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Abstract

Background: Our group has shown that in vivo tau brain binding patterns from FDDNP-PET 

scans in retired professional football players with suspected chronic traumatic encephalopathy 

differ from those of tau and amyloid aggregate binding observed in Alzheimer’s disease (AD) 

patients and cognitively-intact controls.

Objective: To compare these findings with those from military personnel with histories of mild 

traumatic brain injury (mTBI).

Methods: FDDNP-PET brain scans were compared among 7 military personnel and 15 retired 

players with mTBI histories and cognitive and/or mood symptoms, 24 AD patients, and 28 
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cognitively-intact controls. Nonparametric ANCOVAs with Tukey-Kramer adjusted post-hoc 
comparisons were used to test for significant differences in regional FDDNP binding among 

subject groups.

Results: FDDNP brain binding was higher in military personnel compared to controls in the 

amygdala, midbrain, thalamus, pons, frontal and anterior and posterior cingulate regions (p < 

0.01–0.0001). Binding patterns in the military personnel were similar to those of the players 

except for the amygdala and striatum (binding higher in players; p = 0.02–0.003). Compared with 

the AD group, the military personnel showed higher binding in the midbrain (p = 0.0008) and pons 

(p = 0.002) and lower binding in the medial temporal, lateral temporal, and parietal regions (all p = 

0.02).

Conclusion: This first study of in vivo tau and amyloid brain signals in military personnel with 

histories of mTBI shows binding patterns similar to those of retired football players and distinct 

from the binding patterns in AD and normal aging, suggesting the potential value of FDDNP-PET 

for early detection and treatment monitoring in varied at-risk populations.

Keywords

Alzheimer’s disease; brain tau and amyloid; chronic traumatic encephalopathy; FDDNP-PET; 
mild traumatic brain injury; military personnel; retired professional football players

INTRODUCTION

Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease 

associated with prior brain trauma. Clinically, the disease is marked by cognitive, behavioral, 

and motor disturbances, and eventually progressive dementia. Neuropathological changes of 

CTE include widespread accumulation of phosphorylated tau protein as neurofibrillary 

tangles (similar to those observed in Alzheimer’s disease, AD), astrocytic tangles, neurites, 

diffuse axonal injury, white matter abnormalities, inflammation, and immune pro-

inflammatory cytokine responses in traumatized brain regions. Immunoreactive deposits are 

found in neocortical, subcortical (e.g., thalamus, caudate, putamen, midbrain, and cerebellar 

white matter), and medial temporal (hippocampus, entorhinal cortex, and amygdala) regions, 

where neuronal loss may be observed [1]. TAR DNA-binding protein 43 (TDP-43, 

transactive response DNA binding protein 43 kDa), is a protein encoded by the TARDBP 

gene that may accompany tauopathy in CTE cases, predominantly in subcortical areas, and 

is more prominent in motor neuron disease cases [2]. Amyloid deposition has been reported

—typically after age 60—in approximately 40% to 50% of CTE cases and generally consists 

of sparse diffuse plaques with relatively few neuritic plaques in cortical areas, and rarely in 

subcortical structures. NINDS criteria for the diagnosis of CTE require p-tau aggregates 

around small vessels in an irregular pattern at the depths of the cortical sulci and are 

supported by p-tau-related pathologies in the hippocampus, mammillary bodies and other 

hypothalamic nuclei, amygdala, nucleus accumbens, thalamus, midbrain tegmentum, and 

isodendritic core [3].

In vivo imaging of neuropathological, insoluble protein aggregates with positron emission 

tomography (PET) can aid in the early diagnosis of neurodegenerative diseases before 
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extensive neuronal loss and clinical symptoms become evident [4]. Investigators have 

studied numerous in vivo imaging probes with purported specificity for amyloid-β; plaques, 

including [C-11]PiB, [F-18]3-fluoro-PiB ([F-18]flutemetamol), [C-11]SB-13, 

[F-18]BAY94–9172 ([F-18]florbetaben), [F-18]AV45 ([F-18]florbetapir), [C-11]BF-227, 

among others [5]; however, only FDDNP has been shown to also detect tau protein deposits 

in the living human brain. Most recently developed tau-specific ligands used with PET (e.g., 

[C-11]PBB3, [F-18]THK-523, [F-18]THK-5105, [F-18]THK-5117, [F-18]T808, 

[F-18]T807) have shown significant non-specific, ”off-target” binding (e.g., T-807 or 

AV-1451 and others) to MAO-A, MAO-B, neuromelanin-containing neurons, and other 

tissue targets in AD subjects [6, 7]. In subjects with suspected CTE, with the exception of 

one publication using T-807 in one National Football League (NFL) subject [7], no other 

reports have become available [8].

FDDNP is specific for the β-pleated sheet conformation present in amyloidogenic fibrils, 

both in vitro [9] and in vivo, in AD and mild cognitive impairment (MCI) [10, 11] and in 

Gerstmann-SträusslerScheinker disease and other prion diseases [12, 13], as well as in tau 

neuropathology in frontotemporal dementia [14] and progressive supranuclear palsy [15]. 

Previously, our group used FDDNP-PET to detect brain patterns of tau neuropathology 

distribution in retired NFL players with suspected CTE consistent with models of 

concussion and with paired helical filament-tau distribution observed at autopsy in subjects 

with a history of mild traumatic brain injury (mTBI) and CTE [16, 17].

As indicated above, FDDNP is specific for protein motifs having β-sheet pleated sheets, 

which are present in tau and amyloid neuroaggregates and explain its successful utilization 

in various neurodegenerative diseases having tau and amyloidcontaining neuroaggregates.

McKee and associates have reported that CTE is a predominant tauopathy and that amyloid, 

as sparse diffuse amyloid, is only observed in brain cortices of some CTE patients, typically 

after age 60 [18]. Thus, in the absence of amyloid aggregates, FDDNP appears to serve as a 

tau-imaging probe in CTE or other tauopathies like progressive supranuclear palsy [15]. Our 

previous work indicated that FDDNP-PET scans of retired professional football players 

could be differentiated from those of patients with AD [16]. This tau binding in CTE has 

recently been confirmed by Omalu and associates, who performed an autopsy on a 63-year-

old football player previously scanned with FDDNP, which showed that FDDNP-PET 

revealed brain binding levels closely correlated with paired helical filament tau (PHF-tau) 

deposition (Spearman rank-order correlation (rs); rs = 0.59, p = 0.02) [19]. Regardless of 

whether FDDNP is binding to tau or amyloid, which may not be certain at the time of 

imaging, it is the regional pattern of FDDNP binding that distinguishes these various 

neurodegenerative diseases.

Brain trauma in military service members is well documented. Approximately 15% to 23% 

of returning military service members suffer from mTBI, [20–23] which includes 

concussion, sub-concussion, and mostly exposures to explosive blasts from improvised 

explosive devices. Military-related mTBI may be different from mTBI related to sports 

participation in terms of the manner of causation, including frequency or repetitiveness of 

impact (i.e., blast versus machine gun) and the type and angle of impact (i.e., massive blasts 
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versus landmines). Unlike the relatively circumscribed types of trauma that occur in sports, 

military-related mTBI is acquired in a broad variety of ways, including sports and other 

recreational activities, physical training, falls, and motor vehicle accidents, though, in one 

study, explosive blast injury accounted for 56% of military-related TBI, of which 80% were 

mTBI [22]. Injuries from blasts vary depending on the magnitude of the explosive, 

proximity to the explosive, and the space in which the explosive detonates. McKee and 

Robinson [24] have commented on the variability of mTBI among military personnel, who 

may experience single or multiple blast injuries. Blast injury is the result of the rapid 

transmission of an acoustic wave through the brain tissue and accompanying blast winds that 

can produce forces similar to multiple, severe concussive impacts occurring over 

microseconds [25].

There is no consensus at this time on how to grade the severity of military-related mTBI. 

Militaryrelated mTBI may be further distinguished from sports-related mTBI by its high co-

occurrence with posttraumatic stress disorder (PTSD), which occurs in 44% of military 

personnel who have suffered mTBI and subsequent loss of consciousness [21]. PTSD can be 

difficult to distinguish from other sequelae of mTBI, post-concussive syndrome, and CTE. 

All are characterized by executive dysfunction, impulsivity, emotional lability, disinhibition, 

sleep disturbance, and changes in personality [26, 27]. These common neuropsychiatric 

features may reflect the increasingly convergent neuropathological findings in the study of 

post-concussive syndrome, PTSD, and CTE. A tool that could distinguish PTSD due to 

psychological stress from other trauma-induced conditions such as CTE would be important 

for developing specific treatments. To address some of these knowledge gaps, we report here 

the first FDDNP-PET scan findings of brain tau pathology in military personnel with 

suspected CTE and compare the results to those of retired NFL players, patients with AD 

and cognitively healthy individuals.

MATERIALS AND METHODS

Neuropsychiatric evaluations were performed on seven military personnel who were 

recruited for this study because of a history of head trauma and cognitive or mood 

symptoms. Recruitment of military personnel occurred through word of mouth and 

individuals who contacted our group after hearing about our previous research through 

media. We compared results from these subjects with those of 15 retired NFL players, 24 

patients with AD, and 28 cognitively intact individuals reported previously [16]. In the 

current study, their FDDNP-PET scans were reanalyzed using a more complex set of regions 

of interest (ROIs) as defined below. Subjects in the AD group met the standard diagnostic 

criteria for AD and dementia [28, 29]. The control group had normal cognitive functioning 

for their age and did not meet criteria for mild cognitive impairment or AD [30].

Subjects had physical examinations and assessments, screening laboratory tests, and 

structural imaging scans (computed tomography [CT] or magnetic resonance imaging 

[MRI]) to rule out major medical problems and other causes of mental symptoms (e.g., 

stroke, tumor) and for co-registration with PET scans for ROI analyses. Four football players 

and one veteran underwent CT scans because they could not tolerate MRI (claustrophobia, 

body metal, body size).
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The Mini-Mental State Examination (MMSE) and Hamilton Rating Scales for Depression 

(HAM-D) and Anxiety (HAM-A) were administered to quantitate degree of cognitive and 

mood changes as well as to confirm diagnoses [11, 31]. In addition, a neuropsychological 

test battery was administered to assess memory, language, attention, information-processing 

speed, executive functioning, and visuospatial ability. We used standard diagnostic criteria 

for MCI, as previously described to measure memory, executive functioning, attention, and 

language abilities [11]. Clinical assessments were performed within four weeks of scanning, 

and clinicians were blinded to scan results. Informed consent was obtained in accordance 

with UCLA Human Subjects Protection Committee procedures. Cumulative radiation 

dosimetry was below the mandated maximum annual dose and in compliance with state and 

federal regulations.

All scans (Siemens Biograph TruePoint PET/CT scanner) were performed with participants 

in a supine position and with the imaging plane parallel to the orbitomeatal line as detailed 

previously [11, 17, 32]. In brief, subjects were injected with 10 mCi of FDDNP. FDDNP 

binding data were quantified using Logan graphical analysis: The slope of the linear portion 

of the Logan plot is the relative distribution volume (DVR) of the tracer in an ROI divided 

by that in the reference region (cerebellum) [33]. ROIs were traced on co-registered MRI or 

CT scans for subcortical, limbic (amygdala, striatum, thalamus, subthalamus, midbrain, 

pons), and cortical (frontal, parietal, occipital, anterior cingulate, posterior cingulate, and 

medial and lateral temporal) regions [11, 17, 32]. Each DVR or binding value was expressed 

as an average of left and right regions. All scans were read and ROIs drawn by individuals 

blinded to clinical assessments.

Statistical analyses

Demographic and clinical measures were compared between groups using Kruskal-Wallis 

tests for continuous measures (followed by MannWhitney tests for pair-wise comparisons) 

and Fishers exact tests for categorical measures. Nonparametric ANCOVAs (using ranked 

FDDNP binding levels rather than the raw DVR values; controlling for age) with Tukey-

Kramer adjusted post-hoc comparisons were used to test for statistically significant 

differences in regional FDDNP binding (DVR values) among the four subject groups. We 

also examined whether inclusion of sex, APOE4 status, and educational level as covariates 

changed any of the findings. A significance level of p < 0.05 (two-tailed) was used for all 

inferences.

RESULTS

Demographic and clinical data are shown in Table 1. Military personnel and football players 

were exclusively men, whereas the AD and cognitively healthy control groups had a 

substantial proportion of women. Military personnel were significantly younger than the 

other three groups. Four of the seven military personnel were cognitively normal, and three 

had MCI (Supplementary Table 1). All but two football players had a diagnosis of MCI; one 

player was cognitively normal and one had dementia (Supplementary Table 2). While the 

difference in education levels among subject groups did not reach statistical significance, 

pairwise comparisons indicated that military personnel had significantly lower education 
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levels than both players and cognitively healthy individuals. Military personnel and players 

had significantly higher levels of depression and anxiety than did controls and AD subjects 

but military personnel and players did not differ significantly. Three military personnel and 

five players had moderate to severe depression, while one military and two players had 

moderate to severe anxiety. One military serviceman had also played football and suffered 

concussions.

The four groups differed significantly in all of their regional FDDNP binding levels, 

controlling for age (F(3,69) = 4.4–44.0; all p-values <0.0001 except for occipital, p = 0.007) 

(Table 2). FDDNP binding levels were significantly higher in military personnel compared 

to cognitively intact individuals in the following ROIs: amygdala, midbrain, thalamus, pons, 

frontal, anterior cingulate gyrus, and posterior cingulate gyrus (p < 0.01–0.0001) (Table 2, 

Figs. 1 and 2). Binding patterns in the military personnel were similar to those of the 

football players except in the amygdala and striatum, where the players had higher binding 

than the military personnel (p = 0.02–0.003). Compared with the AD group, the military 

personnel showed higher binding in the midbrain (p = 0.0008) and pons (p = 0.002) and 

lower binding in the medial temporal, lateral temporal, and parietal regions (all p = 0.02) 

(Table 2). All the above findings were similar with inclusion of sex, APOE4 status, or 

educational level as a covariate.

DISCUSSION

This study is the first to report in vivo FDDNP binding patterns of brain tau and amyloid 

protein deposits in military personnel with suspected CTE and compare them to those of 

retired football players with suspected CTE, as well as FDDNP tau and amyloid binding 

patterns in patients with AD and cognitively intact individuals. As predicted, FDDNP 

binding patterns in military personnel with suspected CTE were similar to those of retired 

football players with suspected CTE, but different in certain brain regions from those with 

AD, and distinct from those with normal cognition.

The FDDNP binding patterns in these military personnel show high levels of binding in 

brain regions demonstrating tau accumulation found in postmortem studies of individuals 

with CTE [19, 34]. While athletes have been the focus of similar studies, the present 

investigation points to the potential utility of this technology in other at-risk populations. 

Only one subject (football player) had dementia, suggesting that FDDNP may potentially 

detect CTE-related neuropathology well before individuals suffer from major cognitive 

impairment.

Efforts toward developing tau-specific PET ligands have not thus far yielded useful results, 

as the developed probes have shown a lack of in vivo specificity and a lack of correlation 

with in vitro tau deposition due to binding to other tissue targets leading to significant ‘off-

target’ binding [35]. FDDNP is the only available, well-studied tau-PET ligand that, thus far, 

has been used in the PET imaging of any tauopathy, including progressive supranuclear 

palsy or CTE, and has been shown to differentiate CTE from AD and normal cognition [15, 

16]. We have previously shown that FDDNP binds to both fibrillary tau and amyloid, 

abnormal protein deposits that accumulate in AD [10, 11]. Since neuropathological 
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determinations indicate that CTE is a predominant tauopathy [34] and amyloid cortical 

deposition—as diffuse amyloid—is observed as a function of age later in the development of 

the disease (typically in subjects older than 60 years of age) [1], our imaging results indicate 

that the FDDNP signal in our cases of suspected CTE likely represent fibrillary tau 

deposition, as confirmed in our recent work. Further, our results in the present study confirm 

our group’s findings that the pattern of abnormal brain tau deposition is the key feature of 

FDDNP-PET that offers a potentially useful biomarker for differentiating these and other 

important forms of neurodegeneration [16].

The military and retired football player groups showed similar FDDNP tau binding patterns 

although there were some regional distinctions, specifically in the amygdala and striatum. 

The distinctions in FDDNP binding values between these two groups with suspected CTE 

may reflect the differences of the concussion-based CTE development versus the blast-based 

mechanism of CTE (Blast-Variant CTE) [16]. The subjects in the military group are 

typically subjected to impacts that may be fairly powerful but less frequent than the 

concussive and sub-concussive injuries occurring while playing football. Among athletes 

with concussion-based CTE, our prior research[16] suggests a progression of 

neuropathology over four stages of severity (T1-T4) [24], whereas in blast-mediated CTE 

experienced by military personnel, such a progressive pattern of neuropathological change 

has not yet been described.

Limitations to interpretation of our findings include the small number of military personnel 

studied, the absence of women in the two groups with mTBI, the lack of specificity of injury 

to military personnel, and lack of comparison with individuals with mTBI but no symptoms 

or signs of CTE. Previous studies have not reported any gender based differences observed 

in FFDNP binding. One subject from the military personnel group also had an athletic 

background and may have suffered mTBI related to sports and/or military experience. 

Several subjects in the military and player groups suffered from moderate to severe 

depression and anxiety. In a previous study of individuals with MCI and without a history of 

mTBI, our group found that depression and trait anxiety correlated with cortical FDDNP 

binding [36], suggesting that current findings may also be attributable to psychopathology 

unrelated to mTBI. Other investigators posit that inflammation, which has been implicated 

along with tau and amyloid in the cascade of causative events in neurodegenerative diseases, 

could also play a role in depression and posttraumatic stress disorder (PTSD) associated 

with TBI [37, 38]. We did not screen for PTSD, which is highly prevalent among military 

personnel with mTBI and may in itself be correlated with neuropathology [39, 40]. Other 

factors that could influence the results would be differences in cerebrovascular health, 

substance use, and genetic risk among subjects with suspected CTE and normal cognition. 

Given these limitations, our findings warrant further study before they can be applied to 

clinical settings. Despite such limitations, our findings are consistent with our a priori 

hypothesis and the binding patterns in subjects with suspected CTE—both the players and 

the military personnel—are consistent with known neuropathological deposition patterns in 

multiple cases of CTE confirmed through neuropathological examination at autopsy [1, 2].

Further study of CTE biomarkers in at-risk individuals, both symptomatic and 

asymptomatic, is warranted to better characterize disease progression and develop effective 
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strategies to treat CTE in military personnel, athletes, and other at-risk groups. It is also 

critically important to avoid premature assumptions of CTE based on nonspecific 

symptomatology, and it is here that objective biomarkers may prove very useful clinically. 

Longitudinal studies of FDDNP and other CTE biomarkers can objectively quantify injury 

severity, predict patient outcome and risk for future neurodegeneration, identify injury 

mechanisms and therapeutic targets, aid in assessment of therapeutic efficacy, and monitor 

recovery or decline, though the relationship between neuropathological burden and symptom 

severity has not yet been established. The current results suggest that FDDNP-PET may 

have the potential to become a valuable biomarker for early detection, treatment monitoring, 

and prevention of CTE in varied at-risk populations. Given the large number of people at 

risk, the public health impact of such a biomarker would be considerable.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of FDDNP-PET DVR transaxial, coronal, and sagittal images of a cognitively 

healthy individual, Alzheimer’s disease patient, football player, and a military subject. The 

Alzheimer’s disease patient shows higher DVR signals in parietal, temporal and frontal 

regions compared to the healthy individual, who may have neuropathology deposition given 

the age of the subject (80 years) [11]. The football player and military subject show higher 

amygdala, midbrain, and other subcortical binding compared with the healthy individual and 

Alzheimer’s disease patient. The healthy individual showed some mild cortical binding 

typical of other healthy individuals age 70 and older (or darker shades in greyscale) [10]. 

Warmer colors (or darker shades in greyscale) indicate higher FDDNP binding.
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Fig. 2. 
FDDNP DVR parametric images of the brains of two war veterans with histories of multiple 

blast concussions (mTBIs) during their war zone deployment. The upper row shows a 48-

year-old man (veteran 24010) and the lower row a 36-year-old man (veteran 24011). Left 

four images in each row show transaxial brain images from top of the brain to the bottom. 

The right image shows a coronal cut through the midbrain. (This figure was originally 

published in Barrio et al., 2015 [16].)
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