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A six‑gene prognostic model predicts overall 
survival in bladder cancer patients
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Abstract 

Background:  The fatality and recurrence rates of bladder cancer (BC) have progressively increased. DNA methylation 
is an influential regulator associated with gene transcription in the pathogenesis of BC. We describe a comprehensive 
epigenetic study performed to analyse DNA methylation-driven genes in BC.

Methods:  Data related to DNA methylation, the gene transcriptome and survival in BC were downloaded from The 
Cancer Genome Atlas (TCGA). MethylMix was used to detect BC-specific hyper-/hypo-methylated genes. Metascape 
was used to carry out gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way analyses. A least absolute shrinkage and selection operator (LASSO)-penalized Cox regression was conducted to 
identify the characteristic dimension decrease and distinguish prognosis-related methylation-driven genes. Subse-
quently, we developed a six-gene risk evaluation model and a novel prognosis-related nomogram to predict overall 
survival (OS). A survival analysis was carried out to explore the individual prognostic significance of the six genes.

Results:  In total, 167 methylation-driven genes were identified. Based on the LASSO Cox regression, six genes, 
i.e., ARHGDIB, LINC00526, IDH2, ARL14, GSTM2, and LURAP1, were selected for the development of a risk evalu-
ation model. The Kaplan–Meier curve indicated that patients in the low-risk group had considerably better OS 
(P = 1.679e−05). The area under the curve (AUC) of this model was 0.698 at 3 years of OS. The verification performed 
in subgroups demonstrated the validity of the model. Then, we designed an OS-associated nomogram that included 
the risk score and clinical factors. The concordance index of the nomogram was 0.694. The methylation levels of IDH2 
and ARL14 were appreciably related to the survival results. In addition, the methylation and gene expression-matched 
survival analysis revealed that ARHGDIB and ARL14 could be used as independent prognostic indicators. Among the 
six genes, 6 methylation sites in ARHGDIB, 3 in GSTM2, 1 in ARL14, 2 in LINC00526 and 2 in LURAP1 were meaning-
fully associated with BC prognosis. In addition, several abnormal methylated sites were identified as linked to gene 
expression.

Conclusion:  We discovered differential methylation in BC patients with better and worse survival and provided a risk 
evaluation model by merging six gene markers with clinical characteristics.

Keywords:  Bladder cancer, Methylation, TCGA​, LASSO Cox, Nomogram, Survival analysis

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Cancer Cell International

*Correspondence:  jinyangtmmu@sina.com;  
zhiwenchentmmu@sina.com
1 Urology Institute of People’s Liberation Army, Southwest Hospital, Third 
Military Medical University (Army Medical University), Chongqing 400038, 
People’s Republic of China
3 Department of Cell Biology, Third Military Medical University (Army 
Medical University), Chongqing 400038, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-019-0950-7&domain=pdf


Page 2 of 15Wang et al. Cancer Cell Int          (2019) 19:229 

Background
Bladder cancer (BC) is one of the most difficult to treat 
and costly cancers due to its relapse tendency and chem-
oresistance [1]. In total, 76,000 new cases and 16,000 
deaths are attributed to BC in the USA per year [2]. With 
such a large patient population, accurately diagnosing 
and effectively treating BC have become difficult chal-
lenges for basic medical researchers and urologists.

Epigenetic dysregulation is an important mechanism 
of tumorigenesis that affects the expression of numer-
ous genes [3]. Aberrant DNA methylation, i.e., hyper- or 
hypomethylation, on CpG islands of promoters is one 
such mechanism, resulting in aberrant gene expression 
and having a major impact on the biological behaviour of 
BC [4, 5]. DNA methylation could also serve as a good 
biomarker for clinical diagnosis because of its stable 
and easily detectable attributes in many types of clini-
cal specimen [6, 7]. Dulaimi et  al. [8] reported that the 
detection of hypermethylation in the APC, RASSF1A, 
and ARF genes in BC patients may act as a non-invasive 
method for early diagnosis. Casadio et  al. [9] also indi-
cated that the methylation frequencies of HIC1, GSTP1 
and RASSF1A could predict BC recurrence. Ohad et al. 
[10] found that CDH13 is downregulated by promoter 
methylation in BC patients, and this may be closely asso-
ciated with tumour development.

The TCGA project aims to catalogue and discover 
major molecular changes to create a comprehensive 
“map” of the human cancer genome [11]. The multiple 
dimensions of data and massive samples not only provide 
a more comprehensive view of cancer but also enable the 
finding of better biomarkers, which could affect cancer 
treatment and prognosis [12]. DNA methylation data 
are also included in the massive data set, and a computa-
tional protocol called MethylMix can distinguish disease-
specific hyper/hypomethylation genes, both of which 
are publicly available [13]. Several studies have been 
conducted to assess methylation-driven genes using the 
MethylMix algorithm and TCGA database [13–15].

In this study, we identified BC-related methylation-
driven genes by using the data from the TCGA database. 
By coupling DNA methylation and gene transcriptome 
data, we identified methylation-driven genes and further 
constructed a model of DNA methylation status to pre-
dict prognosis in BC patients.

Materials and methods
Data processing and analysis
We downloaded DNA methylation, gene transcriptome 
and clinical survival data of BC patients from TCGA 
[16]. There were 437 samples with DNA methylation 
data (21 normal and 416 cancer), 430 samples with gene 

transcriptome data (19 normal and 411 cancer), and 404 
patients with valid survival data. These data are an open 
resource, and no ethical issues were involved.

First, we applied the Limma package in R to extract the 
DNA methylation data. Next, we used the edgeR pack-
age to obtain the gene expression data. A comprehensive 
analysis was performed to obtain the following three data 
matrices: DNA methylation (normal, cancer) and gene 
expression. Subsequently, we used MethylMix [13, 17] 
to compare DNA methylation of cancer with that of nor-
mal tissue to detect specific genes, particularly BC-spe-
cific hyper/hypomethylation genes, and the methylation 
level of these genes was described as ‘transcriptionally 
predictive’. A mixture model of each gene was built, and 
Wilcoxon rank tests were computed with the following 
parameters: set as logFC > 0, P < 0.01, and Cor < − 0.3.

Functional enrichment and pathway analysis
Metascape [18] integrates several authoritative data 
resources, such as GO, KEGG, UniProt and DrugBank, 
so that it can execute pathway enrichment and biologi-
cal process annotation to provide comprehensive and 
detailed information for each gene [19]. GO enrichment 
and KEGG pathway analyses of the genes identified by 
MethylMix were performed. Only terms with P < 0.01, a 
minimum count of 3 and an enrichment factor > 1.5 were 
considered significant.

Construction of the risk assessment model
First, the genes identified by MethylMix were applied to 
a univariate Cox regression. Second, we used a LASSO 
regression to narrow the range of target genes because 
the predictor variable was much larger than the sample 
content in the gene expression data. A strong correlation 
often exists between the variables, which is suggestive 
of high dimensionality and collinearity, and this method 
could decrease the characteristic dimension [20]. Then, 
we built a multivariate Cox regression model to select 
the genes that were most tightly associated with survival 
[21]. In addition, we validated this model in subgroups 
based on different characteristics. The following 12 sub-
groups based on different clinical characteristics and 9 
subgroups based on different mRNA subtypes and muta-
tional signatures [5] were subjected to further tests: high 
grade (n = 381), low grade (n = 20), stage I (n = 2), stage 
II (n = 128), stage III (n = 139), stage IV (n = 133), mus-
cle-invasive (n = 368), non-muscle-invasive (n = 4), no 
distant metastasis (n = 193), distant metastasis (n = 11), 
lymph node metastasis (n = 169), no lymph node metas-
tasis (n = 235), or Msig 1 (n = 28), Msig 2 (n = 220), Msig 
3 (n = 99), Msig 4 (n = 55), basal squamous (n = 137), 
luminal (n = 26), luminal infiltrated (n = 77), luminal pap-
illary (n = 140), and neuronal (n = 20).
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The sensitivity and specificity of the model in the diag-
nosis of BC were analysed by a time-dependent ROC 
curve.

Furthermore, an OS-associated nomogram including 
the risk score and clinical factors was designed using the 
rms [22] and the Hmisc [23] packages in R. Calibration 
curves were drawn, and the concordance index (C-index) 
was computed to assess the efficiency of the nomogram.

Survival analysis
Kaplan–Meier curves were used to distinguish the con-
nection between these genes and prognosis. A subgroup 
analysis was performed by dividing the patients based 
on clinical characteristics. A methylation/methyla-
tion site and gene expression matched survival analysis 
was carried out to explore the prognostic significance 
of these genes individually. The relationships between 
gene expression and methylated sites were additionally 
examined.

Data processing
All data analyses were performed with R [24]. Student’s 
t-test was used to evaluate the differences between two 
groups. The log-rank test was applied in the Kaplan–
Meier survival examination.

Results
TCGA data acquisition and filtering methylation‑driven 
genes
In total, 167 genes were identified (Fig. 1; Additional files 
1, 2) by applying MethylMix to the three matrices, and 
a mixture model of each gene was constructed (Fig.  2). 
Intuitively, the relationship between the peak curve 
and the black bar indicates whether a gene is hyper- or 
hypomethylated.

Functional enrichment and pathway analysis
The Metascape analysis shows the top 20 clusters of 
enriched sets (Fig. 3). These genes were enriched in the 
molecular function (MF) categories structural constitu-
ents of muscle and RNA polymerase II distal enhancer 
sequence-specific DNA binding. For biological process 
(BP), these genes showed enrichment in anterior/poste-
rior pattern specification, chordate embryonic develop-
ment, intrinsic apoptotic signalling pathway in response 
to DNA damage and so on (Additional file 3). The KEGG 
pathway data were enriched in Glutathione metabolism 
and Cardiac muscle contraction.

Construction of the risk assessment model
The results of the univariate Cox regression analysis of 
167 genes were used in the LASSO regression to identify 
robust markers. A set of twelve genes (DAPP1, TCEAL7, 

PAXIP1-AS1, TDRD1, NUPR1, ARHGDIB, LINC00526, 
IDH2, ARL14, KLHDC7A, GSTM2, and LURAP1) and 
their coefficients were computed (Fig. 4a, b). Then, mul-
tivariate Cox regression analyses were performed, and a 
six-gene model was constructed according to their meth-
ylation levels and coefficients. Risk score = (ARHGDIB *​ ​
4.5​339​10954) + (LINC00526 * 1.999499891) + (IDH2 * − 2
.048441591) + (ARL14 * 0.779318158) + (GSTM2 * − 1.37
5204374) + (LURAP1 * − 1.504186188).

The risk score of each BC patient was computed, and 
the patients were assigned to the low-risk (n = 202) or 
high-risk (n = 202) group based on the median cut-off 
value (Additional file  4, Fig.  4c). Intuitively, the number 
of deaths was significantly higher in the high-risk group 
(Fig. 4d). The distribution of the six genes across all sam-
ples showed that the patients in the low-risk group were 
likely to have a higher degree of methylation of IDH2, 
GSTM2 and LURAP1. In contrast, the patients in the 
high-risk group were inclined to have higher methyla-
tion of ARHGDIB, LINC00526, and ARL14 (Fig. 4e). The 
Kaplan–Meier analysis of all patients (Fig.  4f ) indicated 
that the survival of the patients in the low-risk group was 
significantly better than that of the patients in the high-
risk group (P = 1.679e−05). The AUC of the survival 
assessment model of the six methylation-driven genes 
was 0.698 at 3 years of OS (Fig. 4g).

We further tested the survival assessment model by 
Kaplan–Meier analysis in subgroups. Of the 12 sub-
groups classified by clinical characteristics, there were 
no enough cases for stage I (n = 2), non-muscle-invasive 
(n = 4), and distant metastasis (n = 11), and all patients 
in the low grade group (n = 20) were alive, the test in 
the remaining 8 groups showed the same results as in all 
patients (Fig.  5a–h). Although the P-value in the stage 
III group was not statistically significant (Fig. 5h), these 
patients all showed the same predictive trends. Of the 
9 subgroups (Additional file  4) classified by different 
mRNA subtypes or mutational signatures of BC [5]. The 
Kaplan–Meier curves (Additional file  5) show that this 
model is still effective in the Msig2, Msig3, luminal infil-
trated, luminal papillary, and neuronal groups. Thus, the 
model has a certain reliability and practicability in evalu-
ating prognosis.

Establishment and evaluation of the nomogram
We designed a nomogram to predict the survival prob-
ability of each patient. In the nomogram, each predic-
tor was assigned a score. Based on the Cox analysis 
results (Table 1), six genes were integrated in the nom-
ogram to predict the survival probability of BC patients 
(Additional file 6). The hypermethylation of ARHGDIB, 
LINC00526, and ARL14 is a risk factor for OS. Simi-
larly, we carried out an analysis of the risk score and 
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five clinical factors (Table 2; Fig. 6a). Based on the uni-
variate Cox analysis, four factors (race, age, gender, and 
stage) and the risk scores were included in the multi-
variate Cox analysis (the factor ‘grade’ was not suitable 
for further analysis according to R). We constructed a 
nomogram to predict the OS probability (Fig. 6b). The 
C-index of this model was 0.694 (Fig. 6c). The predicted 
survival rate is close to the actual survival situation, and 
the prediction accuracy is similar to the ROC curve.  

Prognostic assessment of methylation‑driven genes
The survival status evaluation of 6 genes was computed 
by the Survival package in R. IDH2 and ARL14 were 
identified as independent prognostic indicators (Fig. 7a, 
b), and the hypomethylation of IDH2 and hypermeth-
ylation of ARL14 were related to worse prognosis in BC 
patients. The methylation/methylation-site and gene 
expression matched evaluation was additionally carried 
out to discover the prognostic value. We found that a 

Fig. 1  Heatmap of 167 BC-related methylation-driven genes. Red to green shows a trend from hypermethylation to hypomethylation
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high expression and hypomethylation of ARHGDIB 
and ARL14 were meaningfully correlated with better 
prognosis (Fig. 7c, d). Among the six genes, 6 methyl-
ated sites in ARHGDIB (Fig. 8a–f ), 1 methylated site in 
ARL14 (Fig. 8g), 3 methylated sites in GSTM2 (Fig. 8h–
j), 2 methylated sites in LINC00526 (Fig.  8k, l) and 2 
methylated sites in LURAP1 (Fig.  8m, n) were signifi-
cantly associated with BC prognosis. The hypermeth-
ylation of 5 sites in LURAP1 and GSTM2 is associated 
with better prognosis; in contrast, the hypermethyla-
tion of another 9 sites in ARHGDIB, LINC00526 and 
ARL14 is associated with poor prognosis. This result 
is consistent with the results shown in Figs. 4e and 5a. 
The hypermethylation of IDH2, LURAP1, and GSTM2 
may act as a protective factor in BC patients. Other 
three genes, i.e., ARHGDIB, LINC00526, and ARL14, 
may have the opposite effect. Additionally, several 

abnormally methylated sites were identified as linked to 
gene expression (Table 3; Additional file 7).

Discussion
Urothelial carcinoma is generally classified as non-mus-
cle-invasive bladder cancer (NMIBC) or muscle-inva-
sive bladder cancer (MIBC). The standard treatment 
for NMIBC is transurethral resection, and the universal 
treatment for MIBC is radical cystectomy, but a consid-
erable number of NMIBC patients (50% to 80%) have 
tumour recurrence [1, 2]. Pathological staging is a key 
factor in current clinical decision making and progno-
sis of BC; nevertheless, the clinical outcomes of patients 
with the same stage often differ, indicating that the 
current staging system is not sufficient to reflect bio-
logical heterogeneity, and accurately determining the 
prognosis of patients is challenging. A new prognos-
tic evaluation model based on molecular entities could 

Fig. 2  Mixture models of 6 of the 167 genes. The x-axis indicates the degree of methylation, the y-axis indicates the proportion at different degrees, 
the curve indicates the peak value, and the black bar indicates the normal methylation degree (a–f)
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guide individualized treatment and improve the thera-
peutic effect.

DNA methylation is an epigenetic modification that 
affects the interaction between DNA and regulatory 
factors, which, in turn, regulates gene expression [25]. 

Hypermethylation inhibits gene expression, while hypo-
methylation promotes gene expression. In addition, the 
DNA methylation status is faithfully inheritable through 
cell division but also revisable, it plays a very important 
role in the dynamic regulation of expression. Numerous 

Fig. 3  Metascape analysis. a Network of enriched sets coloured by ID. Threshold: 0.3 kappa score; similarity score > 0.3. b Heatmap coloured by 
P-values
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Fig. 4  Identification of prognostic genes in BC patients. a LASSO coefficients. b Plots of the cross-validation error rates. The dashes signify the value 
of the minimal error and greater λ value. c Risk score distribution in the two groups. d Survival overview in the two groups. e Heatmap of six genes 
in the two groups. f Survival curve of the two groups. g Time-dependent ROC curve for 3-year survival prediction
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Fig. 5  Kaplan–Meier survival curves. Validation of the six-gene model based on different clinical characteristics (a–h)
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studies based on either a genome-wide view or a gene-
specific view have demonstrated that DNA methylation 
drives abnormal gene expression and is a crucial factor in 
the development and progression of tumours [26]. There-
fore, the methylation profiles of methylation-driven genes 
in tumour patients could serve as potential biomarkers 
[27]. This phenomenon in BC patients is extensive, and 
many genes have been suggested to be factors involved in 
pathogenesis and are used as diagnostic and prognostic 
biomarkers [28, 29]. Our study provides a comprehensive 
view of methylation-driven genes in BC, and a prognosis 
model based on the methylation profile of six genes was 
developed and has implications for both basic research 
and clinical applications.

We identified a cohort of 167 methylation-driven 
genes in BC. The functional annotation demonstrated 
that these genes are widely scattered in diverse biologi-
cal processes and pathways ranging from signal transduc-
tion, gene regulation, and development to metabolism 
and cell structure. These results demonstrate that DNA 
methylation is involved in the dysregulation of genes with 
distinct functions and suggest possible mechanisms by 
which DNA methylation is functionally linked to out-
comes in BC patients.

Six genes (IDH2, GSTM2, LURAP1, ARHGDIB, 
LINC00526, and ARL14) with methylation profiles 

closely related to survival were selected by a LASSO Cox 
regression. Based on their methylation level and coeffi-
cients with survival, a prognostic model was developed. 
The verification of this model in the whole patient set 
and subsets grouped by either clinical or molecular char-
acteristics showed that the low-risk group has a better 
survival status. The AUC of the ROC curve of the whole 
cohort based on this model was 0.698 at 3 years of OS.

For further potential application of this model in 
clinical work, a nomogram was generated. The nomo-
gram integrates multiple predictors and simplifies the 
statistical prediction model to the probability of out-
come events; thus, the survival probability of individual 
patients can be calculated. The predicted survival rate is 
close to the actual survival situation (C-index: 0.694), and 
the nomogram has a prediction effectiveness similar to 
that of the ROC curve. These results indicate the excel-
lent predictive ability of this model in the prognosis of 
BC patients.

The six genes included in the model were further ana-
lysed individually. The hypomethylation of IDH2 and 
hypermethylation of ARL14 were associated with poor 
prognosis, and a high expression matched hypometh-
ylation of ARHGDIB and ARL14 was meaningfully cor-
related with better prognosis. Further analysis of the 
methylation sites showed that the hypermethylation of 

Table 1  Coefficients based on a Cox regression analysis of six genes

CI confidence interval, HR hazard ratio

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

ARHGDIB 76.13919 9.911825–584.8748 3.11E−05 93.12205 11.51496–753.0825 2.13E−05

LINC00526 3.310809 1.013776–10.8125 0.04741 7.385362 2.17362–25.09342 0.001355

IDH2 0.161273 0.031827–0.817183 0.027538 0.128936 0.024135–0.688822 0.016576

ARL14 3.002286 1.308697–6.887556 0.009459 2.179985 0.884152–5.375019 0.09054

GSTM2 0.088565 0.01622–0.483568 0.005128 0.252788 0.038877–1.643669 0.149947

LURAP1 0.145702 0.034246–0.619906 0.009128 0.222198 0.046774–1.055542 0.058494

Table 2  Coefficients based on a Cox regression analysis of the risk score and clinical factors

CI confidence interval, HR hazard ratio

Variables Univariate analysis Multivariate analysis

HR 95% CI of HR P-value HR 95% CI of HR P-value

Race 1.13700 0.8596391–1.503856 0.368166 0.882196 0.654978–1.188243 0.409438

Age 1.03580 1.0185976–1.053294 3.85E−05 1.031468 1.014000–1.049236 0.000377

Gender 0.89812 0.6331828–1.273916 0.546846 0.837966 0.589105–1.191956 0.325475

Grade 961019 0 (Inf ) 0.991439 – – –

Stage 1.86112 1.5099545–2.29397 5.80E−09 1.782751 1.434223–2.215973 1.90E−07

Risk score 1.58277 1.4006472–1.788583 1.81E−13 1.510365 1.329843–1.715391 2.16E−10
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Fig. 6  Six-gene model for survival prediction. a Multivariate Cox proportional hazard model of the risk score and clinical factors. b OS-associated 
nomogram. c Nomogram calibration plots. ***P < 0.001



Page 11 of 15Wang et al. Cancer Cell Int          (2019) 19:229 

5 sites in LURAP1 and GSTM2 is associated with better 
prognosis, and the hypermethylation of another 9 sites 
in ARHGDIB, LINC00526 and ARL14 is associated with 
poor prognosis in BC. Additionally, the methylation lev-
els at several methylation sites were correlated with the 
expression levels of the associated genes, all with nega-
tive correlations, indicating that these individual meth-
ylation sites alone contributed to expression regulation.

The methylation levels of these six genes contributed to 
the risk score of this model either positively or negatively. 
Some of this contribution could be functionally explained 
by previous studies, but the remainder lacks explanation, 
as information regarding the role of these genes in cancer 
is very limited.

The methylation levels of ARHGDIB, LINC00526 and 
ARL14 are positively related to poor survival. ARHG-
DIB (Rho GDP dissociation inhibitor GDI beta), which 
is also known as RhoGDI2, is a member of the guanine 

nucleotide dissociation inhibitor (GDI) family [30]. 
Mounting evidence suggests that the reduced expres-
sion of ARHGDIB is associated with the development 
of several types of cancer and that its hypermethyla-
tion contributes to its reduced expression [31]. The CpG 
islands of ARHGDIB were relatively hypermethylated 
in cases of ovarian cancer relapse after chemotherapy 
[32]. Huang et  al. [33] demonstrated that ARHGDIB is 
significantly associated with OS in lung cancer patients. 
In BC, the reduced expression of ARHGDIB is associ-
ated with shorter disease-free survival time [34–36]. In 
our study, the methylation level matched gene expres-
sion analysis of ARHGDIB, and the analysis of CpG sites 
showed that hypomethylation in the ARHGDIB gene is 
associated with better survival. Our result is consistent 
with the results of previous studies. LINC00526 is a long 
intergenic non-protein-coding RNA, and one study has 
demonstrated that it suppresses glioma progression [37]. 

Fig. 7  Kaplan–Meier survival curves. Hyper/hypomethylation analysis of ARL14 and IDH2 (a, b). Methylation and gene expression matched analysis 
of ARL14 and ARHGDIB (c, d)
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Fig. 8  Kaplan–Meier survival curves. Six methylation sites in ARHGDIB (a–f). One methylation site in ARL14 (g). Three methylation sites in GSTM2 
(h–j). Two methylation sites in LINC00526 (k, l). Two methylation sites in LURAP1 (m, n)
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ARL14 (ADP Ribosylation Factor Like GTPase 14) is a 
protein-coding gene that participates in GTP binding and 
signal transduction [38]. However, information regarding 
the role of ARL14 in cancer is lacking.

The methylation level of IDH2, LURAP1 and GSTM2 
is negatively related to poor survival. IDH2 is a protein-
coding gene. The function of IDH2 in cancer has been 
relatively well documented. Li et  al. [39, 40] found that 
IDH2 promotes lung cancer cell growth and serves as a 
novel therapeutic target in lung cancer. Mutations of 
IDH2 are frequently observed in acute myeloid leukae-
mia [41], colon cancer [42, 43], and gliomas [44], caus-
ing alterations in metabolism and DNA methylation; 
these mutations could represent a possible mechanism 
of tumorigenesis [44] and provide potential avenues for 
therapeutic intervention. We found that hypermethyla-
tion in IDH2 is associated with a better prognosis in BC 
patients. In our study, the relationship among GSTM2, 
LURAP1 and prognosis showed similar characteristics 
to IDH2. Hypermethylation at 3 sites in GSTM2 and 2 
sites in LURAP1 is correlated with a better prognosis. 
GSTM2 is a subtype of glutathione S-transferase (GSTs) 
that performs functions such as eliminating free radicals 
and is involved in cell protection and the regulation of 
cell growth. Consistent with our findings, Kresovich et al. 
[45] found that a high methylation level in the GSTM2 
promoter could be involved in ER/PR-negative breast 
cancer progression. Ashour et  al. [46] proved that the 
epigenetic silencing of GSTM2 is a common phenome-
non in prostate cancer that could be used as a molecular 
marker for diagnosis.

To the best of our knowledge, these six genes have 
not been previously studied as a prognostic model in 
BC patients. Further verification of this model in other 
types of clinical specimen, such as urine sediment cells 
and circulating tumour cells from BC patients, could 
provide more information regarding its potential clinical 
application. For urologists, accurate prognostic assess-
ments are critical for selecting the optimal treatment. 
Our nomogram is a predictive model that combines gene 
information and clinical factors to provide a prognostic 
indication for clinicians.

However, this study also has certain limitations. First, 
this is a retrospective study, and the application of this 
model requires further verification by increasing the 
sample size and performing prospective studies. Sec-
ond, the treatments that the patients have received are 
highly heterogeneous and incomplete, thus we could not 
include this information in our analysis. Improving these 
aspects for future in-depth studies could further increase 
the persuasiveness of these results.

In summary, we screened methylation-driven genes 
in BC, and a six-gene model was constructed based 
on methylation profiles. This model was validated in 
groups with different disease characteristics and could 
be expected to serve as a predictive tool for clinical out-
comes and guide personalized anticancer treatment. In 
addition, we analysed the relationships between individ-
ual CpG islands associated with these six genes and sur-
vival, which may provide important bioinformatic clues 
for mechanistic research related to the development and 
progression of BC.

Conclusion
Based on public data from the TCGA database, we used 
MethylMix in R and a LASSO Cox analysis to screen 
methylation-driven genes associated with prognosis 
in BC patients. A prediction model based on methyla-
tion of six genes (IDH2, GSTM2, LURAP1, ARHGDIB, 
LINC00526, ARL14) was constructed. The verification 
in different subgroups demonstrated the validity and 
consistency of the model. A nomogram was further 
constructed to predict the likelihood of OS. The ROC 
curve, nomogram calibration plots and comprehensive 
survival analysis of each gene revealed that this model 
is an effective predictive model that can be used as a 
prognostic marker in BC patients. These results indi-
cate that methylation detection may be an important 
means to help establish a new evaluation system for 
prognosis and act as a therapeutic target for antitu-
mour drug development.

Table 3  Correlation between  gene expression 
and methylated sites

Gene and methylation site Correlation P-value

ARL14-cg20725880 − 0.686 5.651e−58

ARL14-cg24147596 − 0.547 2.919e−33

GSTM2-cg03942855 − 0.552 5.679e−34

GSTM2-cg12647497 − 0.586 4.89e−39

LINC00526-cg05390530 − 0.58 4.125e−38

LINC00526-cg10885961 − 0.619 1.348e−44

LINC00526-cg14291066 − 0.597 9.105e−41

LINC00526-cg15258847 − 0.571 1.132e−36

LINC00526-cg20134241 − 0.516 3.403e−29

LINC00526-cg20757519 − 0.518 2.187e−29

LINC00526-cg21311023 − 0.571 1.296e−36

LINC00526-cg26998900 − 0.502 2.023e−27

LURAP1-cg24542714 − 0.544 9.477e−33
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