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ABSTRACT Although numerous Shiga toxin (Stx)-producing Escherichia coli (STEC)
strains have been sequenced, genomic information on Stx-converting phages, highly
related to the primary virulence factors of STEC, is scarce. Here, we report the com-
plete genome sequence of a Stx-converting phage induced from an outbreak STEC
O145 strain.

Shiga toxin (Stx)-producing Escherichia coli (STEC), as one of the major foodborne
pathogens, has been widely associated with multiple foodborne outbreaks in the

United States (1, 2). Stx-converting phages, carrying the major virulence genes of STEC,
are usually induced from STEC strains and have been related to the emergence of new
STEC strains through the transfer of stx genes to other bacteria (3, 4). However, there
is a limited number of complete whole-genome sequences of Stx-converting phages. In
this study, the complete genome sequence of a Stx2-converting phage isolated from an
outbreak STEC O145 strain is described.

The Stx-converting phage Lys12581Vzw was induced from E. coli O145:H28
(RM12581), associated with the U.S. romaine lettuce outbreak in 2010 (5), by using
mitomycin C (0.5 �g/ml) in LB broth at 37°C overnight. Phage purification was per-
formed using a double-layer plaque assay against E. coli strain WG5 (ATCC 700078) from
a single plaque picking, followed by CsCl gradient concentration to get rid of bacterial
DNA and debris. The phage DNA was extracted using a phage DNA extraction kit
(Norgen Biotek, Ontario, Canada). The DNA library (2 � 250 bp) was constructed using
a TruSeq Nano DNA library prep kit (Illumina, San Diego, CA) and was subsequently
sequenced on an Illumina MiSeq sequencer, resulting in 6,779,298 paired-end reads.
The raw sequence reads were quality filtered and trimmed using FastQC and Trimmo-
matic (6), with the average quality set at Q30. De novo assembly of the remaining
quality reads was performed using SPAdes version 3.13.0 on the KBase server (7, 8) with
the minimum contig length set to �10,000 bp. The resulting contig was annotated
using both Prokka (9) and RAST server (10) pipelines with default settings. The anno-
tations were subsequently compared and curated with UniProt (11) and BLASTp
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE�Proteins), with the identity and query
coverage greater than 95%, using Geneious (version 11.0.4). The packaging mech-
anisms and genome termini were determined using PhageTerm (12). tRNAs were
predicted using the tRNAscan-SE search server (13). ResFinder (version 3.0) and
VirulenceFinder were used to screen for antibiotic resistance genes and virulence
genes (14, 15).

Phage Lys12581Vzw, belonging to the family Podoviridae, has double-stranded DNA
with a genome size of 62,668 bp (3,257� coverage) and an average G�C content of
50.1%. The phage has a Mu-like packaging mechanism; the phage genome lacks
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obvious termini and carries pieces of the host sequences. There are 81 open reading
frames (ORFs) predicted, of which 45 are annotated with functional proteins, such as
DNA replication and modification (restriction endonuclease, DNA primase, and meth-
ylase), membrane-related proteins (lysis proteins, membrane proteins, and cell
division inhibitors), antirepressors, virion structures, integrases, Shiga toxin, and
tRNAs. Most functional ORFs contribute to the virulence and propagation of Stx-
converting phages. None of the ORFs contain antibiotic resistance genes. The whole-
genome sequence of Lys12581Vzw shares 95% average nucleotide identity with two
published Stx2-converting phages—Enterobacteria phage VT2-Sakai (GenBank acces-
sion number NC_000902) and bacteriophage 933W (GenBank accession number
AF125520)—induced from different E. coli O157:H7 strains. This study provides valuable
insights into the diversity of Stx-converting phages which are associated with the
evolution of STEC strains.

Data availability. The complete genome sequence of Escherichia phage Lys12581Vzw
has been deposited in GenBank under the accession number MN067333. The sequencing
reads have been deposited under the BioSample accession number SAMN12086808. The
version of the phage genome described in this paper is the first version.
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