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Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating condition 

associated with a number of chemotherapeutic agents. Drugs commonly implicated in 

development of CIPN include platinum agents, taxanes, vinca alkaloids, bortezomib, and 

thalidomide analogues. As response to the same drug can vary between individuals, it is 

hypothesized that an individual’s specific genetic variants could impact regulation of genes 

involved in drug pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which 

in turn affect CIPN development and severity. Variations of other molecular markers may also 

affect the incidence and severity of CIPN. Hence, the objective of this review is to summarize the 

known biological (molecular and genomic) predictors of CIPN and discuss means to facilitate 

progress in this field.
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Introduction

Chemotherapy induced peripheral neuropathy (CIPN), a common side effect of anti-

neoplastic agents, significantly decreases quality of life (QOL) in patients with cancer. CIPN 

symptoms include numbness, tingling, and pain especially in the hands and feet. This in turn 

is associated with inability to complete activities of daily living and falls.1 Development of 

CIPN may lead to dose modifications, decreased patient adherence, and treatment 

interruptions or discontinuation, thereby potentially impacting oncologic outcomes 

negatively. Those with CIPN also report increased unemployment and decreased annual 

income, further demonstrating the negative impact that CIPN can have on patients.2

A meta-analysis involving over 4000 patients estimated CIPN prevalence to be about 68% 

by the end of the first month of chemotherapy and 30% at 6 months.3 Drugs commonly 

implicated in development of CIPN include platinum drugs, taxanes, vinca alkaloids, 

bortezomib, and thalidomide analogues.

Since response to the same drug varies between individuals, it is hypothesized that a 

patient’s specific genetic variants could impact regulation of genes involved in drug 

pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which may in 

turn affect CIPN development and severity. The goal of this manuscript is to summarize the 

known biological (molecular and genomic) predictors of CIPN and discuss means to 

facilitate progress in the understanding and eventual management of CIPN.

Demographic and Clinical Predictors of CIPN

While there are established clinical risk factors for CIPN, none accurately predicts the 

severity of CIPN that an individual patient will have.4 Cumulative dose is a strong risk factor 

for the development of CIPN with most neurotoxic anti-neoplastic drugs. Patients of older 

age may be more at risk for developing neurotoxicity,5–7 however other studies have not 

found age to be associated with greater CIPN incidence.8,9 These differing results may be 

due to confounding comorbidities. Obese cancer patients with CIPN experience higher 

levels of neuropathy burden.10 Diabetic patients report a higher grade of CIPN, particularly 

with taxanes while patients with autoimmune diseases report less severe CIPN.6 African 

Americans have a higher incidence of CIPN following taxane treatment in comparison to 

other racial groups.11

Pathophysiology and Biological Predictors of CIPN Table 1

summarizes the mechanisms of action of chemotherapeutic agents and reported genetic 

polymorphisms associated with CIPN. The molecular targets and pathways of CIPN are 

described in Figure 1.

Platinum compounds—Platinum compounds interfere with tumor cell proliferation, 

resulting in damage to non-dividing, post-mitotic peripheral neural tissue. This damage may 

be associated with sensory neuropathy with anterograde axonal degeneration, first described 

for cisplatin concentrations in tissue collected posthumously.12,13 Whether this is true for 

systemic concentrations is less well understood. In addition to chronic neuropathy, acute 
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neuropathy presenting as cold-induced dysesthesia is unique for oxaliplatin and is thought to 

be related to rapid generation of oxalate metabolites.13

Indirect evidence indicates that neuropathy may be attributable to systemic platinum drug 

pharmacokinetics (PK). It is suggested that increased fractionation of cisplatin in the 

bleomycin, etoposide, and cisplatin (BEP) regimen may reduce neurotoxicity with the 3-day 

regimen producing less acute and late sensory neuropathy than the 5-day with equivalent 

anti-cancer efficacy.14,15

Preclinical studies on the association between drug transporters and oxaliplatin-induced 

neuropathy in mice with genetic knockout of the organic cation transporter 2 (OCT2) 

strongly suggest that platinum accumulation is related to the activity of this transporter,16 

suggesting that any indirect association between systemic concentrations and neuropathy 

would likely have to account for the magnitude of uptake transport into the dorsal root 

ganglion (DRG). Dasatinib is being investigated for its role in minimizing CIPN as it 

inhibits the activity of OCT2, which could decrease oxaliplatin uptake in the DRG.17 

However, a population-pharmacokinetic model did not detect any association between PK 

parameters of the parent compound or the free oxaliplatin concentrations and neuropathy 

incidence;18 other small pilot studies have also not detected a relationship.19,20 Yet, in a 

randomized trial of reduced glutathione (GSH) co-administration, decreased neuropathy 

incidence and increased oxaliplatin clearance were reported.21

A number of aberrations identified as potential future therapeutic targets include several 

single nucleotide polymorphisms (SNPs) such as ERCC1, ERCC2, XRCC1, CCNH, GPX7, 
and ABCC4, which may play critical roles in neurotoxicity, as described in Table 1 and 

Figure 1.22–28 One genomically targeted therapeutic intervention focuses on the protein, 

apurinic/apyrimidinic endonuclease (APE-1). APE-1adaad is critical in the DNA base 

excision repair pathway and oxidative stress response, thereby mitigating chemotherapy-

induced neuronal DNA damage, especially from platinum agents.29 Early phase clinical 

trials are underway to enhance anti-oxidant effects of APE-1 and inhibit damaging signals 

such as ERK-1/2.30 Early studies investigating the drug, APX3330, suggest a 

neuroprotective benefit similar to the genetic APE-1 overexpression. This is achieved 

without minimizing chemotherapeutic efficacy by reducing redox signaling and improving 

DNA repair in sensory neurons.29

Taxanes—Taxanes, which are spindle poisons, accumulate in the soma of sensory neurons 

of dorsal root ganglia. A retrograde “dying back” process is commonly observed, which 

typically starts at distal nerve endings, and is subsequently associated with Schwann cell, 

neuronal body, or axonal transport changes. This sequence of alterations is believed to 

contribute to neurotoxicity. Genomic predictors of paclitaxel and docetaxel associated 

neuropathy are shown in Table 1.

The genetic prediction of paclitaxel-induced peripheral neuropathy has been extensively 

studied and recently reviewed.31 Though candidate SNPs in cytochrome P450 (CYP) 

CYP2C8,32 ABCB1,32,33 and TUBB2A33 have been associated with neuropathy, none have 

been validated for use in clinical care due to inconsistent replication. Strong evidence links 
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paclitaxel PK to the incidence of peripheral neuropathy,34,35 including a randomized clinical 

trial demonstrating that exposure-guided paclitaxel dosing significantly reduces peripheral 

neuropathy incidence.36 This pharmacokinetic association likely explains the reported 

associations for the putatively low-activity CYP2C8*3 variant described above and the 

increased risk of paclitaxel-induced neuropathy in patients receiving the strong CYP2C8 

inhibitor, clopidogrel.37,38 Genome-wide association studies (GWAS) have identified 

candidates for attempted replication, including SNPs in FGD439 and EPHA5.32 SNPs in 

several EPHA genes including EPHA4, EPHA5, and EPHA61,5 have been associated with 

paclitaxel-induced neuropathy, strongly suggesting this gene family is involved in 

neuropathy predisposition.40 Many SNPs discovered via GWAS have been in genes involved 

in neurodevelopment, particularly those associated with hereditary neuropathy conditions41 

including ARHGEF10.42 Other SNPs reported from GWAS have not been independently 

replicated.11,43–47 Preclinical studies indicate that nilotinib may reduce paclitaxel-induced 

peripheral neuropathy through a non-competitive mechanism that allows paclitaxel to 

effectively attack cancer cells while inhibiting the solute carrier organic anion-transporting 

polypeptide B2 (OATP1B2). Suppression of OATPIB2 activity was found to minimize 

peripheral neuropathy.48

Few pharmacogenetic studies have been conducted for docetaxel-induced peripheral 

neuropathy. Candidate SNPs in ABCB149,50 and GSTP149,51 have been reported, but not yet 

validated.52 The only completed GWAS reported a variant in VAC14 that increased 

neuropathy risk and was confirmed to decrease neurite branching in vitro and increase 

mouse neuropathy sensitivity in VAC14 knockout studies.53,54 There have been no 

pharmacogenetic studies of neuropathy caused by albumin-bound paclitaxel (nab-paclitaxel) 

or cabazitaxel.

Vinca alkaloids—Vinca alkaloids, such as vincristine and vinblastine, block microtubule 

polymerization, consequently disrupting mitotic spindle formation and rendering the cell 

unable to divide. Mutations in CEP72 and CYP3A5 have been most extensively studied as 

factors possibly influencing the development of vincristine-induced neuropathy. Studies 

have demonstrated that SNPs that reduce CEP72 expression may lead to the development of 

neuropathy in patients on vincristine,55,56 although subsequent studies were unable to 

consistently reproduce this finding.57,58 Vincristine is primarily metabolized by CYP3A4 

and 3A5. Polymorphisms of CYP3A5 are common, with the CYP3A5*1/*1 genotype being 

associated with expression of CYP3A5 and is more common in African-Americans. The 

CYP3A5*3/*3 genotype is associated with non-expression of CYP3A5 and is more common 

in Caucasians.59,60 Early studies suggested a possible association between CYP3A5 
genotypes and vincristine-induced peripheral neuropathy.45,61 The CYP3A5*1/*1 genotype 

is associated with a lower incidence of neuropathy compared to CYP3A5*3/*3 genotype.62 

However, others have also reported no effect of CYP3A5 genotype on development of 

neuropathy.29,63 Early evidence suggests that vincristine PK may be associated with 

neuropathy27 however, validation has been challenging.59,64

Bortezomib—The proteasome inhibitor, bortezomib, promotes G2-M cell cycle arrest and 

apoptosis through disruption of the ubiquitin-proteasome pathway which degrades 
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dysfunctional intracellular proteins. Subcutaneous administration of bortezomib has been 

found to greatly reduce reported bortezomib-induced peripheral neuropathy in comparison 

to intravenous administration, as well as reduction of other adverse effects.61 Despite the 

same treatment efficacy, prevalence of peripheral neuropathy in the population treated with 

subcutaneous injection is 38% in comparison to 53% of those treated with intravenous 

bortezomib.61 The exact mechanism of bortezomib-induced peripheral neuropathy is 

unknown. SNPs in CTLA4 rs4553808 and PSMB1 rs1474642 have been reported to be 

associated with bortezomib-induced neuropathy.65 A GWAS study identified 4 new loci that 

were associated with bortezomib-induced peripheral neuropathy, found in genes involved in 

the development and function of the nervous system including CDH13, DCC, and 

TENM3.63 Another GWAS study identified a gene locus mapping to PKNOX1 and in close 

proximity to CBS at 21q22.3 that was correlated with the severe bortezomib-induced 

toxicity.66 However, additional studies to validate these findings are needed prior to 

establishing these genes for study as therapeutic targets.

Thalidomide—Thalidomide, an immunomodulatory agent, prevents cell proliferation 

through inhibition of angiogenesis as well as alteration of the immune system through 

multiple mechanisms including inhibition of interleukin (IL)-6 production, activation of 

caspase 8–mediated apoptosis, and increased production of IL-2 through T cell activation. 

Based on a meta-analysis, thalidomide-related peripheral neuropathy has been described in 

63.5% of patients.3 Several SNPs have been found to be associated with thalidomide-related 

peripheral neuropathy: ABCA1, ICAM1, PPARD, SERPINB2, and SLC12A6.67 In addition, 

a SNP in GSTT1 predicted the frequency of neuropathy.68 Another study was unable to find 

associations between 300,000 exome SNPs and thalidomide-related peripheral neuropathy.69 

Studies of lenalidomide, a sister drug of thalidomide with similar antiangiogenic 

immunomodulatory mechanisms of action, demonstrate significantly lower incidence of 

peripheral neuropathy.70 The mechanism is hypothesized to be a pharmacokinetic effect 

similar to that observed with the platinum compounds; the half maximal inhibitory 

concentration (IC50) of lenalidomide is almost 500 times less than that of thalidomide (0.4 

μmol/L vs. 194 μmol/L, respectively).71 This marked difference reflects the much lower 

serum concentrations of lenalidomide required for target activity in comparison to 

thalidomide and highlights the potency of lenalidomide.

Limitations of Current Studies

Biomarker discovery studies of CIPN have several limitations, the primary being a lack of an 

objectively assessable, universally accepted CIPN phenotype.72 Varying methods to define 

the phenotypes, such as clinician-assessed NCI CTCAE and grading classifications have 

complicated the comparison of multiple study findings with one another. In addition, 

discordance across GWAS studies is a significant limitation.72 Collapsing different 

phenotypes into a single definition may limit the ability to identify genetic predictor of any 

single phenotype. For instance, it is likely that a genetic predictor of neuropathic pain is 

distinct from a predictor of sensory versus motor neuropathy.73 Failing to adjust for clinical 

(particularly cumulative dose received) or environmental differences may have impeded the 

precision of reported findings.
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Data from patients treated with combination therapies rather than single agent may have 

contributed to the inconsistent results across studies. While some SNPs may predispose 

patients to CIPN regardless of the neurotoxic agent, each class of agents, and perhaps each 

agent within that class is likely to have independent risk factors. As one illustrative example, 

analyses have combined patients taking paclitaxel or docetaxel and included SNPs in 

CYP2C8, which is only involved in paclitaxel metabolism but not docetaxel.74 Labeling how 

all taxanes are involved with CYP2C8 would not be appropriate.

A well-powered sample size is the cornerstone to the generation of valuable genetic 

association studies, granting the study enough power to confirm the correlations. Currently, 

most studies are retrospective in nature and are limited to the fixed sample size of the 

prospective study from which they were conducted, leading to underpowered analyses. 

Further, because a smaller number of toxicities occur in studies with smaller sample sizes, 

the ability to produce extensive data on toxicity for further analysis is restricted.72 An 

additional factor to inspect is the genetic ancestry of the study population, reflected by 

distinct allele frequencies in the variations being investigated. Since these frequencies are 

due to the ancestral history of the populations, they must be accounted for in the association 

analyses. Otherwise, observed differences between those experiencing neuropathy and those 

who are not may simply be due to ancestral composition of the compared groups rather than 

differences in chronic toxicities.

The reporting of genetic association studies should be as transparent as possible. The 

STrengthening and the REporting of Genetic Association Studies (STREGA) 

recommendations promote the transparency, excellence, and thoroughness of genetic 

association study reporting.75 Studies should also provide essential information such as 

quality error and call rates as they may have a significant effect on the ability to detect 

linkage or association.

Novel analytical approaches

Besides traditional approaches, analyses of gene expression (i.e. transcriptomics) or 

differential gene expression, protein expression (i.e. proteomics), or biochemical metabolite 

concentrations (i.e. metabolomics) may be useful for predicting future neuropathy 

occurrence, but data on applying these techniques to measure toxicity from cancer 

treatments is scarce.76 Discovery-phase candidates from proteomic and metabolomic 

analyses require independent validation prior to translation into clinical practice.

Recent advances in human stem cell technology have allowed for increasingly detailed in 
vitro studies of CIPN. Adult human somatic cells (often skin fibroblasts or lymphocytes) can 

be reprogrammed into induced pluripotent stem cells (iPSCs),77 which then may 

differentiate into specific cell types of interest. Neurons produced from these stem cell 

differentiation protocols allow researchers to harness human biology and genetics, including 

within specific patient populations such as patients with CIPN.

Future Directions

To mitigate CIPN’s detrimental impact on patient quality of life, a clear understanding of the 

molecular pathways underlying its development and natural history is necessary. This 
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understanding will support the development of targeted clinical strategies.78 Building on the 

foundational work done to date, the growth of novel research platforms will allow for new 

ways of interrogating these pathways. Table 2 provides a list of recommendations for future 

genetic studies of CIPN, which aim to ensure the translation of research findings into 

clinical decision-making. However, none of these biomarkers are currently ready to be 

translated into routine practice. To continue to make progress on understanding predictors of 

CIPN and predictors of response to various therapeutic strategies, the following strategies 

will be helpful: new methodological approaches to study genomics and molecular pathways, 

data sharing and real world data, as well as multidisciplinary funding and collaboration.

New methodological approaches from complex data analysis techniques can be applied to 

the intersecting effects of symptom biology. For instance, cluster analyses may include 

impact of symptoms on the condition, manifestation of toxicities, and interaction of 

toxicities on the overall condition. Dissection of symptoms to underlying biology using 

genome-wide approaches can yield information on polymorphisms that may affect innate 

risk and response, as well as adaptive variability in gene expression resulting in an 

individually dynamic pathobiology. Although genomic (genotyping, gene expression, and 

epigenetic) approaches are useful for dissecting effects and interactions of the tumor, 

treatment, and host susceptibility factors, these studies must involve a large number of 

subjects. As methodology improves power with smaller sample sizes, these studies may be 

linked with those conducted to examine primary mechanisms and toxicities.79

To additionally make progress in CIPN research, clinical research networks can be 

developed into data repositories where variable interactions such as pharmacogenomics, 

pharmacoproteomics, gene expression/proteomic changes in human specimens, and patient-

reported outcomes can be linked to clinical phenotypes. This will ultimately move the field 

towards population-based rather than clinic-specific research, while encouraging 

standardization of data measures. Such networks are exemplified by NIH initiatives using 

public-private partnering mechanisms to provide publically available resources such as 

PhenX (the Phenotyping and Exposures project) and PROMIS (Patient Reported Outcomes 

Measurement Information System).

Lastly, joint funding of proposals with a variety of funding agencies such as the National 

Cancer Institute, National Institute of Neurological Disorders and Stroke, and other research 

funders with overlapping missions has been considered an approach to leverage funds. Other 

examples of recent facilitation of larger scientific endeavors include: a growing investment 

in clinical research networks such as Patient Based Research Networks; the linking of 

Clinical and Translational Study Award-supported academic sites; and complementary 

electronic resources, such as Clinical Research Networks. These encourage the expansion of 

current clinical research networks by conducting studies across multiple research sites. 

Collaboration across sites through these mechanisms makes it feasible to increase sample 

size, increase generalizability, facilitate standardized data collection methods, and promote 

scientific exchange across programs and study sites.
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Conclusions

A number of clinical and genetic predictors have been identified, yet we are still unable to 

adequately prevent or treat CIPN. Future work is needed to develop a CIPN risk model 

where drug, genomic, and clinical data are incorporated to better understand the risk of 

various neurotoxic therapies. In summary, advances in research methodologies, new 

technologies, and creative partnering relationships enhance the feasibility of these proposed 

strategies through efficiency in conduct as well as economy of funding.
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Figure 1: Molecular Targets and Pathways of CIPN
Affected neurons: dorsal root ganglion (∗); sensory neurons (∇); motor neurons (⊕); central 

projections of primary afferent neurons (σ).

Abbreviations: VDAC – voltage-dependent anion channels; Ca2+ - calcium ions; TRP – 

transient receptor potential.
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Table 2

Methodological Recommendations for Future Research Studies on Biological Predictors of CIPN

✓Distinguishing the various phenotypes of CIPN (motor vs. sensory vs. neuropathic pain), in order to support consistency in the classification 
of “cases” across studies; studies may also want to target high-risk patients (e.g. patients who develop peripheral severe neuropathy after first 
few doses of treatment).
✓Longitudinal assessment of CIPN, including pre-treatment assessment.
✓Prospective research design is ideal, to ensure the collection of known relevant clinical factors including cumulative dose, drug exposure, 
diabetes, race.
✓Studies should clearly report the justification of genomic predictors interrogated.
✓Consistent reporting of the process used for genotyping.
✓Collaboration between study centers to increase sample size and confirm the generalizability of findings.
✓Collaboration between patients, clinicians and translational researchers will support the application of innovative methods to address clinically 
meaningful outcomes.
✓Development and testing of interventions targeted to implicated pathways.
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