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Regulation of Cell Cycle Regulatory Proteins
by MicroRNAs in Uterine Leiomyoma
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Abstract
The objective of this study was to determine whether miR-93, miR-29c, and miR-200c, which we previously reported to be
downregulated in leiomyomas, target cell cycle regulatory proteins that influence cell proliferation. Based on TargetScan algo-
rithm 3 cell cycle regulatory proteins namely, E2F transcription factor 1 (E2F1), Cyclin D1 (CCND1) and CDK2 which were
predicted to be targets of these miRNAs were further analyzed. In 30 hysterectomy specimens, we found the expression of E2F1
and CCND1 messenger RNA (mRNA) was increased in leiomyoma as compared to matched myometrium, with no significant
changes in CDK2 mRNA levels. There was a significant increase in the abundance of all 3 proteins in leiomyoma in comparison
with matched myometrium. Using luciferase reporter assay, we demonstrated E2F1 and CCND1 are targets of miR-93 and CDK2
is a target of miR-29c and miR-200c. We confirmed these findings through transfection studies in which transfection of primary
leiomyoma cells with miR-93 resulted in a significant decrease in the expression of E2F1 and CCND1 mRNA and protein levels,
whereas knockdown of miR-93 had the opposite effect. Similarly, overexpression of miR-29c and miR-200c in leiomyoma cells
inhibited the expression of CDK2 protein and mRNA, whereas knockdown of this microRNAs (miRNA) had the opposite effect.
Transfection of miR-29c, miR-200c, and miR-93 in primary leiomyoma cells resulted in a time-dependent inhibition of cell pro-
liferation and cell motility. These results collectively indicate that the 3 miRNAs known to be downregulated in fibroid tumors are
critical in regulation of cell proliferation because of their effects on 3 key cell cycle regulatory proteins, which are overexpressed
in uterine leiomyomas.
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Introduction

The pathogenesis of leiomyomas, which are benign tumors

affecting 40% to 70% of reproductive women, has been under

intense investigation.1-3 Multiple studies using either microar-

ray or next-generation sequencing have demonstrated dysregu-

lation of a number of protein coding genes involved in cell

proliferation and apoptosis that are crucial to fibroid growth

and progression.3,4 MicroRNAs (miRNAs), which are small

noncoding RNAs (20-22 nucleotides [nt]), are key posttran-

scriptional regulators of protein coding genes, and they exert

their function through inhibition of translation or degradation

of messenger RNA (mRNA).5 Aberrant expression of miRNAs

is associated with a wide range of disorders, including tumor-

igenesis and tissue fibrosis.6,7 Previous studies, including our

own high-throughput sequencing, identified the expression

profile of a large number of miRNAs in leiomyoma and

myometrium and provided support for altered expression and

regulatory function of a number of them, including let 7, miR-

21, miR-29, miR-200, and miR-25-93-106 cluster in leiomyoma

and leiomyoma smooth muscle cells (LSMCs).8-15 More

recently, we reported on altered expression of a number of

long noncoding RNAs (lncRNAs) that are longer than 200 nt

in leiomyomas.16 Some lncRNAs regulate the expression of

miRNAs acting as a sponge.17

Our previous work demonstrated a decrease in the expres-

sion of miR-29c in leiomyoma which primarily regulates extra-

cellular matrix (ECM)-related genes and epigenetic-related

enzymes DNMT3A.12 Others have reported similar findings

with miR-29b, which is also downregulated in fibroids.15 We

also reported a decrease in the expression of miR-200c in leio-

myoma14 and in SKLMS-1, a leiomyosarcoma cell line,18 com-

pared with normal myometrium. MiR-200c is a key miRNA

regulating epithelial to mesenchymal transformation

(EMT),11,14,19 and it has been associated with a whole host of
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cancer types.14,20-24 Similar to the pattern of miR-29c and

miR-200c expression, we reported that miR-93 levels are also

downregulated in leiomyoma with an associated increase in its

target namely Interleukin-8.13 The objective of this study was

to determine whether the 3 miRNAs (miR-29c, miR-200c, and

miR-93) whose expression are downregulated in leiomyoma

target cell cycle–associated regulatory proteins, thereby influ-

encing leiomyoma cell proliferation. We selected to investigate

3 cell cycle–associated proteins that are predicted targets of

miR-29c, miR-200c, and miR-93 based on TargetScan algo-

rithm. As such, we focused on cyclin-dependent kinase

2 (CDK2), which is a member of serine/threonine protein

kinases, which, upon binding to cyclin E, is required for the

transition of the cell from G1 phase to the S phase of the cell

cycle.25 Based on TargetScan, CDK2 is predicted to be a target

of miR-29c and miR-200c. Cyclin-dependent kinase 2 has been

shown to be a target of miR-200c and miR-29 in other cell

types.18,26-28 The next protein of interest was cyclin D1, which

in human is encoded by the CCND1 gene.29 Cyclin D1 is

synthesized during the G1 phase of the cycle and forms a

complex with CDK4/6, thereby regulating progression of the

cell from the G1 phase into the S phase of the cell cycle.29,30

Cyclin D1 has been shown to be a target of miR-93 in HL-1, a

cardiac muscle cell line.31 E2F1 is a member of the E2F tran-

scription factor family which plays a key role in G1 to S phase

transition. This transcription factor binds to several cell cycle

regulatory proteins, including the retinoblastoma family and

cyclin A/CDK2 complexes.32 E2F1 is targeted by miR-93 in

osteosarcoma cells33 and hepatocellular carcinoma.34 Based

on TargetScan, both E2F1 and CCND1 are predicted targets

of miR-93. In this present study, we determined the expres-

sion of these 3 key cell cycle regulatory proteins (CCND1,

E2F1, and CDK2) in leiomyomas and compare it to matched

myometrium. Our objective was to determine if these cell

cycle regulatory proteins are targeted by these 3 miRNAS

(miR-93, miR29c, and miR200c) all of which are downregu-

lated in fibroids.

Materials and Methods

Tissue Collection and Leiomyoma and Myometrial
Smooth Muscle Cell Isolation

With prior approval from institutional review board (#036247),

portions of uterine leiomyoma and matched myometrium were

collected from patients (n ¼ 30) who were scheduled to

undergo hysterectomy at Harbor-UCLA Medical Center. The

patients’ age ranged from 27 to 53 years (median ¼ 43 + 7.1),

and they were not taking any hormonal medications for at least

3 months prior to surgery. All leiomyomas used in this study

were 2 to 5 cm in diameter. Tissues were snap frozen and stored

in liquid nitrogen for further analysis or used for isolation of

LSMCs as previously described.12,13,35 Briefly, LSMCs were

cultured in Dulbecco Modified Eagle Medium (DMEM) sup-

plemented with 10% fetal bovine serum until reaching conflu-

ence with a change of media every 2 to 3 days. Cells at passages

p1 to p3 were used for all experiments. Cell culture experi-

ments were performed at least 3 times using LSMCs obtained

from different patients. All supplies for isolation and cell cul-

ture were purchased from Sigma-Aldrich (St Louis, Missouri)

and Fisher Scientific (Atlanta, Georgia).

Gain or Loss of Function of miR-93, miR-200c,
and miR-29c

Leiomyoma smooth muscle cells were seeded at a cell density

of 3.5 � 104/well in 6-well plates and at subconfluence

transfected with 50 nM of pre-miR-93, pre-miR-200c, and

pre-miR-29c, anti-miR-93, anti-miR-200c, anti-miR-29c, pre-

miR negative control (NC), or anti-miR negative control (aNC)

(Applied Biosystems, Foster city, California) for 24 to 96 hours

using PureFection transfection reagent (System Biosciences,

Inc, Mountain View, California), according to the manufactur-

er’s protocol.

RNA Isolation and Quantitative Real time-Polymerase
Chain Reaction (RT-PCR) Analysis

Total RNA was extracted from LSMCs using TRIzol (Thermo

Fisher Scientific, Waltham, Massachusetts), and their quantity

and quality were determined (ND-1000 Spectrophotometer;

NanoDrop Technologies, Wilmington, Delaware) as previ-

ously described.16,36,37 Subsequently, 1 mg was reverse tran-

scribed using random primers according to the manufacturer’s

guidelines (Applied Biosystems, Carlsbad, California). Primers

for E2F1, CCND1, and CDK2 detection were designed by

Primer Express Software (Applied Biosystems, Foster city,

CA). Quantitative RT-PCR was performed using SYBR gene

expression master mix (Applied Biosystems). Reactions were

incubated for 10 minute at 95�C followed by 40 cycles for 15

seconds at 95�C and 1 minute at 60�C. The mRNA levels were

determined using the Invitrogen (Carlsbad, CA) StepOne Sys-

tem with FBXW2 used for normalization.38 All reactions were

run in triplicate, and relative expression was analyzed with the

comparative cycle threshold method (2�DDCT) according to the

manufacturer (Applied Biosystems, Foster city, CA). Values

were expressed as fold-change compared to the control group.

The primer sequences used were as follows: E2F1 (sense,

50-GGACTCTTCGGAGAACTTTCAGATC-30; antisense,

50-GGGCACAGGAAAACATCGA-30); CCND1 (sense, 50-
GCCCTCTGTGCCA CAGATGT-30; antisense, 50-CCCC

GCTGCCACCAT-30); CDK2 (sense, 50-TTCCCCTCATCAA-

GAGCTATCTGT-30; antisense, 50-ACCCGATGAGAATGG-

CAGAA-30); and FBXW2 (sense, 50-CCTCGTCTCTAAAC

AGTGGAATAA-30; antisense, 50-GCGTCCTGAACAGAAT-

CATCTA-30).

Immunoblotting

Total protein isolated from leiomyoma and paired myometrium

and LSMCs transfected with pre-miR-93, pre-miR-200c, pre-

miR-29c, anti-miR-93, anti-miR-200c, anti-miR-29c, pre-miR
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negative (NC), and aNC were subjected to immunoblotting as

previously described.37,39 Specific antibodies generated against

E2F1 (sc-193; Santa Cruz Biotechnology, Dallas, Texas),

CCND1 (60186-1-Ig; Proteintech Group, Inc, Chicago, Illi-

nois), and CDK2 (sc-6248; Santa Cruz Biotechnology) with

concentration of 1:1000, 1:000, and 1:250, respectively, were

used to detect specific protein expression. The membranes

were also stripped and probed with Glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH) antibody (Santa Cruz Biotech-

nology) to serve as loading control. The band densities were

normalized by GAPDH using ImageJ program (http://imagej.

nih.gov/ij/), and they are expressed as a ratio relative to the

control group designated as 1.

Luciferase Reporter Assays

Leiomyoma smooth muscle cells were seeded in 6-well plates

until reaching subconfluence and transiently cotransfected with

50 nM pre-miR-93, pre-miR-200c, pre-miR-29c oligonucleo-

tides, or NC and a luciferase reporter plasmid (1 mg/well) con-

taining 30-untranslated region [UTR] sequences for E2F1,

CCND1, or CDK2 (GeneCopoeia, Inc, Rockville, Maryland)

using PureFection transfection reagent. Firefly and Renilla

luciferase activities were measured after 48 hours of transfec-

tion using the dual-luciferase reporter assay system (Promega,

Madison, Wisconsin). Firefly luciferase activity was normal-

ized to Renilla luciferase activity, and the level of induction

was reported as mean + standard error of the mean (SEM) of 3

experiments performed in duplicate and compared with a ratio

in cells transfected with NC independently set at 1.

Cell Proliferation Assay

Leiomyoma smooth muscle cells were seeded at 1000 cells/

well in 96-well plates and cultured for 48 hours. The cells were

then transfected with 50 nM pre-miR-93, pre-miR-200c, and

pre-miR-29c oligonucleotides or NC as described above. The

rate of cell proliferation was determined using the MTT assay

and cells were photographed. Briefly, 3-(4,5-Dimethylthiazol-

2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), (Sigma, St

Louis, MO) was added to the culture medium at a final con-

centration of 1 mg/mL and was incubated for 2 hours at 37�C.

The medium was aspirated, and the formazan product was

solubilized with dimethyl sulfoxide and the absorbance at

570 nm was determined and subtracted from the absorbance

at 630 nm (background) for each well. The assay was per-

formed in 6 replicates per condition, and it was repeated 3

times.

Cell Motility Assay

The cell motility activity was determined using Radius 24-well

assay kit (Cell Biolabs, San Diego, California) consisting of a

circular biocompatible gel in each well according to the man-

ufacturer’s instructions. Briefly, LSMCs were seeded in the

assay plates and were cultured for 48 hours and then were

transfected with pre-miR-93, pre-miR-29c, pre-miR-200c, and

NC as described above. After 72 hours of incubation, the bio-

compatible gels were removed, and the cells were incubated for

additional 21 hours, and the images of migratory cells were

captured using an Olympus IX70 microscope equipped with

digital camera (Olympus Inc, Melville, New York).

Statistical Analysis

Wherever appropriate, the results were reported as mean +
SEM and analyzed by PRISM software (GraphPad, San Diego,

California). Data set normality was determined by the

Kolmogorov-Smirnov test. Comparisons involving 2 groups

were analyzed using Student t tests. For comparisons involving

multiple groups, analysis of variance followed by a Tukey

honest significance difference (HSD) test for post hoc pairwise

analysis was conducted. Statistical significance was established

at P < .05.

Results

Initially, we determined the abundance of CCND1, E2F1, and

CDK2 mRNA and protein in leiomyoma and matched myo-

metrium in 30 hysterectomy specimens in subjects on no

hormonal medications. As shown in Figure 1A, the expres-

sion of E2F1 and CCND1 mRNA was increased in leio-

myoma as compared to matched myometrium; however, no

significant changes were observed in CDK2 mRNA levels.

Representative immunoblots and mean protein levels for

CCND1, E2F1, and CDK2 are shown in Figure 1B. As

demonstrated in Figure 1B, there was a significant increase

in the abundance of all 3 proteins in leiomyoma as compared

to matched myometrium. The differential expression of

E2F1, CCND1, and CDK2 is independent of race and men-

strual cycle phase (data not shown).

We then determined whether the 3 cell cycle regulatory

proteins are targets of miR-93, miR-29c, and miR-200c in

leiomyomas using the luciferase assay (Figure 2). Figure 2A

demonstrates the sequence alignment of seed regions of

miRNAs with their target genes at the 30-UTR region. In

Figure 2B, we demonstrate that both E2F1 and CCND1 are

targets of miR-93 in leiomyoma cells because overexpres-

sion of miR-93 in these cells reduced the luciferase activity

of E2F1 and CCND1. Overexpression of miR-29c and miR-

200c reduced the luciferase activity of CDK2, indicating

miR-29c and miR-200c target CDK2 in leiomyoma cells

(Figure 2C).

Upon establishing as to which cell cycle regulatory protein

is regulated by which miRNA, we proceeded to over- and

underexpress the miRNA of interest in leiomyoma cells

through transfection of LSMCs with pre-miR or antisense

oligo, respectively; then, we determined their effects on the

expression of target mRNAs (Figure 3A and B) or protein

(Figure 3C). As shown in Figure 3A and supporting the results

from the luciferase assay (Figure 2), overexpression of miR-93

resulted in decreased expression of E2F1 and CCND1 mRNA
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levels (Figure 3A), whereas knockdown of miR-93 had the

opposite effect (Figure 3B). Similarly, overexpression of

miR-200c and miR-29c as expected resulted in decreased

expression of CDK2 mRNA (Figure 3A), whereas knockdown

of miR-200c and miR-29c had the opposite effect (Figure 3B).

Protein data (Figure 3C) from the transfection studies were in

line with mRNA data. As shown in Figure 3C, overexpression

of miR-93 resulted in decreased E2F1 and CCND1 protein

levels, whereas anti-miR-93 transfection induced E2F1 and

CCND1 protein levels. These results were confirmed by trans-

duction of lentivirus that contained doxycycline-inducible

miR-93 insert (data not shown). Transfection of pre-miR-29c

and pre-miR-200c led to reduced CDK2 protein levels, whereas

anti-miR-29c and anti-miR-200c had the opposite effect

(Figure 3C).

The significance of miR-29c, miR-200c, and miR-93 in

regulating leiomyoma cell proliferation and motility is

demonstrated in Figure 4. Transfection of pre-miR-29c, pre-

miR-200c, and pre-miR-93 in primary leiomyoma cells

resulted in a time-dependent inhibition of cell proliferation as

measured by the MTT assay (Figure 4A), with a more profound

inhibitory effect in response to miR-29c and miR-200c trans-

fection as compared with miR-93. Upregulation of these 3

miRNAs inhibited cell motility as determined by cell motility

assay as shown in Figure 4B to D.

Discussion

Our results indicate that the miRNAs miR-93, miR-200c, and

miR-29c, which were previously demonstrated to be downre-

gulated in leiomyomas, target selectively key cell cycle regu-

latory proteins including CDK2, CCND1, and E2F1. Using the

luciferase assay, we confirmed that miR-29c and miR-200c

target CDK2 and miR-93 targets E2F1 and CCND1. As a result

Figure 1. A, Relative expression of E2F1, CCND1, and E2F1 messenger RNA (mRNA) in leiomyoma (Lyo) and matched myometrium (Myo;
n ¼ 30). B, Representative immunoblots for E2F1, CCND1, and cyclin-dependent kinase 2 (CDK2) in paired myometrium (M) and leiomyoma
(L). Bar graph shows relative protein band densities (N¼ 24) in myometrium (Myo) and leiomyoma (Lyo). Results are presented as mean + SEM
and analyzed using paired Student t test. *P < .05.
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Figure 2. A, The sequence alignment of seed regions of microRNAs (miRNAs) with their target genes at the 30-UTR region. B, Relative
luciferase activity in isolated leiomyoma smooth muscle cells (LSMCs) cotransfected with Renilla and firefly luciferase reporter carrying a 30-UTR
fragment of E2F1, CCND1, cyclin-dependent kinase 2 (CDK2), pre-miR-93, pre-miR-200c, pre-miR-29c, or control oligonucleotides (NC) for
48 hours. Relative luciferase activity is presented as the ratio of Firefly:Renilla as compared to NC, which was independently set as 1. Results are
presented as mean + SEM of at least 3 independent experiments with P values (*P < .05) indicated by corresponding lines.

Figure 3. Quantitative RT-PCR analysis of E2F1, CCND1, and cyclin-dependent kinase 2 (CDK2) messenger RNA (mRNA) expression in
leiomyoma smooth muscle cells (LSMCs) following transfection with pre-miR-93 (miR-93, for E2F1 and CCND1), pre-miR-200c (miR-200c, for
CDK2), pre-miR-29c (miR-29c, for CDK2), and control pre-miR oligonucleotides (NC) (A) or anti-miR-93 (a-miR-93, for E2F1 and CCND1),
anti-miR-200c (a-miR-200c, for CDK2), anti-miR-29c (a-miR-29c, for CDK2), and control anti-miR oligonucleotides (aNC) (B) for 72 hours.
Results are presented as mean + SEM of at least 3 independent experiments with P values (*P < .05) indicated by corresponding lines. C,
Western blot analysis of E2F1, CCND1, and CDK2 following transfection of LSMCs with control pre-miR oligonucleotides (NC), pre-miR-93
(miR-93, for E2F1 and CCND1), pre-miR-200c (miR-200c, for CDK2), pre-miR-29c (miR-29c, for CDK2) or control anti-miR oligonucleotides
(aNC), anti-miR-93 (a-miR-93, for E2F1 and CCND1), anti-miR-200c (a-miR-200c, for CDK2), anti-miR-29c (a-miR-29c, for CDK2) for 96
hours. Results are representative of at least 3 independent cell preparations.

254 Reproductive Sciences 26(2)



of downregulation of these miRNAs in leiomyoma, their target

proteins, that is, CDK2, CCND1, and E2F1, were upregulated

as demonstrated in this study. The significance of this group of

miRNAs in leiomyoma cell proliferation was demonstrated

through transfection of these miRNAs in isolated leiomyoma

cells that resulted in a time-dependent decrease in cell prolif-

eration and inhibition of cell motility as would be expected.

The regulation of cell cycle is highly complex and it is

regulated through interaction of cyclins that form the regula-

tory subunit and CDKs, which are the catalytic subunits of an

activated heterodimers.40 CDKs, through phosphorylation of

target proteins, can activate or deactivate target proteins that

control entry of cell into the next phase of cell cycle.40 In

response to growth factors, cyclin D1 is produced, which binds

to CDK4 or CDK6. Then, this complex phosphorylates the

retinoblastoma susceptibility protein (Rb) that dissociates from

the E2F/Rb complex, resulting in activation of E2F. The E2F

family are transcription factors that are crucial in control of cell

cycle.41 Activation of E2F induces transcription of genes, such

as Cyclin E, Cyclin A, DNA polymerase, and thymidine

kinase.42 Cyclin E binds to CDK2 enabling transition of cell

from the G1 to S phase.40 G1 to S phase transition point is also

known as a restriction point in the cell cycle and is a rate-

limiting step in the cell cycle.40 Our results indicating increased

expression of CDK2, E2F1, and cyclin D1 protein in fibroid

tumors would suggest that there is an enhanced transition of

fibroid cells from the G1 to S phase, which is consistent with

the cell proliferation data presented. In contrast to EDF1 and

Figure 4. A, The rate of cell proliferation was determined after 4 days transfection of pre-miR-93, pre-miR-200c, pre-miR-29c, and control pre-
miR oligonucleotides (NC) in leiomyoma smooth muscle cells (LSMCs) by MTT assay on the indicated days, with culture media changed every
2 days. Results are presented as mean + SEM of 6 independent experiments. *P < .05. B and C, Photomicrographs of LSMCs transfected with
pre-miR-93 (B), pre-miR-29c (C), pre-miR-200c (C) or the corresponding negative controls (NC) for 72 hours. The LSMC motility was
determined after the biocompatible gels were removed for 21 hours. Motility assays were performed, in triplicates, using 3 independent cell
preparations. D, Quantification of cell motility was analyzed by ImageJ and shown as mean + SEM with P values (*P < .05) as compared to NC.
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CCND1, in case of CDK2, we did not find any changes in

mRNA expression. This may be because the miRNAs targeting

CDK2 may exert their effect through inhibition of protein

translation rather than mRNA degradation.43

The miR-29 family, which consists of miR-29a, miR-29b,

and miR-29c, share a common seed sequence with largely

overlapping sets of predicted target genes; however, their dif-

ferential expression and regulation suggest unique functional

activities.44 This family of miRNAs is downregulated in vari-

ous fibrotic disorders, and key ECM genes, including collagen

subtypes and elastin, are targets of miR-29 regulatory

function.37,45 Similar to our findings with miR-29c in fibroids,12

a recent report demonstrated reduced expression of miR-29b in

leiomyoma as compared with matched myometrium, and

restoring miR-29b expression in isolated LSMCs implanted

in subrenal xenograft in a mouse model resulted in inhibition

of ECM accumulation and rate of cell proliferation.15 MiR-29

family, as in fibroid tumors, is also downregulated in a number

of malignancies including gastric,46,47 breast,48 osteosar-

coma,49,50 and lymphomas.51,52 In gastric cancer cells, similar

to our results in leiomyoma cells, enforced expression of miR-

29a-3p inhibited the expression of CDK2, CDK4, and CDK6

and inhibited cell proliferation and cell migration.47 MiR-29b

was shown to regulate cyclin D1 expression in adipocytes, and

it is critical for adipogenic differentiation.53 Similarly, miR-

29b was reported to inhibit intestinal mucosal growth by

repressing CDK2 translation27 and targeted CDK6 in mantle

cell lymphoma.52

The miR-200 family is normally expressed in cells of

epithelial origin and not in fibroblasts of mesenchymal

origin.54,55 This family of miRNAs suppresses tumors by inhi-

biting epithelial to mesenchymal transition.19 The role of

miR-200 in EMT and tumor progression has been linked to

bladder,24 breast,23 ovarian,22 pancreatic,21 melanoma,56 and

stomach.57 Our own work showed downregulation of this

miR-200c in leiomyomas, which was race dependent, with

tumors from African Americans expressing lower levels of

miR-200c in leiomyomas compared to Caucasians.14 In

comparison with isolated leiomyoma cells, the expression of

miR-200c was also lower in SKLMS-1, a leiomyosarcoma cell

line.18 In this cell line, miR-200c was shown to target CDK2

and CCNE2, and its overexpression led to increased caspase

3/7 activity, thereby increasing apoptosis and reducing cell

proliferation and migration, similar to our findings here with

primary leiomyomas cells. Similar to leiomyoma cells, others

have reported that miR-200c targets CDK2 and suppresses

tumorigenesis in renal cell carcinoma26 and that miR-200b

inhibits cell migration and invasion in non-small cell lung car-

cinoma cells by targeting FSCN1.58

As with miR-29c and miR-200c, the expression of miR-93 is

reduced in leiomyomas; however, its host gene MCM7, a mem-

ber of DNA helicases with a central role in initiation of DNA

replication and cell cycle progression, is significantly increased

in leiomyomas.13 Here, we demonstrate that miR-93 directly

targets E2F1 and CCND1. The role of miR-93 in regulation of

cell cycle–associated proteins and cell proliferation is cell and

context dependent because, in contrast to leiomyoma cells,

overexpression of miR-93 in gastric cancer cells activated

CDK2 and aided in G1/S cell transition.59 In contrast to our

findings in leiomyomas cells, Hazarika et al showed that over-

expression of miR-93 in human umbilical vein cells (HUVEC)

cell and CD2C12, a skeletal cell line, stimulated cell prolifera-

tion, and miR-93 and E2F1 levels were inversely related.60

In summary, leiomyomas are characterized by downregula-

tion of miR-29c, miR-200c, and miR-93, as a result of which

there is upregulation of their target cell cycle proteins, includ-

ing CCND1, CDK2, and E2F1. Here, we show that miR-93

directly targets E2F1 and CCND1, and miR-29c and miR-

200c target CDK2. These cell cycle proteins are key regula-

tors of G1/S transition, which is a rate-limiting step of the

cell cycle. The physiological significance of our findings is

underscored by our data showing upregulation of miR-29c,

miR-200c, and miR-93 in leiomyoma cells decreases cell pro-

liferation and motility. Potential therapies that could correct

the dysregulation of miR-29c, miR-200c, and miR-93 in leio-

myomas restoring them to normal levels could potentially

hold promise in inhibiting leiomyoma cell proliferation and

fibroid progression.
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