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Introduction
Systems are made of parts, which often interact with each other 
in an organized manner to form integrated wholes.1 They are 
confined by spatial, temporal, and functional boundaries and 
are influenced by the external environment. Graph theoretical 
approaches model systems with graphs, mathematical con-
structs that connect vertices to each other with lines.2 Vertices 
describe parts of a system and lines describe pairwise interac-
tion between parts. When connections are undirected, lines are 
called edges. When connections are directed (ie, each connec-
tion involves an initial vertex and a terminal vertex), lines are 
called arcs. Graphs become networks when functions or other 
properties are mapped onto the vertices and lines of the graphs, 
with vertices now being called nodes and lines being called links 
of the network. This mapping is not trivial.

As systems evolve, they often grow from parts to form big-
ger wholes in an expanding process of “accretion” and “diversi-
fication.”3 We define accretion as growth and increase that 
typically results in the accumulation of entities and their inter-
connections. In turn, diversification can be defined as the 
gradual accumulation of change and the diffusional spread of 
variation through time. Both accretion and diversification 

are tightly interlinked and manifest at different degrees in dif-
ferent contexts and timeframes of evolving systems. Despite 
being controlled by a diverse set of mechanisms, they are also 
well-known phenomena that are likely universal (Figure 1A). 
Phylogenetic and polyphasic analyses reveal evolutionary 
growth and diversification of galaxies, stars, and planets4-6; 
comparative and evolutionary genomic analyses support the 
rise of macromolecular structure making up increasingly com-
plicated cellular machinery3; and archeology and historical 
records trace the rise and growth of cities8-11 and other socio-
technical systems (eg, the Internet).12 Accretion and diversifi-
cation are particularly pervasive in biology at many levels of 
biological organization. Paleontology provides an empirical 
pattern of increase of species from one to many that is robust 
in land and sea and is independent from extinction.13 However, 
different diversification regimes exist through geological time, 
which constrain the size of clades and stem-to-tip branching 
events and often result in burst patterns followed by declining 
diversification. Currently, there are more than 1.8 × 106 named 
species14 and an estimated 1012 microbial species on Earth 
that have not been surveyed.15 All of these diversified entities 
must have gradually accumulated in evolution as their 
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proteomes follow the Heaps law and the principle of historical 
continuity.16 The molecular components of an organism also 
accrete.3 They become parts of growing molecules and macro-
molecules, which also interact and merge with other growing 
molecules to form molecular complexes.17 For example, Figure 
1B describes the accretion of the molecular components of the 
F1/F0 ATP (adenosine triphosphate) synthase, a 600-kDa 
multisubunit complex that is central to cellular bioenergetics. 
The complex is a motor with 2 rotors connected by an axle and 
regulated by a stator. The F0 rotor is embedded in the mem-
brane and its movement is driven by transmembrane proton 
gradients. The F1 rotor is a rotating head that catalyzes ATP 
synthesis/hydrolysis. The complex originated in a ring struc-
ture of the F1 rotor 3.8 Gya, then accreted the F0 rotor, and 
finally added the axel and then the stator 0.6 Gya to form the 
fully developed bioenergetic machine.7 Molecular complexes 
make up cellular machinery and assemblies, which end 

forming higher levels of molecular and cellular structure. The 
resulting cells accrete into more complex cellular and organis-
mal assemblies, including cellular consortia, multicellular 
organisms, and organismal populations. In one extreme exam-
ple, eusocial communities such as those of Argentine ants were 
found to quickly accrete into super-colonies of billions of indi-
viduals encompassing the Mediterranean and Atlantic coasts 
of Southern Europe18 and to later unify with Japanese and 
Californian counterparts into a worldwide mega-colony.19 
Accretion is always accompanied by diversification. At bio-
logical level, for example, the world of cellular organisms and 
viruses diversify into groups that have evolved distinct fea-
tures. Their diversity and evolution can be described with tax-
onomies or by the reconstruction of a “tree of life.”20 Despite 
significant horizontal exchange of genetic information, there 
are strong vertical (phylogenetic) signatures in biological evo-
lution (eg, in viral evolution).21 These signatures are often 

Figure 1.  Accretion and diversification appear universal. (A) Galaxies, stars, planets, macromolecules, and cities grow and evolve. For example, 

gravitational attraction causes gas, molecular clouds, dust grains, and particles to accumulate into massive objects in the cosmos. This usually occurs by 

the formation of spiraling accretion disks, which form out of diffused material in orbital motion around a central body.4 This is the case for protoplanetary 

and circumstellar disks and active galactic nuclei, some of which associate with astrophysical jets of ionized matter.5 Accretion is tightly coupled to 

diversification. For example, a number of transforming processes—including monolithic collapse, interaction between accretion and mergers, gravitational 

interaction, and sweeping and ejection events—cause galaxies to diversify.6 Time of origin is given in billions or thousands of years ago (Gya and Kya, 

respectively). (B) The molecular structure of the F1/F0 ATP synthase complex that is involved in bioenergetics of the cell evolves by adding protein 

structural domains.7 Domains are colored according to their evolutionary age, from red (early) to blue (late).

Figure 2.  Ancient universal cores and derived peripheries support a biphasic process of accretion. (A) Venn diagrams describe censuses of protein 

structural domains defined at fold superfamily (FSF) level of structural classification of the SCOP taxonomy, Gene Ontology (GO) terms of molecular 

functions, RNA families defined by the Rfam database, and homologies of ribosomal proteins (r-proteins). The universal repertoires shared by Archaea, 

Bacteria, and Eukarya are colored in red. (B) Model of accretion explaining the Venn diagrams. In phase 1, biological repertoires of parts accrete into 

universal cores, which in phase 2 diversify together with the evolving organisms of the 3 cellular superkingdoms of life.
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responsible for the conservation of biological features, such as 
the structural design of molecules or the functional allosteric, 
regulatory, and active sites of proteins.22

Accretion and diversification can be portrayed by a series of 
evolving networks that grow by gradually adding and subtract-
ing nodes and links. As networks grow and nodes diversify, 
their complexity also increases. Many networks exhibit higher 
order organization in connectivity, ie, in the establishment of 
links, which can be modeled using small network subgraphs.23 
Here, we review how network growth and complexification 
tailor evolving biological systems with two processes, one that 
unifies and the other that diversifies. We explain unification 
and diversification with a “network” paradigm (tela vitae) of 
systems of interconnected things that grow. The paradigm is 
congruent with a biphasic model of generation of structure,24 
a “double tale” of accretion and evolutionary change in which 
accretion unifies disparate parts to form bigger wholes and 
change fosters growth and innovation. The theory is sup-
ported by considerable phylogenomic data. The hallmark of 
this model is the emergence of an important fractal-like pat-
tern that exists in the structure of biological networks, hierar-
chical modularity.

A Biphasic Pattern Exists in “omic” Repertoires and 
Evolutionary History
Comparative genomics dissects genomic features that are dis-
tinct or similar in different organisms, including those of 
chromosomal, genetic, regulatory, and functional organization. 
These signatures are often features that are evolutionarily 
highly conserved. They include the fold structure of protein 
structural domains categorized by the SCOP25 or CATH26 
gold standards of protein taxonomy, Gene Ontology (GO) 
definitions of biological functions,27 the global structure of 
functional RNA molecules (eg, cataloged by the Rfam data-
base),28 or proteins (r-proteins) associated with the ribosome, 
the central protein biosynthetic machinery of the cell.29 The 
general comparative analysis approach does not reconstruct 
history and is therefore an evolutionary inference made from 
extant data. However, the fundamental evolutionary role of 
accretion and diversification can be made plainly evident 
(Figure 2). Venn diagrams describing the distribution of struc-
tural domains, functional RNA, GO molecular functions, and 
r-protein repertoires in the 3 cellular domains of life, Archaea, 
Bacteria and Eukarya, show significant “omic” sets that are 
universal (colored in red) and significant domain-specific rep-
ertoires (Figure 2A). As expected, the 7 RNA families that are 
universal include functional RNA that is known to be very 
ancient, including ribosomal RNA (rRNA) and transfer RNA 
(tRNA) molecules. The distributions in Venn diagrams can be 
explained by a biphasic evolutionary model in which an 
ancient core of conserved features is built piecemeal and is 
then diversified by the appearance of organismal lineages 
(Figure 2B).

Box 1.

A brief primer of structural phylogenomic methodology. A 
phylogenetic tree is a branching diagram that explicitly represents 
the history of a biological system.30 Trees are graphs with branches 
(nodes) and leaves (taxa) (see example in Figure 3) that are built 
from data, observable features (characters) that are characteristic of 
the system that is being studied. Tree reconstruction involves opti-
mizing the fit of data along the branches of all possible trees accord-
ing to some optimality criterion and a model of character state 
change. Only “shared and derived” features of characters are phylo-
genetically informative. Finally, trees are rooted by establishing the 
direction of change, which tests the existence of historical memory 
(homology).30 The structure of macromolecules is evolutionarily 
conserved and can be effectively used to generate intrinsically 
rooted phylogenetic trees that describe the deep evolution of RNA 
and protein molecules, individually or globally. In particular, trees 
describing the evolution of parts of a molecular system help uncover 
patterns of macromolecular accretion and diversification.31-33 They 
are atypical (see Harish and Caetano-Anollés.34 and Sun and 
Caetano-Anollés33 for more extensive discussion): (1) Trees are 
global phylogenetic statements that are intrinsically rooted and are 
highly unbalanced: This allows to build a chronology of appearance 
of taxa describing a system, such as helical substructures of rRNA 
or tracings of r-proteins onto ribosomal structure (Figure 3); (2) the 
leaves of trees (taxa) are structural elements (eg, RNA substructures, 
protein structural domains) or complete structures (eg, single or multi
domain proteins): this contrasts with the typical trees of systematic 
biology, which hold taxa that are diagnostic of organisms; (3) the 
branches (or internal nodes) of the trees define chronologies of structural 
diversification: branches (or nodes) represent diversification events 
that occur as innovations in features of RNA or popularity and 
spread of structures in proteomes develop in time; (4) characters 
describe features or abundance of molecular structure: characters are 
features (eg, topology, thermodynamic parameters of a molecular 
morphospace) or abundance (eg, domains encoded in genomes) of 
molecular structure that change along branches of the trees; they 
are often identified with, for example, machine learning approaches 
or other computational methods; (5) the criterion of primary homol-
ogy rests on the feature of substructure or structure being studied or their 
genomic abundance levels: tree reconstruction demands a criterion of 
homology that establishes correspondences arising from common 
ancestry. Criteria for the study of accretion and diversification 
involve topographic correspondences of structures according to 
transformation sequences of ordered multistate characters. These 
serial homologies are tested by rooting trees with Weston’s general-
ity criterion30; and (6) trees provide by definition a model of structural 
evolution: the trees describe how molecules evolve from an originat-
ing substructure by addition of substructure components or how 
repertoires of molecules evolve from an originating molecule by 
addition of molecules. The frameworks are, for example, described 
for RNA in the work by Sun and Caetano-Anollés.33

Evolutionary genomics supports the evolutionary biphasic 
pattern. Powerful methods of phylogenetic analysis can be used 
to reconstruct the history of molecules and organisms from 
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highly conserved molecular features that carry deep phyloge-
netic history (Box 1). These features include the topology and 
thermodynamics of RNA molecules and the folds of the pro-
tein structural domains identified with hidden Markov models 
of structural recognition in thousands of genomes.31 For exam-
ple, phylogenomic tree–like statements (phylogenies) portray-
ing the histories of molecular parts, including the structural 
domains of proteins35 or the helical stems of RNA molecules,36 
allow to map the progression of accretion in the most central 
macromolecular complex of the cell, the ribosome. The ribo-
some is an essential molecular machine that is universally pre-
sent in cells. It contains a small subunit (SSU) and a large 
subunit. The SSU typically contains 30 to 40 r-proteins and 1 
rRNA molecule with ~50 universal helical stems that fold 
independently into 3 major domains. The LSU typically con-
tains 30 to 45 r-proteins and 2 to 3 rRNAs with ~100 universal 
helices that fold into 6 domains (5S rRNA is the seventh 
domain). The history of the entire ribosomal complex revealed 
piecemeal buildup of a universal structural core and later on 
ribosomal diversification.31,34,36 Phylogenomic trees of rRNA 
helical stems and protein structural domains that are part of 
the small and large ribosomal subunits uncovered an evolution-
ary chronology of accretion (Figure 3). This timeline described 
the evolution of the universally conserved ribosomal core, 

Figure 3.  The biphasic history of the ribosome. An evolutionary timeline of ribosomal RNA (rRNA) and proteins (r-proteins) inferred directly from 

phylogenomic data shows 2 evolutionary phases. During an initial phase (phase 1), helical structures of rRNA and r-proteins accreted to form a universal 

ribosomal core. The second phase of ribosomal evolution (phase 2) started 1.3 Gya (or earlier) when the universal core diversified alongside with evolving 

organismal lineages. The phylogenomic tree describes the accretion of rRNA helical stems and is colored according to relative age. Every new branch 

reflects the addition of a new part to the whole. Only selected functional taxa are labeled in the tree with colored circles. The first RNA structures to 

accrete include the head and ratchet, the central protuberance, and stalks, which are involved in ribosomal dynamics. Early structures are also involved in 

energetics, decoding, helicase activity, and translocation. The peptidyl transferase center (PTC) that is responsible for protein biosynthesis accretes later 

in time (in yellow), whereas RNA helices gradually gained interaction with r-proteins to form a processivity core 2.8 to 3.1 Gya at a time when a crucial 

“major transition” in ribosomal evolution brought small and large subunits (SSU and LSU) together through protein structural stabilization, interaction 

surfaces, and formation of intersubunit bridges. The inset shows secondary structure representations of the primordial ribosomal ensemble, with 

r-proteins visualized as bubbles and bridge interactions as dashed blue lines. This initial proto-ribosome served as center for coordinated 

ribonucleoprotein accretion to form a highly processive universal ribosome core during a “second transition” that took place 2.4 Gya. A molecular clock of 

folds linked structural and geological timescales.
Source: Data from previous studies.31,34,36

which was visualized by coloring relative evolutionary ages 
(derived directly from the trees) in 3-dimensional (3D) atomic 
ribosomal models. A molecular clock of folds linked these 
chronologies to the geological record.37 The study confirmed 
the coevolutionary history of rRNA and r-proteins, which was 
already intimated in an initial accretion study of the 5S rRNA 
molecule in interaction with its associated r-proteins.38 A tight 
linear correlation between the age of rRNA stems and interact-
ing domains of r-proteins (R2 = 0.961; F = 221.3, P < 0.0001) 
was evident as structures coevolved. This observation chal-
lenged the popular ancient “RNA world” hypothesis, in which 
RNA preceded proteins in evolution. The oldest protein (S12, 
S17, S9, L3) appeared 3.3 to 3.4 Gya, concurrently with the 
oldest rRNA substructures responsible for decoding and ribo-
somal dynamics, which included the central ribosomal ratchet 
and 2 hinges of the SSU and the L1 and L7/L12 stalks of the 
LSU (Figure 3). All these structures are important for tRNA 
movement in the ribosomal complex. Accretion continued 
unabated until the formation of a 5-way and a 10-way junction 
in the SSU and LSU, respectively, at which point a “major tran-
sition” in ribosomal evolution occurred 2.8 to 3.1 Gya (Figure 
3). This transition brought ribosomal subunits together 
through intersubunit bridge contacts, interactions with tRNA, 
and materialized a fully fledged peptidyl transferase center 
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(PTC) with exit pore responsible for the enzymatic activity of 
protein biosynthesis. A “second transition” occurred later, dur-
ing the Great Oxygenation Event of our planet ~2.4 Gya. At 
that time, the ribwosome accreted the L7/12 protein complex 
that stimulates the GTPase activity of elongation factor EF-G 
and enhances ribosomal efficiency. The chronology showed 
that the ribosomal core was fully formed 1.3 Gya, but contin-
ued to exhibit differential growth in different organismal line-
ages. During this second phase of accretion, eukaryotic 
ribosomes diversified by growing additional eukaryotic-specific 
structural appendages that expanded the network of molecular 
interactions and surrounded the universal core.39 These struc-
tures also remodeled intersubunit interfaces, which affected 
rotational movements of the subunits.40 The late impact of 
organismal diversification on the eukaryotic ribosomal core 
that started ~1.3 Gya, ~1.5 billion years after the rise of aerobic 
metabolism and the last universal common ancestor (LUCA) 
of cellular life,37 can be explained by the rise of early multicel-
lular organisms during that time. The appearance of ultrastruc-
turally complex microfossils (acritarchs) of eukaryotes 1.5 Gya41 
has been pushed back to the Paleoproterozoic ~1.65 Gya,42 and 
recently discovered eukaryotic microfossils suggest that multi-
cellular organisms of unprecedented large size (decimeter-
scale) were already present 1.56 Gya.43 Their large size 
overcomes life at low Reynolds numbers,44 which makes inertia 
irrelevant, perhaps relieving known reductive evolutionary 
pressures on molecules imposed by microbial (genome) size. 
Note that the length of macromolecules of prokaryotic 
microbes evolves reductively, whereas that of eukaryotes does 
not, as evidenced by the study of proteomes and structural 
domains.45 Although reductive evolution can explain why 
prokaryotes remained bound to the ribosomal core design, 
recent studies in bacteria provide evidence suggesting the pres-
ence of functional selective ribosomal subpopulations that 
show variations in both rRNA or r-protein components.46 This 
suggests regulatory variability may be linked to ribosomal spe-
cialization and may be a general evolutionary strategy adopted 
by prokaryotes.

A number of tRNA sequence similarities believed to arise 
from common ancestry were detected in both subunits of 
rRNA, including homologies to the PTC.47-49 These “remote 
homologies” suggested that the ribosome was at first built 
piecemeal from a multiplicity of primordial tRNA-like mole-
cules, and that both tRNA and the ribosome had a common 
remote evolutionary origin. The historical patchwork observed 
when the age of rRNA stems is traced onto crystallographic 
models of the ribosome (Figure 3), supports rRNA having 
numerous independent origins.50 Thus, a number of separate 
molecules were likely recruited to build higher ribosomal struc-
ture during early ribosomal evolution. Remarkably, tRNA 
sequence homologies in rRNA also showed remote homolo-
gies to elongation factors, synthetases, RNA polymerases, and 
nucleotide biosynthetic enzymes.49 It is therefore likely that 

primordial ribosomes could have originally consisted of a mul-
tiplicity of tRNA-like molecules that were loosely linked 
together and acted as primordial genomes. With time, these 
building blocks integrated into a cohesive molecular machine. 
This scenario suggests a strong force of unification during 
ribosomal accretion that must be placed within the context of 
molecular biodiversity.

A Biphasic (bow-tie) Model of Module Creation
The biphasic evolutionary behavior of the evolving ribosome 
depicts a general “hourglass” pattern of unification and diversi-
fication that is pervasive in biology: diversity decreases to a 
minimum as parts unify and then increases again when the 
whole diversifies. To account for this pattern, Mittenthal et al.24 
developed a theory of emergence of nested hierarchies of mod-
ules, in which diversifying parts of a system converge under 
optimization or selection into tightly linked groups, which sub-
sequently diversify. Modules are sets of integrated component 
parts that cooperate to perform a task and interact more strongly 
with each other than with other parts and modules of the sys-
tem.51 Modularity appears the result of a “nucleation” process 
that enhances cohesion, ie, adopted constraints that the system 
as a whole imposes on the dynamical stabilities of component 
parts.52 These stabilities ultimately determine if the system can 
be easily decomposed into building blocks that are relatively 
autonomous.1 Examples of building blocks that are modularly 
connected in biology include amino acids, secondary and super-
secondary structures, and structural domains in proteins. 
Similarly, nucleotides, helical stems, and junctions are modules 
of RNA molecules. These building blocks represent different 
levels of organization of a hierarchical system with convergences 
of diversifying parts into modules occurring at different time-
frames and levels. The theory of module creation centers on 
linkage, the extent of interaction between parts of a system.24 In 
the first phase, parts are weakly linked and associate variously. 
Through mutation, reassortment, and recruitment, parts become 
more numerous and diverse. Links that help perform a task will 
persist because they increase fitness or functional capabilities. 
These emerging interactions are costly and constrain the struc-
ture and organization of the system as parts compete with each 
other to meet the optimization or selection criterion, forcing the 
system to undergo competitive optimization. This decreases 
diversity and increases the chances of tighter linkages. The 
modules that emerge from the growing interactions are dynam-
ically resistant to fluctuations and change. In the second phase, 
the modules become new building blocks for a new generative 
cycle of higher level organization. Because linkage is tighter 
within modules than between modules, modules are now free to 
diversify by mutation, reassortment, and/or be accreted into dif-
ferent contexts to form higher level modules. Thus, unification 
occurs through diversification: accretion brings together dispa-
rate parts to form bigger wholes, whereas change provides 
opportunities for growth and innovation.
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The biphasic theoretical framework is supported by several 
lines of evidence, including the diversification of the sequence 
and structure of proteins, nucleic acids, and other polymers used 
by biological systems to function or store information; the estab-
lishment of intracellular networks such as metabolism; the gen-
eration of biological codes (eg, the genetic code and translation); 
and competitive optimization in embryo development and epi-
genetics.24,50 For example, transcriptional patterns explain a 
developmental “hourglass” operating in embryogenesis,53-55 
which is compatible with conservation patterns in a bow-tie 
structure that relate inputs and outputs.56 The developmental 
hourglass model helps explain the observation that the form of 
animal embryos converges before diversifying into a common 
embryonic design during the “phylotypic” stage and the discov-
ery of evolutionarily conserved clusters of gene expression of Hox 
genes.57,58 Recent genomic analyses have shown that the age of 
genes encoding phenotypes of the temporal waist of the hour-
glass is older and more conserved than those at the beginning or 
end of embryonic development.53-55 Comparison of genome-
wide expression patterns across embryonic development in 6 
species of fruit flies showed that gene expression variations were 
minimal during the phylotypic stage, suggesting strong selective 
constraints operating at this stage.53 Similarly, morphologies 
were connected to the evolutionary age of genes inferred using 
conservation-level classification (phylostratigraphy) in zebrafish, 
nematodes, and fruit flies.54 In all cases, the differentially 
expressed genes were evolutionarily older during the phylotypic 
stage of animal development, which likely describe modules of 
gene expression networks necessary to establish the basic rules of 
the body plan that is common between the diversifying animal 
organisms (though other hypothesis are possible).59

We note, however, similarities and distinctions between 
temporal biphasic patterns expressing at behavioral, develop-
mental, and evolutionary levels.24 All hourglasses describe 
restrictions to variation in behavior, development, or evolution 
of a system. However, the spatial distribution of diversification 
may be wide or localized during the early and late temporal 
phases. It can occur in several timeframes, with various degrees 
of repetition, generally to achieve some level of complexity 
before acquiring the potential to diversify. A behavioral hour-
glass may occur once or repeatedly in the life cycle of an 

organism (eg, metabolic rewiring in the presence of stress). 
Similarly, a developmental hourglass bundles the diverse devel-
opmental trajectories of a group of related embryos in animal 
development. In contrast, the biphasic change in the rate of 
diversification of an evolutionary hourglass, such as the hour-
glass of ribosomal accretion (Figure 3), occurs only once in the 
entire course of evolution, tallying the number of parts existing 
at a sequence of times, without presenting trajectories between 
the parts. Finally, some hourglasses resemble a “bow-tie,” a 
structure that was first described in a sociotechnical system 
that exchanges information between computers, the World 
Wide Web (WWW),60 but is widely present in biology (eg, 
metabolism).61 The first phase of the hourglass contributes 
inputs to a system’s central core (the “knot”), which then pro-
cesses these inputs into outputs, all of which contribute to the 
efficiency, robustness, and evolvability of the system as it 
responds to varying environments.56 In the example of Figure 
3, the rRNA and protein structural modules contribute bio-
logical functions as inputs to a growing ribosomal core. When 
the structural core achieves certain level of complexity, it then 
acquires functionalities (processivities or innovations) as out-
puts that endow the molecular system with the potential to 
diversify.

Emergence of Community Structure in Evolving 
Networks
We now use a network paradigm to discuss how the biphasic 
model of module generation explains the evolutionary emer-
gence of both modularity and hierarchy in evolving networks 
(Figure 4). Modular networks harbor “communities,” groups of 
nodes that that are more densely connected with themselves 
than with the rest of the network.62 Modularity usually counter-
balances power-law behavior of scale-free networks (which 
generally grow by preferential attachment of new nodes to 
highly connected nodes),63 but both properties generally coexist 
in networks when modules coalesce hierarchically.64 A hierar-
chy according to Herbert A. Simon1 is a “system that is com-
posed of interrelated subsystems, each of the latter being, in 
turn, hierarchic in nature until we reach some lowest level of 
elementary subsystem.” Hierarchy in the context of networks is 
the fractal-like reuse or embedding of simpler network modules 

Figure 4.  A generic biphasic model of module creation illustrates the emergence of network structure in evolution. Nodes and links of the network are 

parts of a growing system of entities and interactions. The larger number of links, the more cohesive and stable is the structure of a subnetwork. The rise 

of hierarchical modularity during phase 1 results in small highly connected subnetworks. These subnetworks become modules, which in phase 2 

coalesce by combination into higher modules of network structure (highlighted with shades of yellow and blue). The model is inspired by the work of 

Mittenthal et al.24
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into modules of higher complexity. Thus, lower level network 
modules are subordinated by an “authority relation” to higher 
network modules.1 Modularity and hierarchy provide numerous 
benefits to a system when compared with monolithic integrated 
designs. For example, the design of a module occurs once but it 
can be reused many times, whereas every monolithic system 
must be built from scratch. Simon’s famous parable of the 
“Hora” and “Tempus” watchmakers illustrates the cost benefits 
of building, modifying, or updating modules.1 In network biol-
ogy, modules and hierarchy can increase evolvability (the ability 
to adapt and innovate)65-67 and robustness (the maintenance of 
function in light of internal or external perturbation),68 while 
decreasing the costs of establishing network connections.69 
Finally, modularity can improve the speed, stability, and quality 
of information transfer through networks.70

Network modularity can be detected with a variety of meth-
ods. A primary index of modularity is the average clustering 
coefficient—a metric that describes the average probability 
that 2 neighbors of a node are also connected.64,71,72 The coef-
ficient scales negatively with the number of links when mod-
ules are hierarchically organized in the networks.2,64 Sets of 
nodes that are densely connected with each other are said to 
form a community. Communities can be detected with hierar-
chical clustering methods such as the Fast Greedy Community 
(FGC) detection algorithm,73 the path-pruning Newman-
Girvan algorithm,62 or the maximization of modularity func-
tions (eg, the Louvain method).74

In evolving networks, nodes become parts of a growing sys-
tem and links become interactions that are established between 
them (Figure 4). The frustrated interplay of unification and 
diversification supporting the biphasic theory of module crea-
tion takes advantage of the stability that accretion of both 
nodes and links provide to the system. The larger the number 
of links, the more cohesive and stable is the structure of the 
evolving network. In the first phase of the biphasic model, the 
accretion of nodes and links is dynamic but with time it gives 
rise to highly connected subnetworks. These groups of nodes 
become modules when links are dynamically stabilized by 
competitive optimization. In the second phase, the emergent 
modules of the network diversify and coalesce by combination 
into higher level modules of network structure. The process is 
cyclic and gives rise to a fractal-like pattern of connectivity that 
is known as hierarchical modularity.75 To support the theory and 
its consequence, the emergence of hierarchical modularity, we 
traced the history of a number of biological networks. We 
focused on networks unfolding at completely different time-
scales, from highly dynamic and stochastic (nanosecond-to-
hours) to biologically entrenched (billions of years).

Rewiring of metabolomic networks and tripartite 
metabolic networks

Organisms respond to environmental perturbation by chang-
ing physiology at molecular and cellular levels. Their responses 

can be viewed as models of how a system reacts to its environ-
ment and in doing so remembers constraints imposed by evo-
lutionary history. We studied the metabolic responses of 
Escherichia coli to the environmental stimuli of cold, heat, 
diauxic shift, and oxidative stress.76 Metabolomic data retrieved 
using gas chromatography-mass spectrometry77 prior to per-
turbation (timepoint 1) and 0, 40, and 90 minutes following 
perturbation (time points 2, 6, and 8) were used to build 
metabolomic correlation networks (Figure 5). In these net-
works, nodes representing metabolites establish links when any 
2 metabolites show strong correlation in their concentration 
levels. Our analysis revealed that the rewiring of metabolomic 
networks was highly dynamic and produced random networks 
of the Erdös-Rényi (ER) type, in which any 2 nodes are joined 
with some probability and connectivity is dictated by large net-
work components rather than hubs. In all cases, we found wide 
departure from power-law behavior (γ ranging 0.061-0.496) 
and scale-free network structure (maximum likelihood scaling 
exponent α ranging 0.94-1.23). The fact that the dynamic 
metabolomic networks were largely random despite being 
hardwired to scale-free networks of metabolic reactions indi-
cates that structure and function are loosely linked in metabo-
lism. This does not mean that there is not a backbone structure 
behind dynamic interactions in these networks. Immediately 
upon perturbation by all nonlethal stressors, network connec-
tivity initiated a biphasic pattern of metabolite rewiring in 
which connectivity abruptly decreased to enable the formation 
of modules and then increased but to lower levels (Figure 5). In 
the control, connectivity steadily increased with time. The rise 
of modularity is made evident using the FGC score of network 
community structure. Rewiring begins with energetics and car-
bon metabolism, both of which are needed for bacterial growth, 
and then focuses on lipids, hubs, and metabolic centrality 
needed for membrane restructuring. Rewiring patterns are bet-
ter visualized in reduced graphs that were shrunk to combine 
all nodes of a same functional class and through an algorithm 
that places nodes that are more connected with shorter paths at 
the center of the graphs (Figure 5). Initially, nodes of metabo-
lites pooled into “carbohydrate” (blue) and “energy” (green) 
functions were centrally located in the reduced graph. 
Perturbation pushed these nodes toward the periphery and 
away from the “hubs” (yellow) of the metabolomics networks. 
This suggests that bacterial cells quickly enter into an energy 
conservation mode, known to downregulate the tricarboxylic 
acid (TCA) cycle, glycolysis, and the pentose phosphate path-
ways and tightly control cell growth.77 With the exception of 
cold and heat stressors, “amino acid” (purple) metabolites were 
also pushed toward the periphery. In contrast, metabolites of 
the “lipid” (red) group migrated to the periphery with slower 
rate and then gradually returned toward the core. This impor-
tant delay relates to well-known perturbation-induced changes 
in membrane composition and fluidity that maintain an appro-
priate physical state of the membrane by incorporation of satu-
rated fatty acids.79,80
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The metabolic effects of cold stress in plants can be 
explored with a metabolite-centric reporter analysis of the 
transcriptome of Arabidopsis thaliana.81 The most signifi-
cantly changed reporter metabolites were algorithmically 
identified by mining the gene expression of neighboring 
genes and gene-metabolite associations. Data were visual-
ized using an open tripartite graph representation in which 
nodes representing genes and metabolites are connected by 
links when metabolic genes and metabolites are associated at 
some P value, and nodes representing metabolites and path-
ways are connected by links through association with meta-
bolic reactions. Remarkably, cold perturbation of plants 
quickly rewired the tripartite graphs in ways reminiscent of 
the rewiring of metabolomic networks. Network modularity 
increased upon perturbation (with high FGC scores of ~0.74) 

and then slightly decreased 24 hours postacclimation. 
Tripartite networks also gained decentralized structure with 
cold acclimation (eg, showing significant decreases in path 
length) but maintained a random-like structure; both power-
law behavior and scale-free structure were rejected. 
Metabolically, plants initially mobilized energy from glycol-
ysis and ethanol degradation to help the functioning of the 
TCA cycle. Concomitantly, many metabolic pathways were 
activated to produce cellular materials needed to offset stress, 
including diverting main carbon flux routes to amino acid 
and lipid metabolic pathways, which were later activated to 
change cell membrane lipid composition. This is expected 
because plants under cold acclimation are able to change 
membrane lipid fluidity by increasing the levels of unsatu-
rated fatty acids.82

Figure 5.  Timeline of metabolomic networks (top) and reduced derivatives (bottom) showing biphasic-rewiring patterns in response to cold stress 

perturbation. The force-directed Fruchterman-Reingold algorithm78 places nodes that are more connected with shorter paths in the center of the graphs 

and pushes sparsely connected nodes toward the periphery. Nodes are colored according to pathway maps in KEGG: yellow—hubs, blue—carbohydrate, 

green—energy, red—lipid, orange—nucleotide, purple—amino acid, brown—glycan, white—cofactors/vitamins, gray—secondary metabolites and 

xenobiotics, and black—miscellaneous. The group name “hubs” unifies metabolites associated with more than 1 pathway and are considered central to 

metabolism. Vertex size is proportional to connectivity. Values in panels indicate modularity scores inferred using the Fast Greedy Clauset-Newman-

Moore (FGC) algorithm that measures the community structure of the networks.73 Metabolite connectivity measured as node-degree of networks at each 

time point in time-resolved bacterial responses is provided on the right of the corresponding time series.
Source: Data from Aziz et al.76



Caetano-Anollés et al	 9

These 2 examples show that environmental perturbations in 
both bacteria and plants cause biphasic modularization of the 
networks. The analysis reveals how external change is condu-
cive to similar rewiring patterns of metabolic modularity, high-
lighting the need of the cell to stop growing and to prepare for 
uncertainty by modifying membranes and modularizing meta-
bolic responses. Experiments also confirm simulations that 
show a rise of modularity when varying goals are defined by 
external perturbation.65-67

Nanosecond-level molecular dynamics simulation of 
protein enzymes

Network rewiring by external perturbation could be evolu-
tionarily hardwired to ancient modular structure. To test 
whether such an ancient link exists, we bridged physics and 
biology with molecular dynamics simulations at nanosecond 
(ns) timescales.83 Protein dynamics is intricately related to the 
structure and function of proteins. It has been hypothesized 
that dynamics “preexist” and shape evolution of proteins as 
they adapt to carry specific sets of motions.84 Both folding 
speed and flexibility are beneficial traits that are evolutionarily 
conserved.85,86 Similarly, protein complexes assemble through 
ordered pathways with strong tendency to being evolutionarily 
conserved.87 As flexible loop regions have been shown to be 
enriched by the evolutionary rise of genetics,88 one initial goal 
was to use networks to capture deep history in the physical 
movement of the atoms of aminoacyl-tRNA synthetase 
(aaRS) enzymes that are responsible for the specificity of the 
genetic code. The initial exploration involved molecular tra-
jectories of the loop structures of 87 aaRSs on timescales of 
10 ns, visualized with networks describing a dynamic cross-
correlation matrix of the motions of protein residues.83 The 
structure of these networks was dissected with a morphospace, 
a phenotypic space defined by a limited number of variables 
that often describe the form, shape, and structure of a sys-
tem.89-91 Our morphospace is one of several that explores the 
“limits of the possible” in the structure of networks70 by meas-
uring the modularity, heterogeneity, and randomness of the 
graphs (Figure 6A). Modularity embodies “flexibility” in 
structuring network communities with dense and sparse con-
nections. Graph heterogeneity describes the scalefreeness of 
connectivity, which measures the “economy” of traversing 
paths along network structure.2 Randomness entails uniform 
connectivity of nodes throughout the network, a property of 
“robustness” that confers a network fault tolerance to stochas-
tic error.92 Figure 6B shows the 3D scatter plot of molecular 
trajectory networks in a parameter space of those 3 traits. 
Modularity, heterogeneity, and randomness were measured 
with the maximum modularity score, the maximum likelihood 
scaling exponent α, and the logarithm of Bartel’s test statistic, 
respectively. Networks occupy an area of the phenotypic space 

with significant heterogeneity and modularity but lack sub-
stantial levels of randomness. The result is surprising for net-
works that are expected to be highly dynamic and stochastic. 
However, coloring the age of the structural domains that har-
bored the loops (inferred from phylogenomic trees)88,93 onto 
the data cloud showed a more remarkable historical layering 
trend (red to blue in the direction from hierarchical modular 
to ER graphs; Figure 6B). With few exceptions, the networks 
corresponding to older loop structures were in general more 
modular and less random. The most modular of them with 
lower randomness corresponded to the catalytic aminoacyla-
tion domain structures of the Class II (SCOP c.26.1) and 
Class I (SCOP d.104.1) aaRS enzymes, respectively, matching 
their evolutionary age. As older networks transition into 
younger networks, lower levels of heterogeneity decreased and 
then increased generating a noisy “bow-tie” pattern in the 
morphospace. Conclusively, the modularity of highly dynamic 
network systems unfolding at ns-timescales increase with 
deep evolutionary time as the network system decreases its 
randomness and heterogeneity. The emergence of modularity 
(community structure) with a concomitant decrease of hetero-
geneity (scalefreeness) along the coordinates of dynamic net-
work structure strongly suggests the evolutionary entrenchment 
of hierarchical modularity.64

The data cloud is expected to fall within a “noisy” polytope-
delimiting archetypes and Pareto fronts of optimality when 
assuming that the fitness of the networks is a function of the 3 
network traits and that the morphospace represents trade-off 
relationships between them.90 However, the likely polytope is 
tailed and appears to involve at least 4 goals. This suggests that 
other goals besides those associated with flexibility, economy, 
and robustness are at play. Although hierarchy results from the 
interaction of graph heterogeneity and modularity, its expres-
sion in a network can be complex. Recently, the coordinates of 
hierarchy in directed networks have been modeled with a 
morphospace of orderability, feedforwardness, and treeness.94 
This morphospace and its rationale is described with toy 
examples in Figure 6A. A perfectly hierarchical system will 
have the following 3 properties: order, reversibility, and pyram-
idal structure, which are all typical of directed acyclic graphs 
(DAGs). Order implies a tendency of nodes to be “ordered” 
unambiguously without being compromised by cycles, ie, sub-
graphs formed by nodes and edges defining a path that begins 
and ends in the same node. Orderability measures order in a 
directed graph (in which links are arcs). Reversibility implies 
that there is “only one commander for any commanded” in the 
relationship of nodes in the graph. Pyramidal structure implies 
that the commander commands more than one node, there is 
only a single node commanded by another node, and all lower 
level nodes are subjected to a chain of commands of the same 
length. Feedforwardness measures which regions (modules) of 
the graph cannot be ordered and treeness accounts for both 
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Figure 6.  Evolution in network morphospaces. (A) Morphospaces of network structure and hierarchy showing toy examples of typical graphs describing 

archetypes of the phenotypic landscapes. In one morphospace (left), Erdös-Rényi (ER) random graphs transform into regular graphs by decreasing 

randomness or into modular ER graphs by increasing modularity. Hierarchical modular structure requires both increasing modularity and heterogeneity 

and decreasing randomness. In another morphospace (right), treeness defines the unification or diversification of hierarchical signal in the network, 

whereas orderability defines the centrality of cycles in network structure. (B) Morphospace of network structure describing the molecular dynamics (MD) 

of protein loops of aminoacyl-tRNA synthetases. Networks of the MD trajectories of protein loops unfold in a dynamic morphospace of trade-off solutions 

between flexibility (network modularity), economy (network heterogeneity illustrating scalefreeness), and robustness (network randomness). Modularity, 

heterogeneity, and randomness were measured with the maximum modularity score, the maximum likelihood scaling exponent α, and the logarithm of 

Bartel’s test statistic, respectively. Tracing the evolutionary age of structural domains harboring the loop structures onto the cloud of data points reveals a 

layering pattern, from red (early origin) to blue (late origin). The networks that are less random and more modular are the oldest, whereas the youngest 

networks are more random and less modular. Data points of the 3-dimensional scatter plot are mapped onto projection planes and connected with vertical 

leading drop lines along the heterogeneity axis. Black stars indicate significant departure from power-law behavior (P < 0.05), which measures scale-free 

structure (heterogeneity).
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reversibility and pyramidal structure of the network when 
condensed into a DAG by applying statistical entropic princi-
ples to paths. The relationship of orderability and feedfor-
wardness defines the number and location of cyclic regions in 
the graph. Sliding this morphospace plane along the treeness 
axis gradually changes the pyramidal structure of the network 
from “hierarchical” to “antihierarchical” with the transition 
forming a family of symmetric structures, where the diversity 
of downstream paths is canceled by the uncertainty of 

reversing those paths. This results in a “bow-tie” network 
organization, generally with a strongly connected cycle com-
ponent stabilized by a balanced feedforward structure of 
inputs and outputs56 or of degeneracy (many-to-one) and 
pluripotentiality (one-to-many)95 (Figure 6A). One remarka-
ble finding is that most real networks display a balance between 
the integration of information and control over multiple goals 
under a bow-tie structural network pattern, which unfolds 
within the cloud of random graphs.94 For example, the 

Figure 7.  Emergence of modularity in biological networks. (A) Early evolution of the purine metabolic network. The reconstruction of metabolic 

subnetworks that were present 3.8, 3.5, and 3 Gya reveal the piecemeal recruitment of functional modules for the nucleotide interconversion (INT), 

catabolism and salvage (CAT), and biosynthetic (BIO) pathways. Plausible metabolites and prebiotic chemical reactions supporting the emergent 

enzymatic reactions are depicted with red nodes and connections, respectively. Unknown reaction candidates or withering prebiotic pathways are 

indicated with dashed lines. These ancient chemistries are gradually replaced by modern pathways and are unified from separate components into a 

cohesive network of INT, CAT, and BIO modules. The network was rendered using the energy spring embedders and the Fruchterman-Reingold 

algorithm78 of Pajek.103 Full metabolite names can be found in the work by Caetano-Anollés and Caetano-Anollés.99 (B) The emergence of the elementary 

functionome (EF) network that connects protein structural domains to elementary functional loops (EFLs) when these substructures are embedded in 

protein structure. Bipartite networks are rendered as waterfall diagrams (see Figure 8), with time flowing from top to bottom. The first “p-loop” and second 

“winged helix” waves of recruitment are indicated with numbers. Data are from Aziz et al.32 (C) Evolution of networks of protein domain organization. The 

combination of structural domains in multidomain proteins induces connectivity between nodes representing domain and domain combinations in the 

network when a domain is present in a structure. As networks grow, older nodes are placed in the middle of radial graphs. Note how the “big bang” of 

domain combinations occurring 1.23 Gya during the rise of diversified organismal lineages results in a massive graph. Evolutionary data and networks 

from Wang and Caetano-Anollés113 and Aziz and Caetano-Anollés.104 Protein ages were derived from phylogenomic trees describing the evolution of 

domains at fold family (FF) (panel A) and fold superfamily (FSF) (panels B and C) levels. Panels B and C describe networks present 2.3, 1.5, and 0 Gya 

during culmination of the architectural, superkingdom specification, and organismal diversification epoch of the protein world, respectively. Modularity (Q) 

measures connectivity density in node communities and Fast Greedy Community (FGC) measures community structure. In all cases, Q and FGC 

significantly increase in evolution much earlier than 2.3 Gya and then reach a plateau and decrease.
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bow-tie pattern of metabolic networks has a large central cycle 
component that reflects the metabolic advantage of reusing 
and recycling metabolites. Note that biological networks are in 
themselves directed by either physiology or time.

The deep evolution of biological networks

As previously mentioned, chronologies describing the evolution-
ary appearance and time events of origin of protein structural 
domains can be directly obtained from phylogenomic trees 
reconstructed from a census of protein structures in genomes.35 
A molecular clock of folds links those chronologies to the geo-
logical record.37 Chronologies can be used to trace the origin and 
evolution of metabolic networks,96-99 including the history of 
metallomes and metal utilization in ancient seas,100 the planetary 
emergence of aerobic metabolism,37,101 and the natural history of 
biocatalytic mechanisms.102 We now illustrate how phylog-
enomic analyses uncover hierarchical modularity of evolving 
networks (Figure 7):

1.	 The early evolution of metabolic networks. The KEGG 
database divides metabolism into subnetworks,105 
which have been considered modules of metabolic 
pathways.106 Figure 7A shows snapshots of the early 
evolution of the oldest metabolic subnetwork, purine 
metabolism.99 The growing networks show that the 
early purine biosynthetic pathway assembled as a patch-
work through processes of both enzymatic recruitments 
and enzymatic replacements of prebiotic chemistries 
that likely operated at planetary scale.99 In the network, 
nodes represent metabolites and links represent meta
bolite transformations mediated by either enzymes 
(black lines) or well-known nonenzymatic prebiotic 
chemical reactions (red lines). At first, the graph is frag-
mented into small submodules. As prebiotic reactions 
are replaced by modern enzymatic counterparts, frag-
ments unify into a functional core defining nucleotide 
interconversion (INT), metabolism/salvage (CAT), and 
biosynthetic (BIO) pathways of the purine metabolic 
pathways, which appear fully functional ~3 Gya. The 
statistical analysis of modularity with the Louvain max-
imization method shows that community structure that 
is typical of hierarchical modularity increases with time 
(Figure 7A). The same approach applied to the entire 
metabolic network also showed increases in clustering 
coefficients, modularity, and community structure, con-
firming the emergence of modularity and hierarchy in 
metabolic evolution.107

2.	 The origin of the fold structures of protein domains by accre-
tion of loops. Loops are flexible and irregular elements of 
protein structure that are largely responsible for bio-
logical functions. They are critical components of mac-
romolecular dynamics.108 The structural diversity of 

proteins can be described as a collection of loop regions 
arising from the rearrangement of supersecondary 
structural building blocks made of helix, strand, and 
turn segments (eg, αα-hairpins, ββ-hairpins, βαβ-
elements).109 Some recent studies identified noncom-
binable110 and combinable111 loop motifs that were 
evolutionarily conserved and are likely responsible for 
very early molecular functions. The structures are gen-
erally ~25 to 30 amino acid residues long and collapse 
into loop structures stabilized by van der Waals locks.112 
Combinable prototypes are “elementary functional 
loops” (EFLs) that bind cofactors and exert molecular 
functions.111 We generated bipartite networks of EFLs 
and structural domains and studied the evolution of 
these “elementary functionomes.”32 Figure 7B shows 
how early EFLs combine to form structural domains 
and perform new functions in a process that has been 
ongoing since the beginning of life. The evolving net-
works uncovered 2 clear waves of functional innovation 
that involved ancient EFLs and found “p-loop” and 
“winged helix” domain structures, confirming previous 
analyses of the origin of metabolic networks.98 As with 
metabolism, both modularity and community structure 
were emergent properties of the evolving bipartite net-
work when we used metrics of connectivity density, 
hierarchy, and modularity of network structure.

3.	 Emergence of multidomain proteins by combination of pro-
tein domains. A significant number of protein domains 
(26%-32%) combine to form a substantial number of 
multidomain proteins (58%-83%).45,112 A phylogenomic 
data-driven study of the origin of these multidomain 
proteins showed that the early and gradual appearance of 
single-domain proteins harboring structures that were 
generally multifunctional was followed by an explosive 
increase of multidomain proteins.113 The onset of this 
massive “big bang” ~1.23 Gya coincided with the rise of 
eukaryotic and multicellular organisms . It is the product 
of fusions and fissions that combine, recruit, and split 
domains in proteins, thanks to known biological activi-
ties, including chromosomal recombination, retrotrans-
posons, intronic rearrangement of domain-encoding 
exons, and faulty excision of introns. The combinatorial 
fusion of domains occurred earlier than the fission of 
proteins into smaller multidomain components, which 
were usually multifunctional. Figure 7C describes evolv-
ing networks of domain organization that portray the 
combination of domains in proteins.104 Nodes of these 
bipartite “composition” networks (CX) represent either 
domains or domain combinations and links represent 
their common presence in proteins. Remarkably, we 
found a biphasic pattern of strong biases in the combi
natorial connectivity of domains, with a preference to 
combine domains appearing during the early rise of 
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translation (2.3-1.5 Gya) and during the “big bang” of 
domain combinations. Remarkably, it also uncovered the 
same “p-loop” and “winged helix” waves of domain inno-
vation that we observed in evolution of elementary func-
tionomes (Figure 7B) and in evolution of early 
metabolism.98 Again, the modularity of evolving net-
works started to increase with time to significantly high 
levels (Figure 7C).

Summary

The biphasic (bow-tie) theory of module emergence explains 
temporal biphasic patterns of unification and diversification. 
When representing systems with networks, biphasic patterns 
are captured by the rise of both hierarchy and modularity in 
network structure (Figure 4). In the first phase, communities of 
nodes coalesce into highly connected subnetworks, which 
become modules. In the second phase, modules are co-opted 
into clusters of higher level organization. In the process, the 
network becomes increasingly modular and hierarchical. Our 
temporal study of biological networks confirmed our expecta-
tion and did so at different timescales.

The rewiring of metabolomic network minutes after bac-
terial perturbation with different stimuli was biphasic, first 
diminishing connectivity and pushing newly formed mod-
ules toward the periphery and then rewiring them back hier-
archically into a different core in a process that increases 
modularity and fosters energy conservation and membrane 
lipid reformation. Similarly, cold stress caused a biphasic 
rewiring of tripartite networks that describes how transcripts 
control metabolic reactions in plants. The rewiring resem-
bled that of metabolomic networks. Networks first gained 
decentralized structure and modularity upon perturbation 
and then rewired energy and carbon fluxes to enhance mem-
brane lipid composition. These examples described similar 
temporal hourglasses of metabolic and transcriptomic-
informed behavior.

To test whether behavioral hourglasses could be evolution-
arily hardwired to ancient modular structure, and therefore 
linked to evolutionary hourglasses, we explored the nanosec-
ond-dynamic behavior of proteins. Networks describing a 
dynamic cross-correlation matrix of the motions of residues in 
protein domains of different evolutionary age were hierarchi-
cally modular. However, older domains were more modular, 
more heterogeneous, and less random than modern counter-
parts, showing that the nanosecond dynamics is constrained by 
evolutionarily deep information.

Finally, we find temporal biphasic patterns describing evo-
lutionary hourglasses of the diversification of early metabolites, 
elementary functionomes, and domain organization in pro-
teins. In all cases, networks became increasingly hierarchically 
modular in evolution.

Evolutionary Mechanisms Behind Hierarchical 
Modularity
While the interplay of accretion and diversification can explain 
the emergence of hierarchical modularity, the underlying evolu-
tionary agents of accretion and change remain controversial. 
Modules have been proposed to materialize through the action 
of biased mutational mechanisms and/or natural selection.114 
One explanatory theme is that modularity is driven by a muta-
tional process that approaches “neutrality” in terms of natural 
selection. An example of these nonadaptive models includes the 
generation of modules through patterns of duplication and dif-
ferentiation.115,116 For example, networks of protein-protein 
interactions can grow by randomly duplicating nodes (proteins), 
which maintain at first all links but can then loose or gain links 
through mutation. This is a biologically plausible scenario under 
a number of gene duplication and evolutionary models. It repro-
duces salient properties of real protein-protein interaction net-
works modeled from genomic data. An alternative theme is that 
modularity is driven by direct or indirect selection pressures that 
reinforce or take advantage of mutational biases.114 In direct 
models, modularity directly contributes to higher fitness. For 
example, modularity could be the direct target of individual-level 
selection if modules affect epistatic or pleiotropic “constraints” 
(eg, morphological or developmental).117 Alternatively, indirect 
models consider modularity as an adaptation to the effects of the 
environment. For example, changing the external environment 
of a system can lead to different goals, and this has been shown 
to enhance modularity.65,66 Selection for evolvability under con-
stantly changing environments, which leads to specialization, 
can also result in modularity.118 By being modular, a system can 
be more robust to external perturbations and more evolvable. For 
example, modularity in populations correlates with the rapidity 
and severity of environmental change.119

Recent simulations have convincingly shown that reducing 
connection costs in networks induce both modularity and hier-
archy in network structure.69,120 Moreover, making links costly 
to networks improves performance and adaptability. These 
costs relate to the manufacture of a link, its maintenance, or its 
ability to transmit information. For example, links that involve 
connecting molecules or molecular parts require developing 
interacting surfaces with costs constrained by surface area. 
Maintaining interacting surfaces in, for example, protein-pro-
tein interaction networks or networks of domain organization 
must also minimize costs incurred in the stability and robust-
ness of interacting proteins or domains. Adding additional 
connections can hinder the delivery of information in signaling 
networks, the minimization of the wiring diagram of neural 
connection in the brain, and the flow of matter-energy in met-
abolic networks. Thus, modularity in these scenarios appears to 
be a by-product of cost-dependent selection.

In systems that simulate evolution, hierarchy rarely unfolds 
on its own and its emergence remains an open question.121 
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Nonadaptive theories posit that hierarchy may arise in some 
systems as a by-product of random processes.94 Adaptive alter-
natives suggest hierarchy arises as a result of quick adaptation 
to novel environments (evolvability).119,122 The bow-tie struc-
ture of directed networks that is popular in natural networks94 
embeds both hierarchy and modularity within a biphasic pat-
tern (Figure 6A). The bow-tie can be explained by a preference 
to “reuse” modules of similar complexity instead of connecting 
to less complex modules.123 It also decomposes nodes into 4 
sets: input and output components, a central knot that may 
contain strongly connected components, and disconnected 
components known as tendrils.60 The bottleneck of the central 
knot limits the flow of information and/or time duration in 
evolving networks as long as tendril connectivity remains con-
strained. The evolutionary significance of hierarchical modu-
larity in terms of economy, flexibility, and robustness of the 
bow-tie network structure must now be explored.

Levels of Organization, Granularity, Flux, and the 
Arrow of Time
Philosophically, the rise of hierarchical modularity in networks 
requires explaining the instantiation of a hierarchy of modules. 
Simon’s definition of a hierarchical system as a nesting relation-
ship of subordinated subsystems1 has been elaborated further by 
Salthe,122 who divided hierarchies into 2 kinds: scalar and sub-
sumption. Scalar hierarchies nest differently sized dynamical 
entities into each other by mereologically defining parts and 
wholes and invoking “is-a-part-of ” relationships between them. 
A relevant example is the successive nesting of amino acid resi-
dues, secondary structures, loop structures, and domains in pro-
tein molecules. Nesting relationships are “compositional”: parts 
of the systems are treated as modules and are successively nested 
in expanding manner both outward (toward higher levels of the 
hierarchy) and inward (toward lower levels) from a focus level of 
organization. This is done without an integrative or historical 
rationale. In the example above, the focus level was the amino 
acid residue and the hierarchy expanded outwardly. In contrast, 
subsumption hierarchies nest entities by defining taxonomies 
that describe “general-to-specific” properties of a system and 
invoke a “is-a-kind-of ” ordering principle of classification. 
Relevant examples are the National Center for Biotechnology 
Information (NCBI) taxonomy database124 for the classification 
of species or the SCOP database25 for the taxonomic classifica-
tion of structural domains. For example, the SCOP classifica-
tion of the family of aminoacylation domains of aaRS enzymes 
follows the taxonomical nesting of “Class I aminoacyl-tRNA 
synthetases (RS), catalytic domain” fold family; “Nucleotidylyl 
transferase” fold superfamily; “Adenine nucleotide alpha hydro-
lase-like” fold; “Alpha and beta (a/b)” class; and SCOP root, 
from specific to more general levels of classification. Such hier-
archies integrate all aspects of the world being considered and 
their definition demands establishing history, ie, establishing 
“intermediate forms” or “prior forms” of a refining, developing, 

or evolving system. For example, the NCBI and SCOP database 
examples require models of species and structural domain evo-
lution, respectively.

The scalar and subsumption hierarchical logical forms cap-
ture more broadly Simon’s view of hierarchies being described 
by “states,” the world as sensed through observables and goals, 
and “processes,” the world of actions capable of tailoring the 
system “purposefully upon its environment.”1 Both views have 
been recently integrated into a model hierarchy, an informa-
tion-based metascale description of 2 partial hyperscalar hier-
archies, one focusing on the nested entities, the other focusing 
on the context of that nesting.125 We contend that the scalar 
(states) view stresses the hierarchical modular makeup, whereas 
the subsumption (process) view stresses the instantiation of the 
system, which is likely driven by the evolutionary processes of 
unification and diversification that give rise to hierarchical 
modularity.

Implicit in the scalar (states) interpretation of a hierarchy is 
the existence of different levels of organization. While levels of 
organization imply “layered” structuring of some kind, its inter-
pretation remains contentious.126 Initial “layer-cake,” “mecha-
nistic,” and “local maxima” accounts have been criticized as 
reductionist attempts that use comprehensive, rigid, and blan-
ket statements of significance to describe Nature’s truly messy 
and pluralistic systems. Implicit in the subsumption (process) 
view is the unfolding of levels of organization with time and 
the imposition of constraints (or controls) that higher levels 
exert on lower levels of the network hierarchy. However, down-
ward causation explanations can be conflicting and should be 
considered “local” explanations, suggesting that a pluralistic 
view should be more appropriate.127 A graph theoretical 
account of hierarchy could resolve some of these problems. It is 
novel and somehow independent of some of the epistemic, 
ontological, or methodological limitations. It can also test lay-
ering in organization and downward causation. Two approaches 
are promising in this regard, flow hierarchies and bipartite 
networks.

Flow hierarchies unfold flux along the wiring diagrams of the 
network hierarchy, with flux describing flows of matter/energy, 
information, signs, and/or time.128 These flow networks are 
directed or semidirected; arcs establish the directionality of the 
flux. Flow hierarchies are generally evaluated with global and 
local “reaching centralities” (measures of flow heterogeneities),129 
the percentage of links not included in cycles,128 the use of ran-
dom walks on the network,130 or the decomposition into tree-
ness, feedforwardness, and orderability mentioned above.94 They 
stress the temporal subsumption (process) view, including their 
potential to unfold system’s history.

Bipartite networks are uniquely fit to study the evolu-
tionary structuring of a system from both scalar and sub-
sumption points of view. Once levels of organization are 
recognized with, for example, machine deep learning or task- 
specific algorithmic approaches, bipartite networks and their 
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one-mode projections provide remarkable insights into pat-
terns of network connectivity between levels of organiza-
tion.32 Figure 8A shows a general diagram describing how 
links between nodes corresponding to 2 different levels of a 
hierarchical system contribute to the structuring of both the 
lower and higher levels in a bipartite network. Such structur-
ing tests the scalar hierarchical view. For example, the bipar-
tite network of EFLs and structural domains (Figure 7B) 
outlines how loop structures of proteins combine in evolu-
tion to form structural domains with new molecular func-
tions.32 The one-mode EFL projection of the evolving 
bipartite network describes how domains are capable of 
structuring the emerging world of functional loop structures. 
Conversely, the domain projection describes how the world 
of domains is structured by the sharing of EFL structures.

When the growth of the bipartite wiring diagrams and their 
projections is studied along an evolutionary timeline, the net-
work provides a subsumption hierarchical view through flow 
and waterfall network visualizations. In a flow hierarchy, arcs 
point in the direction of time, but the age of nodes is not made 
explicit (Figure 8B). In contrast, a “waterfall” network harbors 
both arcs that point in the direction of time and time events of 
an evolutionary timeline specified by the age of nodes (Figure 
8C). These visualizations can dissect the emergence and evolu-
tion of hierarchical modular structure, uncovering remarkable 
patterns between levels of organization. For example, the 

analysis of the evolution of the elementary functionome 
revealed how the lower level of structural organization transfers 
preferential attachment (heterogeneity) to the higher level, 
with a trend that is anticorrelated with modularity but gener-
ates hierarchical modular structure.32 The age of domains was 
traced onto the directed bipartite network structure, and the 
resulting “waterfall” networks established the direction of 
structural recruitments of loops and domains of the elementary 
functionome (Figure 7B). In another example, bipartite net-
works outlining how domains are recruited in the enzymes of 
metabolism showed that while modularity increases with time, 
higher levels of metabolic organization are weakly wired com-
pared with lower levels.107 The enzyme projection of the bipar-
tite network of enzymes and subnetworks (defined by 
KEGG),105 for example, shows how subnetworks are capable 
of structuring the emerging world of metabolic enzymes. In 
turn, the subnetwork projection reveals how the world of sub-
networks is structured by the sharing of enzymes. The study 
did not impose an “arrow of time” on the links of the network 
(they were kept undirected), because nodes were indexed with 
evolutionary history. However, there was a clear trend of the 
system’s lower levels to become increasingly more granularly 
entrenched with time. This trend of “maximum granularity” 
generates an architecture of parts at lower levels acting almost 
independently from each other, supporting Simon’s prediction 
of near-decomposability of systems: “Each of the parts of a 

Figure 8.  A bipartite network view of levels of organization. (A) Any system of interacting entities describable with networks can be dissected into a 

hierarchical system with nested entities defining different levels of organization (eg, U, V, W, and X). Network interactions that are tightly knit generate 

modules, which enable the functional activities of the system. A bipartite network makes explicit the relationship between any 2 levels of organization 

when it is dissected into its 2 one-mode projections. One projection describes how higher level entities link lower level entities to each other. The other 

describes how lower level entities link higher level entities to each other. As an example, a bipartite network describing interactions between entities of the 

V and W levels is shown in the right together with its corresponding V and W projections. For simplicity, links are left unweighted. (B) The V-W bipartite 

network is transformed into a flow hierarchy when some or all connections are described as arcs pointing in the direction of time. (C) The flow hierarchy 

becomes a waterfall diagram when the ages of nodes are treated as “time events” and are used to reorganize the network in the direction of time.
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nearly-decomposable system has strong internal links among 
its sub-parts, but the several top-level parts are bound together 
with each other only by comparatively weak linkages.”131

Conclusions
Retrodictive methods can trace the evolution of complex bio-
logical systems along their ~3.8 billion-year history.17,31 This 
allows exploration of the accumulation of evolutionary innova-
tions and the emergence of hierarchy and modularity in net-
works. Two approaches are available for this task. Given a “tree 
of life,” hypothetical ancestral networks can be extrapolated 
back in time with “character state reconstruction” methods. The 
reconstructed networks are then analyzed with the tools of 
graph theory. The approach has been used to reconstruct ances-
tral metabolic networks and study their modularity.132 However, 
one drawback is that retrodiction cannot go deeper than the 
most ancestral node of the tree of life, ie, LUCA. The limita-
tion can be severe in the case of metabolic networks, since 
metabolism originated in a “big bang” hundreds of millions of 
years before the onset of organismal diversification.98 An alter-
native approach that is free of this limitation is to build phylog-
enomic trees portraying the histories of entire repertoires of 
molecular functions or molecular parts (eg, protein structural 
domains, helical RNA structures).17,31-38,98 These trees allow to 
calculate the evolutionary ages of molecular functions or parts, 
from their origin in the very distant past to the present. Tracing 
of these ages onto wiring diagrams reveals patterns of emer-
gence, growth, and evolution of biological networks at different 
timeframes (from nanosecond dynamics to billion-year his-
tory). These studies showed that even highly dynamic systems 
are evolutionarily entrenched and steadily evolve by increasing 
network hierarchy and modularity.

Network evolution can also be inferred in the absence of 
historical information. One approach is to use artificial data 
and in silico modeling. For example, computer simulations 
have been used to study the emergence of hub metabolites by 
functional specialization of group transfer reactions.133 More 
ambitiously, modeling of metabolic reactions based on an arti-
ficial chemistry emerging from protein-protein interactions 
and genetics revealed the emergence of modularity in response 
to a multitude of functional goals that depend on the environ-
ment.134 An alternative approach is to simulate the evolution of 
networks and determine whether properties of extant biologi-
cal networks emerge in the simulations.94 Mapping these sim-
ulations onto morphospaces describing network structure and 
hierarchy can uncover how extensive real (extant) networks 
cover the space of possible network designs.135

Finally, we have reviewed the existence of biphasic patterns 
in the growth of complex biological systems. Examples include 
molecular machinery such as the ribosome or the collective of 
fold structures that make up the proteome of an organism. We 
explain the evolution of network structure with a paradigm of 
accretion and diversification and a biphasic (bow-tie) model of 

module generation, which embeds communities of nodes and 
links into each other as networks unfold in time. This fosters 
fractal-like patterns of complexification that are both 
entrenched and highly dynamic at all levels of organization. 
Remarkably, the 2000-year-old Strasbourg papyrus attributed 
to Empedocles of Akragas (ca. 495-435 BC) appears to sum-
marize the double tale of module generation and its dynamic 
nature:

A double tale I’ll tell. At one time one thing grew to be just one
from many, at another many grew from one to be apart.
Double the birth of mortal things, and double their demise.
Union of all begets as well as kills the f irst;
The second nurtures them but shatters as they grow apart.
And never do they cease from change continual,
At one time all uniting into one from Love,
While at another each is torn apart by hate-filled Strife.
In the way that many arise as the one again dissolves,
in that respect they come to be and have no life eternal;
but in the way that never do they cease from change continual,
in this respect they live forever in a stable cycle.

—Papyrus of Empedocles, On Nature, P. Strasb.  
Gr. Inv. 1665-6, lines 233-244.136
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