Skip to main content
. 2019 Sep 5;7(1):49. doi: 10.5334/egems.307

Table 2.

Classifier performance on Carevue-only and all data, based on raw training data (unweighted), model class weights (weighted) or synthetic minority oversampling (SMOTE).

Carevue (n = 28,886)

Unweighted Weighted SMOTE

Precision Recall Precision Recall Precision Recall

Braden Score 0.09 0.5
LR 0.1 0.005 0.09 0.67 0.12 0.49
Elastic Net 0.11 0.005 0.09 0.67 0.13 0.48
SVM NA 0 NA 0 0.12 0.48
RF 0.33 0.02 0.3 0.02 0.18 0.17
GBM 0.11 0.18 0.04 0.91 0.16 0.36
Neural net 0.33 0.01 0.09 0.7 0.11 0.52
All Data (n = 50,851)

LR 0.67 0.006 0.09 0.71 0.12 0.46
Elastic Net 0.67 0.006 0.09 0.7 0.12 0.46
SVM NA 0 NA 0 0.12 0.44
RF NA 0 0.33 0.006 0.18 0.28
GBM 0.11 0.18 0.04 0.94 0.17 0.38
Neural net 0.06 0.006 0.09 0.7 0.11 0.49