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Abstract

Recent studies have demonstrated that mobile sampling can improve the spatial granularity of land 

use regression (LUR) models. Mobile sampling campaigns deploying low-cost (<$300) air quality 

sensors could potentially offer an inexpensive and practical approach to measure and model air 

pollution concentration levels. In this study, we developed LUR models for street-level fine 

particulate matter (PM2.5) concentration levels in Seoul, South Korea. 169 hours of data were 

collected from an approximately three week long campaign across five routes by ten volunteers 

sharing seven AirBeams, a low-cost ($250 per unit), smartphone-based particle counter, while 

geospatial data were extracted from OpenStreetMap, an open-source and crowd-generated 

geographical dataset. We applied and compared three statistical approaches in constructing the 

LUR models – linear regression (LR), random forest (RF), and stacked ensemble (SE) combining 

multiple machine learning algorithms – which resulted in cross-validation R2 values of 0.63, 0.73, 

and 0.80, respectively and identification of several pollution ‘hotspots.’ The high R2 values 

suggest that study designs employing mobile sampling in conjunction with multiple low-cost air 

quality monitors could be applied to characterize urban street-level air quality with high spatial 

resolution, and that machine learning models could further improve model performance. Given 

this study design’s cost-effectiveness and ease of implementation, similar approaches may be 

especially suitable for citizen science and community-based endeavors, or in regions bereft of air 

quality data and preexisting air monitoring networks, such as developing countries.

1. INTRODUCTION

Ambient air pollution is a major global public health concern, with the World Health 

Organization estimating that 4.2 million premature deaths annually are attributable to fine 
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particulate matter (PM2.5) exposure (WHO, 2018). Government and regulatory agencies 

throughout the world have traditionally relied on networks of fixed-site monitors in order to 

measure air quality and establish standards. Owing to their prohibitive equipment and 

operational costs, these monitors tend to be sparsely located even in large metropolitan 

cities, or may be entirely missing in many locales. However, as concentrations of air 

pollutants can vary markedly over small distances and short time periods, the urban 

environment cannot be fully characterized using information from sparse, static networks of 

air pollution monitors (Kumar et al., 2015). To empirically model and characterize the 

spatial or spatiotemporal variability of PM2.5 concentrations, land use regression (LUR) 

models based on data from monitoring networks have been employed. Recently, LUR 

models based on data collected from mobile sampling designs – where predetermined 

locations or routes are repeatedly sampled on modes of transport – have gained traction, 

offering improved spatial resolution at a lower cost (e.g., Hankey and Marshall, 2015; Shi et 

al., 2016; Deville Cavellin et al., 2016).

Recent technological advancements and proliferation of air quality sensors offer additional 

avenues to refine the spatiotemporal characterization of air pollution levels. Numerous 

instruments from commercial entities, non-profits, and startups have entered the market to 

date (Borghi et al., 2017; McKerchner et al., 2017), although the performance of these 

sensors can differ substantially between the different models as well as between individual 

units, as noted by evaluations in field and laboratory settings (Jiao et al., 2016; Jerrett et al., 

2017; Castell et al., 2017; Kelly et al., 2017; Feinberg et al., 2018; Levy Zamora et al., 

2019). Offering the capability to inexpensively generate a large volume of data, distributed 

networks of low-cost air quality sensors are beginning to be established to augment existing 

monitoring networks or provide novel real-time data streams (Gao et al., 2015; Schneider et 

al., 2017; Zikova et al., 2017). Noteworthy examples of collaborative endeavors between 

government agencies, research organizations, and communities include: ‘OpenSense’ in 

Geneva, Switzerland (Hasenfratz et al., 2015), ‘Array of Things’ in Chicago, U.S (Catlett et 

al., 2017), and the Imperial County Community Air Monitoring Network (English et al., 

2017) in California, U.S.

LUR models based on data collected from mobile sampling with low-cost (<$300) 

consumer-based sensors are very limited thus far, which could potentially offer a highly 

cost-effective approach to model and map air pollution concentration levels. The main aim 

of this study was to deploy multiple smartphone-based particle counter ‘AirBeam’ to 

measure and model street-level urban air quality in Seoul, South Korea, a location with 

limited fixed regulatory monitoring sites relative to the high population and diverse urban 

environments. The individual AirBeam units were first collocated with a pDR-1500 within a 

laboratory setting to adjust for intra-instrument variability and equate particle counts to mass 

equivalents, and a mobile sampling campaign was conducted by repeatedly walking across 

five routes during an approximately three-week period. The collected air pollution data, 

together with an openly available and crowd-sourced geographical data source 

OpenStreetMap (OSM), were then used to construct LUR models with both linear regression 

and machine learning methods. This work explores the potential of mobile sampling with 

low-cost air quality sensors, machine learning models, and ‘open data’ sources to 

characterize street-level air quality in urban locations with fine spatial resolution.
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2. MATERIALS AND METHODS

2.1 Equipment Description and Intra-Instrument Variability Adjustment

The internal optical particle sensor of the AirBeam (dimensions: 105 × 95 × 43.5mm; 

weight: 198g) is the PPD60PV-T2 (detectable particle range: 0 to 400 μg/m3; detective 

particle size 0.5–2.5 μm) from Shinyei Technology Co. LTD. (Kyoto, Japan), connected to 

an Android OX smartphone running the AirCasting application (aircasting.org). 

Supplemental Figure 1 depicts the AirBeam, its specifications, and the Android AirCasting 

app. This mobile system is capable of continuous measurement (programmable intervals as 

little as per 1 second) and mapping (by GPS and Google Maps). The platform code is open-

source, and collected data can be shared and mapped via an online platform, ‘Aircasting’ 

(www.aircasting.org/map).

To adjust for potential intra-instrument variability and to convert particle counts to PM2.5 

mass equivalents, the AirBeam units were collocated with a DataRAM pDR-1500 (Thermo 

Scientific, Franklin, MA) within a concentrated air particle (CAP) system in Sterling Forest, 

New York. The system draws in and concentrates ambient air through a cyclone inlet that 

first removes most of the particles larger than 2.5μm in aerodynamic diameter. The cyclone 

outflow is passed over the warm bath of water and is then rapidly cooled in the condenser, 

resulting in supersaturation and particle growth (Maciejczyk et al., 2005). The pDR-1500 

was initially calibrated with ambient particles and the internal gravimetric filter and pump 

system at a flow rate of 1.5 L/min in the CAP chamber. The individual AirBeam units were 

then calibrated with the pDR-1500; first, the individual AirBeam units were placed within 

the CAPS chamber together with the pDR-1500 and tested for approximately 3 to 4 hour 

periods per day and between 2 to 3 days per unit, and separate linear regression models were 

fit for each unit.

2.2 Sampling Location and Protocol

Seoul, the capital of South Korea and the 5th most populous metropolitan area in the world, 

experiences one of the highest air pollution concentration levels among cities in developed 

countries. The city is characterized by extremely high urban density, abundance of high-rise 

buildings and apartments, and a mountainous terrain. This study was carried out in the 

southern part of Seoul, south of the Han River, in three districts: Dongjak-gu (area=16.35 

km2; population density=24,000/km2), Seocho-gu (area=47.14 km2; density=8,300/km2), 

and Gwanak-gu (area=29.57 km2; density=18,000/km2). The sampling campaign was 

conducted during an approximately three-week period (July 23rd to August 11th) in the 

summer of 2015, on weekdays only (12 days total, on non-rainy days) during three different 

time periods: morning (8–10am), evening (6–8pm), and night (9–11pm). Ten volunteers 

sharing 7 AirBeam units were instructed to repeatedly sample the five routes without 

predetermined beginning/ending locations and times.

The five routes (Figure 1), four of which were based near or around government-run 

regulatory monitors, were designed to span various neighborhoods and to obtain spatial 

coverage of a wide range of types of geographical variables, such as major roads and 

highways, green spaces, and both low and high density residential areas. Route A is located 
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in Sillim; the neighborhood is largely residential with low-rise buildings and houses. Route 

B is in Sadang, which is also mainly residential with a large park and three major roads that 

surround the neighborhood. Route C is in Seocho, where the central bus transport terminal 

for Seoul is located, as well as the main city highway, a riverside park, and high-rise 

apartment buildings. Route D is located at Isu, where major highways and high-density 

residential areas are present. Route E is located near Seoul National University, a large 

university campus located at the base of a mountain; the area is hilly and tree-covered, and 

has a relatively low volume of traffic, mainly consisting of buses used for student transport. 

The lengths of the routes ranged from 3.9km to 4.9km, and the total sum length of all the 

routes was 21.5km.

2.3 Data Source for Land Use Predictors

Geospatial data for the city of Seoul, South Korea were downloaded from OpenStreetMap 

(OSM), a freely available, crowd-sourced and user-generated online mapping system. The 

dataset included more than 60 variables, grouped by the following categories: roads 

(cycleway, footway, living, path, pedestrian, residential, primary, secondary, road, secondary 

link, service, steps, subway, tertiary, trunk, trunk link, unclassified); land use (cemetery, 

farm, footway, forest, garden, golf, grass, hospital, island, park, parking, pitch, place of 

worship, playground, residential, school, sports center, substation, university, wood); 

buildings (apartments, cathedral, church, commercial, hospital, hotel, house, public, 

residential, retail, school, university, identified/unidentified), public amenities (fire station, 

fuel station, hospital, library, police, school, town hall); transportation points (bus stop, 

motorway junction, station, subway entrance); and water areas and waterways (stream, river, 

riverbank, water). Several variables in different categories that repeatedly describe the same 

land use morphology – e.g. “university”, which is counted as land use, buildings, and public 

amenities – were all initially included in the analysis. After removing the subway variable 

(as it describes underground paths), there were 67 predictor variables available for analysis 

(Supplemental Table 1).

2.4 Data Reduction

As the frequency of data collection was in 1-second intervals, the data points were first 

aggregated into 1-minute averages to match the pDR-1500 sampling frequency and to reduce 

data noise. Measurement points with obvious GPS (e.g. located in middle of rivers) and 

sampling errors (e.g. volunteer did not follow sampling route properly) were removed by 

restricting data points to <50M away from the routes and also by manually after visual 

inspection. We then employed a “snapping” procedure to assign the collected data points to 

the nearest route segment on the basis of measured GPS coordinates to allow measurements 

along the same segment to be analyzed as a group, as per previous mobile LUR studies 

(Hankey and Marshall, 2015). Segments were defined by length from a starting point along a 

route, and buffers with different radiuses were then drawn around centroids of the route 

segments, with geospatial data from OSM within the buffers then extracted. Each road 

segment was thereby associated with land use, built, and natural environment variables, 

calculated as different OSM variables within the buffers of different sizes. We calculated 

road segments at 5 different lengths (25M, 50M, 100M, 150M, 250M) and 5 buffer radiuses 
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(50M, 100M, 150M, 350M, 500M) in order to build the LUR models as well as to assess 

how these parameters influence the LUR model performance.

2.5 Adjustment for Background Temporal Trends

Previous mobile sampling investigations adjusted for potential temporal bias through several 

approaches; for example, Tessum et al. (2017) adjusted for between-day temporal trends by 

subtracting the daily fifth percentile from all measured concentration values on a given day. 

Deville Cavellin et al. (2016) used linear and quadratic terms for temperature as independent 

variables in the model as adjustment for potential temporal variability. We modified an 

approach applied by multiple studies (Larson et al., 2009; Dons et al., 2012; Clougherty et 

al., 2013; Van den Bossche et al., 2015; Apte et al., 2017) that used background 

concentration levels from a nearby regulatory monitor to adjust for temporal trends and 

normalize measured values. Leveraging the available information on background PM2.5 

concentrations from multiple fixed-site regulatory monitors nearby the sampling routes, we 

adjusted each 1-minute averaged measurements from AirBeams for each day by applying a 

multiplicative hourly factor (defined as the ratio of mean concentration level during the 

entire sampling period to corresponding hour in which that measurement is taken) derived 

from the nearby regulatory monitor. For route E, which was not designed around a 

regulatory monitor, we used averaged values from the two nearby monitors (approx. 2 – 4km 

away) located by routes A and B. This resulted in 6 factors per each sampling day for each 

of the 5 routes. Using multiple nearby monitors, instead of a single monitor as done in past 

studies, allowed for variable temporal adjustments across several locations. This approach 

minimizes the effect of day-to-day variations in background air quality on the 

measurements, thereby decreasing the amount of required sampling data (Van den Bossche 

et al., 2015). Hourly measurements from regulatory monitors in Seoul revealed considerable 

temporal variability during the study period, with hourly PM2.5 levels as low as 5 μg/m3 and 

reaching 67 μg/m3 during pollution episodes (Figure 2).

2.6 LUR Model Building

We first tested effects of spatial aggregation by different route segment lengths and buffer 

sizes in the linear regression model by including all available 67 variables into a linear 

regression model, and we selected 100m route segments to spatially aggregate the collected 

data points based on the high adj-R2, resulting in 215 available segments for subsequent 

analyses. We then applied and compared three statistical approaches for building the LUR 

model: linear regression (LR), random forest (RF), and stacked ensemble (SE).

In the linear regression model, the GIS variables were retained for multivariable models 

based on a distance-decay regression selection strategy (ADDRESS) to screen and select 

informative candidate variables and corresponding buffer size from all of the available 

potential variables (Su et al., 2015). We then applied a supervised forward search approach, 

adding the variables one at a time in the LR model and keeping the variable only if it 

increased the R2 of the model by 1.0% and if all predictor variables have statistically 

significant coefficients (p<0.05) (Van den Bossche et al., 2018). We also applied the random 

forest (RF) model, first removing highly correlated variables (absolute correlation>0.8). 

Random forests, in brief, are an ensemble of decision trees and each tree is constructed using 
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the best split for each node among a subset of predictors randomly chosen. Random search, 

which randomly chooses combination of hyperparameters at every iteration, was used to 

tune and optimize the model (Bergstra and Bengio, 2012). Finally, we employed the stacked 

ensemble (SE) model, a machine learning ensemble approach that involves training a 

learning algorithm to combine the predictions of several other learning algorithms; first, all 

of the other algorithms are trained using the available data, then a ‘meta-classifier’ algorithm 

(chosen from the list of algorithms) is trained to make a final prediction combine all the 

predictions of the other algorithms as additional inputs. We evaluated and selected a diverse 

group of machine learning algorithms, including random forest (‘rf’), Bayesian generalized 

linear model (‘bayesglm’), k-nearest neighbors (‘knn’), recursive partitioning and regression 

trees (‘rpart’), and partitioning using deletion, substitution, and addition moves (‘partDSA’).

We applied 10-fold cross validation (with 500 repeats) to calculate mean CV-R2 (cross-

validation R2; 1-(mean square error/variance)) and root mean square errors (RMSE; a 

measure of the differences between values predicted by a model and the values observed) for 

the three methods to quantify their accuracy. We used packages ‘ggplot2’ and ‘leaflet’ for 

visualization and ‘caret’ for statistical analyses in R (version 3.4.4).

3. RESULTS

3.1 Adjustment for Intra-Instrument Variability

We fit univariate linear regression models for each of the deployed Airbeam unit in order to 

adjust for intra-unit variability and to convert particle counts to PM2.5 mass concentrations. 

During the collocated sessions with the DataRAM pDR-1500 in the CAP chamber, the 

PM2.5 concentration (as measured by pDR-1500) ranged from 0 to 81 μg/m3. The AirBeams 

revealed strong agreements with the pDR-1500 (adj-R2=0.95–0.98) and noticeable 

differences in responses between the individual units (Figure 3). The regression models’ 

intercepts, slopes, and RMSE values varied across the units; detailed statistical summaries of 

the models are presented in Table 1.

3.2 Mobile Sampling Summary Statistics

The mobile sampling campaign yielded a total of 10871 minutes of data, of which after 

removing GPS and sampling errors, 10177 minutes (93.6%) of data remained, equaling 

more than 169 hours of total data across the 5 sampled routes (Table 2, Supplemental Tables 

2 & 3). 1992 minutes (33.2 hours) of sampling data were collected at Route A; 2449 minutes 

(40.8 hours) at Route B; 2313 minutes (38.6 hours) at Route C; 1970 minutes (32.8 hours) at 

Route D; and 1453 minutes (24.2 hours) at Route E. Route D, which is located near major 

roads and highways, had the highest concentration levels (55.5 ± 27.7 μg/m3), while Route B 

(42.0 ± 24.2 μg/m3) and Route E (48.4 ± 31.3 μg/m3) had the lowest concentration levels. 

Notable differences between morning, evening, and night were also observed across the five 

routes, especially for Route D, which had elevated levels during morning (70.7 ± 25.5 

μg/m3) compared to evening (46.6 ± 28.3 μg/m3) and night (54.8 ± 24.1 μg/m3). The amount 

of sampling data varied across the 215 segments, with a median of 44 minutes per segment 

(minimum=5; 25% percentile=34; 75% percentile=55; maximum=179). Summary statistics 
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for minutes of sampling per 100m segment for each of the five routes are visualized as 

boxplots in Figure 4.

3.3 Model Results

The LUR models were sensitive to different segment lengths and buffer radiuses, with R2 

generally increasing with larger buffer radiuses (Figure 5), while 100m to 150m segments 

for spatial aggregation performed the best. Fitting individual equations to account for intra-

instrument variability for each AirBeam unit generally improved the accuracy of the 

constructed LUR models, with an increase in CV-R2 values by ~0.10–0.15.

In constructing the LR model, we screened and removed several point variables (e.g. fire 

stations) that were not frequently present across the sampling space but clustered near the 

pollution hotspots, as these variables ended up having very strong influences on the models. 

The final LR LUR model showed high goodness-of-fit with a CV-R2 of 0.63 and RMSE of 

7.01, and the following variables were included in the model: wood, secondary link, 

residential road, cathedral, station, pitch, and apartments (Table 3). The machine learning 

approaches explained a greater proportion of the variance of PM2.5 concentrations than the 

LR model. The random forest model identified mostly different variables as important 

(wood, residential road, living street, school, park, apartments, residential, building, tertiary, 

and service) and also revealed better performance metrics compared to the LR model, with 

higher mean CV-R2 (0.73) and lower RMSE (6.20). The stacked ensemble model with 

random forest as the meta-predictor algorithm performed the best, and the SE model 

outperformed both LR and RF models, with higher CV-R2 (0.80) and lower RMSE (5.22). 

Individual R2 values for the algorithms in the ensemble were 0.74 for random forest, 0.45 

for partDSA, 0.50 for rpart, 0.70 for bayesglm, and 0.69 for knn.

Adjusting for background temporal trends changed the overall morning average 

concentration levels from 49.4 to 59.2 μg/m3; evening from 46.4 to 45.7 μg/m3; and night 

from 51.5 to 47.3 μg/m3. The changes in concentration levels after temporal adjustment 

during the three sampling periods differed significantly across the routes (Supplemental 

Table 4). This adjustment also improved the CV-R2 for the three approaches, as not doing so 

resulted in lower CV-R2 values of 0.54, 0.65, and 0.71 for the LR, RF, and SE models, 

respectively. The constructed LUR models were used to create prediction maps of street-

level PM2.5 concentration levels in Seoul nearby the sampled locations, which revealed 

several ‘hotspots’ with elevated PM2.5 levels (Figure 6). The prediction maps revealed 

similar spatial patterns between the three modeling approaches with emphasis on similar 

locations as hotspots, especially at locations with major roads/highways and high population 

density. Conversely, the lowest concentrations were predicted at greenspace locations, such 

as parks and mountains. The three approaches resulted in relatively similar mean predicted 

values across the exposure surface, at 47.31, 48.86, and 49.43 μg/m3, for LR, RF, and SE, 

respectively. However, the LR prediction map predicted lower values than machine learning 

approaches at the extremes (range: 26.36–68.96 μg/m3), while maps for RF (34.97–71.43 

μg/m3) and especially SE (33.50–83.19 μg/m3) models resulted in higher predicted values.
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4. DISCUSSION

In this study, we conducted a mobile sampling campaign in Seoul, South Korea deploying 

low-cost smartphone-based air quality sensors and utilized the collected data to construct 

LUR models employing three statistical approaches. The strengths of the resulting R2 values 

were comparable to recent, similar studies across multiple locations around the world that 

utilized more advanced equipment. Our study is unique for developing LUR models using 

multiple low-cost (<$300), mobile sensors; priced at $250 per unit, AirBeams are order(s) of 

magnitude less expensive than the commercially available portable (in the thousands; the 

pDR-1500 used in this study cost ~$5,700) and federal standard (in the tens of thousands) 

instruments. AirBeam and its operating platform, Aircasting, is also notable for being 

primarily developed for citizen science whereby users can upload their measurements to 

share with the public, as well as for being open-sourced, allowing developers and 

researchers to program and customize the instruments and the smartphone app according to 

their needs and requirements. Many similarly priced ($200-$300) sensors have entered the 

market since the present study was conducted, underlining the public’s increasing interest in 

the capability to measure personalized real-time exposure data (Caplin et al., 2019). Through 

deployment of such low-cost sensors, we were able to characterize the spatial variability of 

street-level PM2.5 in Seoul, the main source of which is likely to be from traffic given the 

near-road sampling approach applied in this study. Past source apportionment studies also 

identified the primary source of PM2.5 in Seoul as motor vehicle emissions and road dust 

(Heo et al., 2008; Ryou et al., 2018).

Recent mobile sampling approaches for LUR model building have employed a variety of 

study designs and instruments. For example, Hankey and Marshall (2015) collected over 85 

hours of data on a bicycle-based sampling platform in Minneapolis, MN and constructed 

LUR models for particle size, black carbon, and PM2.5 with modest goodness-of-fit (adj-R2 

of ~0.5 for particle number and ~0.4 for PM2.5). Apte et al. (2017) analyzed data collected 

from a Google Street View mapping vehicle equipped with air quality sensors that 

repeatedly sampled every street in a 30-km2 area of Oakland, CA, to model and reveal urban 

air pollution patterns at 4–5 orders of magnitude greater spatial precision than possible with 

current central-site ambient monitoring. The ‘OpenSense’ project in Zurich, Switzerland 

(Hasenfratz et al. 2015) utilized mobile sensor nodes installed on top of public transport 

tram vehicles in the city to create high-resolution pollution prediction maps for ultrafine 

particles and particle counts. Vehicle-based mobile measurements were also applied to 

create LUR models to estimate the spatial variation of street-level PM2.5 and PM10 in the 

downtown area of Hong Kong (Shi et al., 2016), and integration of urban/building 

morphology as independent variables increased the adj-R2 of the LUR model, suggesting 

that incorporating detailed 3D characteristics of the land use can improve the predictive 

power of such models.

Our study and sampling design highlight the potential advantages of mobile sampling with 

low-cost and portable air quality sensors in constructing the LUR models. The 

aforementioned studies were largely based on sampling campaigns conducted on modes of 

transport (e.g. cars) visiting a single location at a given time, which may potentially result in 

a low number of visits per location. The results from this and past studies found that mobile 
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LUR models are highly sensitive to parameters such as the number of route segments, 

radiuses of buffers, and number of measurements per segment (Minet et al., 2017). 

Hatzopoulou et al. (2017) evaluated the influence of the number of sampling locations and 

durations of sampling on LUR model performance, noting that mobile sampling campaigns 

can be inefficient due to low sampling frequency at a large number of locations, and that 

spatial variability may be more important than the numbers of locations when designing 

sampling routes. The authors also found that the LUR models became relatively robust after 

150–200 segments and 10–12 visits per segment. In the present study, walking at a slow 

speed, instead of on mechanical modes of transportation, resulted in each route generally 

having a high number of data points (median=44) per segment. This approach also allows 

for assessing personal-level exposure in urban areas where there are a larger number of 

people on the streets than in cars. The disadvantage of shorter distances being covered when 

sampling on foot was offset by the low cost and portability of AirBeams, which allowed for 

several units that could be deployed simultaneously across multiple locations at a given time 

and thereby maximize spatial coverage, as opposed to the majority of past mobile sampling 

studies that were carried out on a single platform. Simultaneous measurements within a 

structured sampling design could decrease the amount of collected data (and manpower) 

required to construct robust models, whereas participatory sensing where sampling is done 

‘opportunistically’ could lead to unstructured data that is more difficult to interpret (Van den 

Bossche et al., 2016). Furthermore, AirBeam’s ease of operation meant that minimal 

training (a few minutes at most) was required prior to field deployment, resulting in a 

relatively large volume of data being generated within the short sampling campaign period 

during this study.

This study leveraged OpenStreetMap (OSM), an openly available and crowd-sourced GIS 

dataset, which provided a rich and comprehensive source of geospatial data for a wide range 

of LUR variables. OSM and other ‘open data’ sources offer underexplored but valuable 

information for data-driven methods to predict air pollution levels (VoPham et al., 2018). 

Notably, the OSM GIS variables were highly developed for Seoul and provided detailed and 

differentiated data for the numerous types of roads and buildings, which are land use 

categories that usually provide the highest predictive power for air pollution LUR models. 

Another advantageous aspect of crowd-sourced data is that it is continually updated; for 

example, using an earlier download of OSM from September 2015 (versus January 2018 in 

this analysis) with less developed characterization of Seoul resulted in a LUR model with a 

lower CV-R2 (0.55 for LR), suggesting that in locations with lacking geospatial data, crowd-

sourced efforts to generate the relevant GIS variables could be carried out in concert with the 

air pollution sampling campaign to strengthen the predictive capability of LUR models. 

Despite recent endeavors to democratize data by agencies and organizations throughout the 

world as part of the ‘open data’ movement, many detailed GIS files remain proprietary and 

thereby cost-prohibitive, and freely available data like OSM offer an alternative and 

important source of detailed spatial data for researchers and communities.

Machine learning methods offered improved goodness-of-fit compared to traditional 

stepwise linear regression in constructing the LUR models. Prior work on machine learning 

applications in both national (Hu et al., 2017; Di et al., 2016) and local-level (Adams and 

Kanaroglou, 2016; Weichenthal et al., 2016; Brocamp et al., 2017) predictions of air 
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pollution concentration levels highlight the advantages associated with the approach, 

including higher accuracy and identification of important variables. A recent example further 

underlines additional potential benefits; a study in Los Angeles, USA used a multi-step and 

flexible spatial data mining approach using machine learning to select for most important 

OSM geographic features and predict PM2.5 concentrations, removing the need for a priori 
selection of predictors for exposure modeling (Lin et al., 2018). Similarly in our analysis, 

applying the traditional step-wise linear regression LUR approach with the highly correlated 

OSM dataset, which also contained several highly influential variables, required manual 

screening and removal of predictor variables prior to input and during the model building 

process. Notably, the stacked ensemble model combining multiple machine learning 

algorithms outperformed both LR and RF in this study. In recent years ensemble machine 

learning methods have emerged as an important tool for modeling complex relationships and 

have been applied successfully in various research areas (Yang et al., 2010). Application of 

ensembles have been generally limited in air pollution exposure assessment and modeling 

efforts to date, and the results here suggest that ensemble-based approaches could further 

enhance the predictive performance of LUR models.

We note several potential weaknesses that are present in this study. As we evaluated the 

AirBeam units in a carefully controlled experimental chamber drawing in air from a forested 

and rural area (Tuxedo, New York), the particle composition and the environmental 

conditions (e.g., humidity and temperature) encountered during the experiment are likely to 

be significantly different from the heavily urban location where this study was carried out. 

Although the potential impacts of these factors were not assessed in this study, previous 

performance evaluations of AirBeams in various laboratory and field settings offer insight. 

The initial manufacturer calibration was conducted in a similarly urban setting (New York 

City), which revealed high correlations with both gravimetric sampling and pDR-1500 

(takingspace.org). Comparison against federal equivalent method monitors showed high 

agreements with GRIMM (R2~0.6–0.8) (Mukherjee et al., 2017; SCAQMD 2017; Feinberg 

et al., 2018), but mixed results were observed with BAM (R2~0.2–0.7) (Jiao et al., 2016; 

SCAQMD 2017). A study of sensor responses to Arizona road dust, salt, and welding fumes 

(Sousan et al., 2017) demonstrated that particle types had significant impacts on AirBeam 

(and other low-cost sensors) measurements. Relative humidity (RH) levels also influenced 

the measurements; a laboratory evaluation found that bias was observed when both RH 

(>65%) levels and concentration levels (>100 μg/m3) were elevated (SCAQMD 2017), while 

another study (Feinberg et al., 2018) found that that particle counts measurements were 

affected by higher humidity levels in a field setting. Highly humid summers in Korea would 

likely influence the absolute measurement values, but the potential impact on prediction 

model performance is likely to be minimal as the spatial variability of humidity levels is 

likely to be uniform across a city. Nevertheless, these findings emphasize the need to 

consider the potential influence of environmental factors in sensor deployments, and 

performance evaluations at the study location is suggested for similar studies applying low-

cost sensors. In addition, the particle concentration levels encountered during sampling in 

Seoul were higher than the range used for constructing calibration equations for the 

AirBeam units, which may ignore the potential nonlinearity of sensor responses. We also did 

not check for potential sensor drift – a common issue for low-cost air quality sensors – 
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during and after the mobile sampling, although this is unlikely due to the relatively short 

sampling period. These issues may have contributed to predicted values that were 

significantly higher than observed values from nearby fixed-site monitors, although it is also 

possible that such differences are due to the fact that fixed-site monitors are often located 

well above ground and tend to underestimate personal exposures when walking near traffic 

(Deville Cavellin et al., 2016). Another potential weakness is that the OSM data quality and 

density could be potentially uneven across locations, as some areas could be characterized in 

more detail than others. For example, in some of the sampled areas in this study, several of 

the houses in residential areas were not captured in the OSM file and thereby could have 

influenced model quality; however, as OSM data coverage and quality continues to improve 

this should become less of an issue over time.

5. CONCLUSIONS

Low-cost sensors represent an opportunity to bridge the data gap, thereby promoting public 

discourse, influencing air pollution regulations, and protecting public health (Amegah 2018). 

This study highlights the advantages and potential of applying data collected from mobile 

sampling with multiple low-cost sensors to model and map street-level air pollution levels in 

urban locations, especially the capability to generate a large volume of sampling data with 

ease. The predictive power of models developed here, despite deploying only a limited 

number of significantly less expensive, consumer-based air quality sensors, were comparable 

to the past mobile sampling LUR studies, especially after adjusting for intra-instrument 

variability and temporal trends. To minimize the potential influence of local particle 

characteristics and environmental conditions, calibration with collocated reference monitors 

at the sampling location is suggested for future projects using similar low-cost sensors, as 

well as to convert particle counts to mass concentration, a unit of measurement that is more 

readily transferable for policy-relevant metrics. Initial calibrations should also carefully 

evaluate and adjust for the potential effects of relative humidity levels, which can have 

significant influences on readings from low-cost sensors. Overall, the findings here suggest 

that similar mobile sampling designs using low-cost sensors and ‘open data’ sources could 

be applied to generate a large volume of data and construct LUR models and maps with fine 

spatial granularity, and that machine learning methods can further improve model 

performance. Our study design and approach may be especially suitable for citizen science 

and community-based endeavors, or in locations without preexisting air monitoring 

networks, such as developing countries.
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Highlights

• Mobile sampling with low-cost (<$300) air quality sensors could offer a 

highly cost-effective approach to characterize urban street-level air quality.

• A mobile sampling campaign deploying multiple AirBeams across five routes 

was conducted during an approximately three week period in Seoul, South 

Korea.

• Land use regression (LUR) models were constructed using the collected data 

and the OpenStreetMap (OSM) geospatial data.

• Three approaches – linear regression, random forest, and stacked ensemble – 

were employed to construct the LUR models, with the stacked ensemble 

model having the highest predictive power.
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Figure 1. 
(a) Locations of the five sampling routes in Seoul and government-run, fixed-site monitors 

(blue markers). Mean PM2.5 concentration levels (μg/m3) during the sampling period at each 

of the 100m segments are also depicted. The red arrows point to an underground roadway, 

which was not included in analyses. We also present close-up views of route C as an 

example to depict sampled data points, with (b) OpenStreetMap and (c) satellite 

backgrounds.
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Figure 2. 
Hourly (at 8am, 9am, 6pm, 7pm, 9pm, 10pm) PM2.5 concentration levels during the 

sampling period (7/23/15 to 8/10/15) at the four regulatory background monitors
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Figure 3. 
DataRam pDR-1500 (mass; μg/m3) vs. 1-minute averaged AirBeam (hundreds of particles 

per cubic feet; hppcf) measurements in the concentrated air particle chamber (CAP)
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Figure 4. 
Boxplot demonstrating distribution of minutes of sampling per 100m segment for each 

sampling route.
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Figure 5. 
Adjusted R2 of LR LUR models (including all available 67 predictor variables) for mass, by 

segment radius and buffer sizes
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Figure 6. 
PM2.5 prediction maps nearby sampled areas constructed applying (a) linear regression, (b) 

random forest, and (c) stacked ensemble approaches
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Table 3.

Selected LUR model predictor variables in the LR and RF models and associated statistics.

Linear Regression Random Forest*

Variable Name Variable Type Buffer Length β Std. Error p-value Importance

Intercept 50.02 1.21 <0.001

Wood Area 500m −3.80 × 10−5 4.25 × 10−6 <0.001 14.45

Residential Road Line 500m 2.59 × 10−5 5.88 × 10−6 <0.001 13.10

Secondary Link Line 500m 6.88 × 10−3 1.00 × 10−3 <0.001

Cathedral Point 500m −2.47 × 10−3 1.03 × 10−3 0.02

Station Point 500m −3.75 1.02 <0.001

Pitch Area 350m −1.88 × 10−4 4.28 × 10−5 <0.001

Apartments Point 500m 7.70 × 10−5 4.02 × 10−5 0.05 10.21

School Area 500m 10.73

Living Street Line 500m 10.85

Park Area 500m 10.31

Residential Area 500m 9.93

Building (Unclassified) Area 500m 9.72

Tertiary Line 350m 9.70

Service Line 350m 8.97

*
Top ten variables by variable importance are shown in the table
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