≪0.001

LVW 0.879±0.030 0.863±0.049 p ≪0.001 3.868±1.306 4.394±0.841 p ≪0.001

RVC 0.929±0.025 0.914±0.033 p ≪0.001 4.560±1.040 5.039±1.218 p ≪0.001

RVW 0.662±0.103 0.557±0.121 p ≪0.001 5.664±2.701 6.119±2.956 p ≪0.001
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Table IV

Comparison of clinical measures between SSLLN-HR, SSLLN-LR+SR and manual measurements on 600 

volumetric cardiac images. SSLLN-HR was validated on high-resolution volumes from Dataset 1, whilst 

SSLLN-LR+SR was validated on 600 low-resolution volumes, simulated from the corresponding high-

resolution volumes. The 4th/5th columns show absolute difference between automated and manual measures.

SSLLN-HR* SSLLN-LR+SR† Manual * vs Manual † vs Manual

LVV (ml) 148.392±34.352 151.048±35.016 147.638±34.711 4.623±4.014 6.066±5.782

LVM (gram) 123.028±24.123 124.240±24.383 119.278±25.685 5.551±4.308 6.737±5.244

RVV (ml) 168.638±37.144 174.383±39.480 171.553±38.622 8.547±7.540 9.299±8.551

RVM (gram) 35.466±8.121 32.290±7.381 33.704±7.261 3.571±2.803 2.956±2.899
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Table V

Comparison of Dice index and Hausdorff distance between the proposed SSLLN-LR+SR and 5 state-of-the-art 

3D approaches. These methods were tested on 20 simulated LR volumes (~200 CMR images). The ground-

truth labels were obtained from high-resolution volumes acquired from same subjects, which do not contain 

cardiac artefacts.

Endocardium Myocardium

Dice Index (%) Hausdorff Dist. (mm) Dice Index (%) Hausdorff Dist. (mm)

3D-Seg [11] 0.923±0.019 10.28±8.25 0.773±0.038 10.15±10.58

3D-UNet [36] 0.923±0.019 9.94±9.92 0.764±0.045 9.81±11.77

3D-AE [37] 0.926±0.019 8.42±3.64 0.779±0.033 8.52±2.72

3D-ACNN [11] 0.939±0.017 7.89±3.83 0.811±0.027 7.31±3.59

MAM [38] 0.87±0.029 6.65±1.74 0.711±0.064 8.89±2.07

SSLLN-LR+SR 0.943±0.020 4.09±0.69 0.854±0.042 4.37±1.04
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Table VI

Comparison of clinical measures derived from SSLLN-LR+SR and manual segmentations on 20 pairs of low-

resolution and high-resolution volumetric images from Dataset 2. SSLLN-LR+SR segmented 20 low-

resolution volumes into high-resolution models, whilst manual segmentation was performed on 20 high-

resolution cardiac volumes directly. The 4th column shows absolute difference between SSLLN-LR+SR and 

manual measures.

SSLLN-LR+SR† Manual † vs Manual p-value

LVV (ml) 120.098±20.822 114.815±25.099 10.42±9.378 p ≈0.119

LVM (gram) 125.989±34.639 124.237±25.271 8.032±9.614 p ≈0.855

RVV (ml) 221.514±64.534 204.293±58.534 18.69±13.55 p ≈0.001

RVM (gram)  51.621±14.938  49.877±14.166 3.857±2.558 p ≈0.501
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