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Spinal cord modularity impacts on our understanding of reflexes, development, descending systems in normal motor control, and
recovery from injury. We used independent component analysis and best-basis or matching pursuit wavepacket analysis to extract the
composition and temporal structure of bursts in hindlimb muscles of frogs. These techniques make minimal a priori assumptions about
drive and motor pattern structure. We compared premotor drive and burst structures in spinal frogs with less reduced frogs with a fuller
repertoire of locomotory, kicking, and scratching behaviors. Six multimuscle drives explain most of the variance of motor patterns
(�80%). Each extracted drive was activated with pulses at a single time scale or common duration (�275 msec) burst structure. The data
show that complex behaviors in brainstem frogs arise as a result of focusing drives to smaller core groups of muscles. Brainstem drives
were subsets of the muscle groups from spinal frogs. The 275 msec burst duration was preserved across all behaviors and was most precise
in brainstem frogs. These data support a modular decomposition of frog behaviors into a small collection of unit burst generators and
associated muscle drives in spinal cord. Our data also show that the modular organization of drives seen in isolated spinal cord is
fine-tuned by descending controls to enable a fuller movement repertoire. The unit burst generators and their associated muscle syner-
gies extracted here link the biomechanical “primitives,” described earlier in the frog, rat, and cat, and to the elements of pattern
generation examined in fictive preparations.

Key words: drive; EMG (electromyogram); hindbrain; hindlimb (leg); limb; motor; reflex; pattern generation; force-field; primitive;
premotor drive; unit burst

Introduction
The idea of a small set of burst generators and unitary premotor
drives organized in spinal circuits may be important to link sev-
eral areas of research. For example, these impact our understand-
ing of reflex organization, locomotion, response to spinal cord
injury and stroke, motor development, and motor learning.

Several kinds of modular multijoint and multisegmental spi-
nal motor control systems have been proposed. These range from
central pattern generators (CPGs; comprising half-centers, unit
burst generators, and shared cores) (Grillner and Wallen, 1985;
Stein et al., 1995, 1998a,b; Earhart and Stein, 2002; Stein and
Daniels-McQueen, 2002) through individual joint controls,
muscle group or synergy controls (Berkinblitt et al., 1986; Gott-
lieb, 1998; Kearney and Galiana, 2000), unitary premotor drives,
and task groups (Loeb, 1985) to primitives generating specific
limb force and dynamics (Bizzi et al., 1991; Giszter et al., 1993;
Mussa-Ivaldi et al., 1994). Here, we examine the basis of spinal
modularity in frogs by examining the groupings and burst pat-
terns of premotor drives by using tools from signal and informa-

tion theory to analyze electromyographic (EMG) data. We test
the hypothesis that a small set of premotor drives activated as
fixed duration bursts or pulses could compose the major basis for
the frog’s motor repertoire. This hypothesis is consistent with a
combined CPG and motor primitive perspective.

It is currently not established whether the motor repertoire of
both a spinal and a more complex frog preparation (medullo-
pontine) could both be expressed as the combinations of the
same small collection of independent premotor drives and bursts.

Several methods can provide minimalist descriptions of EMG,
such as factor analysis and principal component analysis (PCA)
(Flanders and Hermann, 1992; Davis and Vaughan, 1993; Olree
and Vaughan, 1995; Poppele et al., 2002a,b; Ivanenko et al.,
2003). To extract lower-dimensional elements from EMG re-
cordings in a manner free from all but the structural hypothesis of
motor drives distributed simultaneously to several motor pools,
we used independent component analysis (ICA). This technique
accomplishes blind separation of sources by relying on informa-
tion separation techniques rather than simple signal variance
(Bell and Sejnowski, 1995; Brown et al., 2001). This makes the
method immune to changes in muscle pickup and to changes in
relative contributions of premotor drives across behavioral con-
ditions. Preliminary tests suggested this was an effective way to
examine premotor drive (Giszter, 2001). Here, we also wanted to
discover whether there was a dominant time scale (i.e., a charac-
teristic burst type and duration) for premotor drives. To analyze
the time structure of extracted drives, we applied a set of cosine
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packet temporal decompositions (matching pursuit and best-
basis cosine packet decompositions) (Coifman and Wicker-
hauser, 1992; Mallat and Zhang, 1993). Our results support a
common set of premotor drives across animals and across behav-
iors that are mostly similar between spinal and medullary condi-
tions and display a characteristic burst duration or time scale. The
elements found match those seen in prior experiments (Kargo
and Giszter, 2000a). These bursts or pulsed muscle drives are
likely to account for the organization of biomechanical “force-
field primitives” described in previous work.

Materials and Methods
Surgical methods
Twenty-four bullfrogs (Rana catesbaiana) were used. Frogs were anes-
thetized with 50 mg/kg of 5% 3-aminobenzoic acid ethyl esther (tricaine
MS222) in ringer injected into the dorsal lymph sacs and placed on ice to
facilitate anesthesia. Maintenance dosages were 25 mg/kg. The medulla
base was exposed by cervical midline incision posterior to the frogs’
tympanic membranes. Frogs were either spinalized at the base of the
medulla or decerebrated at the caudal pons (removing the deep cerebel-
lar nuclei from the preparation). In decerebration (“brainstem frogs”),
bone was removed overlying the medulla, pons, and cerebellum. Brain-
stem frogs were transected at the border between the medulla and the
pons by aspiration. The tectum and forebrain were ablated in all frogs by
heat cautery. The lesion cavity was packed with gel foam. The reflected
skin was closed with wound clips and sealed with Vet-Bond cyanoacry-
late adhesive. To prepare spinalized frogs from brainstem frogs, an addi-
tional transection was made below the base of the medulla by aspiration
after reopening the incisions. The data presented derive from eight brain-
stem frogs and eight spinal frogs (with four of the spinal frogs being
preparations reduced from brainstem to spinalized status).

Intramuscular electrodes were implanted under light anesthesia on ice
the next day. Pairs of electrodes (seven-strand Teflon-coated stainless
steel wire, with recording surfaces 1 mm below a wax anchor ball) (Loeb
and Gans, 1986) were implanted in the rectus anterior, rectus internus,
adductor magnus, semimembranosous, gluteus, vastus internus, vastus
externus, and semitendinosous. Patch electrodes, consisting of two
Teflon-coated wires with exposed areas perforating a Silicone/Dacron
patch (for review, see Kargo and Giszter, 2000), were inserted under the
fragile sheet-like biceps and Sartorius muscles.

Spinal frogs and brainstem frogs had markedly different behaviors.
Brainstem frogs showed a much larger repertoire of behaviors than spinal
frogs. We attempted to elicit the whole motor repertoire possible in both
preparations. Brainstem behaviors included kicks, jumps, some spontane-
ous locomotion, and complex escape sequences in response to pinch or
grasp, and corrections, besides less stereotypic wipes than those seen in spinal
animals. We recorded all movement types in the data collected here.

EMG collection and kinematic monitoring
EMGs were high-pass filtered using amplifiers (A-M Systems, Everett,
WA), with a low-frequency cutoff at 100 Hz, amplified with gain of
10,000 and digitized at 2 kHz using a 16-channel Digidata (Axon Instru-
ments, Foster City, CA). Data were displayed using Axoscope digital
oscilloscope software (Axon Instruments), and gains were adjusted to
avoid saturation.

Brainstem frogs had spontaneous movement. In spinal frogs, a pinch
stimulus was delivered to the frog’s left rear ankle to evoke reflexive
responses. All frogs’ movements were videotaped from a point �1 m
directly overhead with the camera orthogonal to the horizontal plane,
using a 1 msec/field shutter operating at 60 fields per second. Out-of-
plane excursions in the frog are typically not large (Giszter et al., 1989;
Schotland and Rymer, 1993; Sergio and Ostry, 1993). We confirmed that
each frog’s motions were kinematically similar to our previous work and
that there were no individual motor aberrations in this study. Animals in
which there were asymmetries or unusual motion patterns after surgery
were removed from the study.

EMG analysis
Analysis of temporal and muscular composition of muscle synergies. We
examined EMGs for high-frequency correlations to rule out cross talk.
To find a small set of synchronous premotor drives that were common to all
behaviors, we used ICA. This constrains the premotor drives extracted to a
few synchronous muscle activations. This naturally links these drives both to
the idea of force-field primitives and to premotor burst generators. Synchro-
nous EMG drives are necessary to organize a collection of joint torques and
end-point forces with the properties previously identified in force-field
primitives (see Appendix 1, available at www.jneurosci.org).

Identification of muscle synergies using ICA. The use of ICA can be
understood as follows. Imagine one is at a cocktail party with many
attendees participating in several simultaneous conversations. Clearly, it
is possible for a person to focus on one of these conversations or speakers
and exclude cross talk from other conversations. However, creating com-
putational algorithms to do the same task has been difficult. One possible
solution to this problem is ICA (Bell and Sejnowski, 1995). This extracts
statistically independent basis vectors from multichannel time series in-
put, blindly separating sources. For the “cocktail party problem” above,
we would plant microphones throughout the hall and collect each audio
signal as a time series. By identifying the statistically independent wave-
forms underlying the collection of recorded signals, it should be possible
to identify individual speakers and thus to examine separate conversa-
tions using these waveforms (assuming the conversations themselves are
statistically independent). In our experiments, we consider the EMG
electrodes as recording microphones, and premotor drives then repre-
sent the individual speakers. The net EMG motor patterns during behav-
ior would then correspond to the recorded hubbub of the party (a sum of
the independent conversations or summed premotor drives determining
motor pool activity).

We speculate that a smaller number of drives than individual muscle
EMGs account for most behavior. However, ICA always delivers as many
components as inputs. To test our hypothesis of modularity, we pre-
dicted that only a few ICA components would be able to account for
80 –90% of total EMG variance. Several noise sources (and not premotor
drives) could also contribute to the EMG signals of individual muscles
and form other components. Alternatively, if EMGs represented the best
components, then the analysis would derive the identity matrix as the
weights. Finally, if more components were present, each distributing
activity to several muscles, then ICA would find the 10 best such compo-
nents, perhaps of approximately similar variance contributions.

In practice, we found that high-frequency motor noise and motor unit
desynchronization can cause each raw EMG to act mostly independently
in terms of its local time series behavior. The ICA algorithm then iden-
tified each raw EMG channel as an independent component. This further
confirmed that records were free of cross talk among EMG channels.

After EMG signals from the experiment were rectified and filtered,
smoothing the independent high-frequency behavior of single motor
units, we were able to identify a small set of synchronous drives, account-
ing for substantial variance. However, excessive smoothing of data pre-
vented effective separation. For our analysis, we filtered the 2 kHz data
off-line using a 40-point tapered boxcar moving average root mean
square (RMS) filter. Filtered data were then down-sampled to 250 Hz and
saved to a CD-ROM for subsequent analysis. Our subsequent ICA results
were stable with filters ranging from 30 to 50 point moving averages. The
40-point filter and RMS operation passed �80% of signal power at 100
Hz, which dropped fairly uniformly to �5% power by 200 Hz. With filter
windows �30 points, we began to obtain the identity matrix (i.e., EMG
channels were “components”). With filter window sizes �50 points, the
first six components began to collapse into a smaller number and develop
negative values in the weight matrix. Ideally, premotor drive reflected in
EMG should be positive. Filtered data from multiple recording sessions
in the same frog were processed to remove periods of inactivity and
concatenated into a single large file. Each EMG channel was also normal-
ized to unit variance. As a result, estimates of variance reconstruction
were unbiased by pickup variations between muscles. Typical matrices
for analysis comprised 10 rows (corresponding to EMG channels) and
262,144 columns (corresponding to time). In each frog, such matrices
corresponded to �17 min of contiguous motor activity (the equivalent
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of �2000 wiping movements). This EMG data structure was used in ICA
[MATLAB implementation of the Bell–Sejnowski algorithm developed
by Scott Makeig (Makeig et al., 1997)]. ICA yielded (1) a matrix of
weights describing groupings of muscles comprising each synergy and
(2) a matrix containing the set of time series describing independent
component (IC) activations. Each IC activation corresponded to a single
common drive to several muscles. EMGs were formed from a weighted
sum of these drives, determined by the weight matrix.

ICA unmixes sources that were mixed in an entirely feedforward man-
ner. However, we believed that feedback (homonymous and heterony-
mous) operating in the frog limb and the interactions and nonlinearities
introduced by the motion of the physical limbs would not significantly
degrade the performance of the ICA algorithm. To confirm this, we tested
the ability of ICA to separate sources in a simulated two-link manipulator
controlled by several proportional derivative controllers with variable gain,
signal-dependent noise, and noisy feedback. We evaluated the robustness of
the ICA algorithm in the simulations and found it effective (see Appendix 2,
available at www.jneurosci.org; and Discussion).

Comparison of synergies and associated weight matrices among frogs. To
compare synergies, we adjusted the variance of component activation
time series to unity. Corresponding adjustments in the mixing matrix W
preserved the transformation into EMG. Thus, low-variance magnitude
and noisy independent components had low weights wij in the mixing
matrix W.

Synergies were represented as columns in W. The components in the
mixing matrix W were automatically sorted from the largest to smallest
projected variance by ICA. However, premotor drives will be distributed
in different proportions between different reflexive behaviors. Conse-
quently, the ordering of ICs and their drive synergies (i.e., weight matrix
column) in matrix W might vary significantly between animals, depend-
ing on the proportions of behaviors exhibited: a priori, repertoires of
behaviors of spinal and brainstem frogs differed.

We ensured that similar muscle synergies were contained in the similar
ordered weight matrix columns of different matrices, regardless of the
variance associated with each data set and each frog’s repertoire. For this
matrix sort, we chose two matrices at a time from a pool of 16 (8 spinal
EMG data and 8 brainstem EMG data). We compared the drive synergies
represented in these matrices using an inner product column similarity
measure. Every drive synergy (column) in the first matrix was correlated
with every drive synergy (column) in the second matrix. The drive syn-
ergies (columns) that correlated most strongly were identified as repre-
senting the “same synergy.” The next best pair of correlations was iden-
tified, and so on. We also computed the average correlation between all
pairs of matrices, averaging over all the synergies (columns) in a pair. We
identified an individual weight matrix from the set that had the largest
average correlations with all other matrices. This matrix, from a spinal
animal, formed a template for subsequent resorting of all synergies in

both spinal and brainstem matrices. This min-
imized the resorting of matrices needed. All
matrices were reorganized so that drive syner-
gies (columns) with the strongest correlations
with a specific drive synergy in the template
were aligned (note that this process involved
first transposing matrices). This process is rep-
resented schematically in Figure 1. The result-
ing aligned matrices were then compared in
detail.

Time-frequency analysis for characterization
of primitive dilation. The more complete reper-
toire of richer motor patterns in the brainstem
frogs might be achieved by altering (1) the com-
position or (2) the temporal properties (dila-
tion or contraction) of common drives, or (3)
both (Giszter et al., 2001; Giszter, 2001).

To identify the time structure of common
drives, we proceeded as follows. The drives
from ICA were pulsatile (Figs. 2, 3B), so we
characterized the time scale of information
through time-frequency analysis. This ap-
proach convolves a time– domain signal with

pulse-like waveforms (wavepackets) possessing different characteristic
time scales (and hence durations). The resultant transform is a series of
coefficients indicating the relative strength of each pulse or wavepacket
through particular moments in time and at particular time scales, or,
more loosely, burst durations.

We convolved the input time series (the IC data) with frequency-band
and time-limited windowed cosine packet functions as a kernel. Cosine
packets capture detail at a variety of different time scales because of their
construction from a dyadic filtering scheme. Cosine packet analysis
(CPA) generates an over-complete set of 2 N time and frequency localized
basis functions [termed in the relevant literature “time-frequency atoms”
(Strang and Nguyen, 1997)] (see Fig. 6 B1), where N is the length of the
time series. A subset of such atoms must be selected from the over-
complete set to reconstruct a signal using cosine packets. Many different
subsets of the packets can be used to perfectly reconstruct the original
waveform. The question then arises: Which packets should be selected
for reconstruction of a signal? The type and number of packets that
reconstruct the signal are chosen according to some optimization crite-
rion. The chosen set gives us significant information about the compo-
sition and time structure of the time series. If a dominant pulse, or burst
structure, exists in the common drive, then a single or small class of wave
packets will capture most of the signal variance. We used two different
methods for selecting a reconstruction packet set. The first was matching
pursuit (Mallat and Zhang, 1993). This identifies a small set of wavepack-
ets ordered by their contribution to the variance of the signal. It finds first
the highest variance packet and then the next, and so on, without regard
to the global outcome. Thus, it is called a local or a “greedy” algorithm.
The alternative method was the best-basis algorithm (Coifman and
Wickerhauser, 1992). An information-based algorithm constructs the
wavelet representation of signals. This finds the set of globally lowest
mutual information packets and uses these as the basis for signal recon-
struction. This is equivalent to the packet representation using fewest
packets for reconstruction. Thus, data from both a global information-
based algorithm and a more local or greedy variance-based algorithm
were compared. Generally, a small number of packet types captured most
of the variance of the waveform (see Fig. 6 C).

We examined how particular time scales in the packet analysis con-
tributed to the overall variance of the IC signal. We hypothesized a single
time scale would capture significant variance. To test this idea, we created
an approximate reconstruction of IC activations, using only the largest
variance wavepackets obtained from the full basis. We incrementally
added the highest variance packets until we reconstructed �80% of the
variance of the original signal. Two analyses were performed on these
packets: (1) a time– domain analysis of the time scale of packets as im-
pulses; and (2) a frequency domain analysis of their spectral properties
(peaks compared using F test statistics described by Bendat and Piersol,

Figure 1. The sort process for synergies. The matrix rows represent component contribution to one of the 10 muscles studied
(e.g., W11 for C1 contribution to E1). The matrix columns represent the components (C1..Cn) as synergies and their muscle
compositions. Columns in W (synergies) are sorted first by projected EMG variance. Additional sorting is required to bring syner-
gies into alignment. Matrices are first transposed. The sort then uses an inner product similarity measure between individual rows
of a candidate matrix and a template matrix to build a matrix of correlations of all possible row pairings. The sort then uses this
matrix to reorder the candidate matrix so the most similar rows occupy the same positions as the template matrix. The template
matrix possesses the highest mean correlation with all matrices from all frogs. Finally, the matrix is again transposed.
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2000). For the time– domain analysis, we exam-
ined the full width at half maximum (FWHM;
i.e., a measure of duration) to classify the time
scale of the selected packets/pulses. Packets
were sorted into a distribution of time-
frequency atoms at 20 characteristic time scales,
to examine the dominant time scale of packets
needed to reconstruct the EMG. In the power
spectra, we examined the amplitude of peaks
and steepness of the drop-off of the spectrum of
packets. Reconstruction packets with higher
amplitude and steeper drop-offs would indicate
that the time-frequency atoms used for recon-
struction possessed greater temporal consis-
tency (less frequency jitter), compared with
lower peaks and shallower spectral drop-offs.
Each analysis was performed on brainstem and
spinal frog data. The results of these several
analyses were compared using parametric tests
on the data to establish similarities and differ-
ences between the two conditions.

Results
We estimated premotor drives of spinal
and brainstem frogs using ICA. The reper-
toire of behaviors of spinal frogs comprises
primarily flexion withdrawal, crossed ex-
tensions, and wiping or scratching to body
surfaces other than the head (for review,
see Giszter, 1995). Wiping in the spinal
frog involves primarily proximal muscles
in targeting the hindlimb but both proxi-
mal and distal in wiping the back, ipsilat-
eral leg, or forelimb. The movements show
relatively simple adjustments. In contrast,
the brainstem frog makes complex adjust-
ments of these patterns and adds to the
repertoire of spinal behaviors. Additions
include locomotor crawling, jumps, com-
plex wiping adjustments, and directed
kicks. The additions in brainstem frogs
and their adjustments all include major contributions of proxi-
mal joints and therefore proximal muscles. We focused on re-
cordings of proximal muscles here (we had studied these exten-
sively in previous work): bigger muscles were easier to record
with confidence with less issue of cross talk, and these muscles
contributed in all behaviors examined, except, perhaps, ipsilat-
eral wipe of the calf.

We used ICA to extract independent premotor drives and
examined how these drives projected to muscle activity (i.e., the
component muscles) in both spinal and brainstem frogs. ICA
assumes linear mixing of drives. This is appropriate for premotor
drives insofar as motoneurons operate to an extent as linear sum-
ming junctions for EPSPs (but see Materials and Methods and
Discussion). To us, a larger concern was feedback effects in the
moving multijoint limb: the multijoint mechanical interactions
and mixing attributable to homonymous and heteronymous
feedback effects might present major problems. Accordingly, we
tested the separability of drives in a multijoint simulation (see
Appendix 2, available at www.jneurosci.org; and Materials and
Methods) and confirmed the feasibility of this approach.

The Bell–Sejnowski ICA algorithm is an information-based
neural network algorithm used for the blind separation of sources
in signals such as the EEG and the electro-oculogram (Bell and
Sejnowski, 1995; Jung et al., 2000). ICA delivers as many compo-

nents as EMG channels. If a small number of independent drives
underlie the EMG activity, we ought to be able to explain most of
the EMG variance using a smaller number of the independent
components than the full set obtained from ICA.

Application of ICA technique to characterize muscle balance
in premotor drives
Our EMG electrodes provided relatively restricted pickup in our
intramuscular EMG (for review, see Kargo and Giszter, 2000b).
Significant high-frequency signal-dependent information was
present in the original 2 kHz EMG raw data. This caused appli-
cation of ICA to the raw data to often yield a mixing weight
matrix W that was essentially the identity matrix (see Materials
and Methods). We expected that premotor drives represented the
relevant underlying physiological motor processes occurring at
lower frequencies. In all analyses here, raw data were rectified and
RMS filtered (Basmajian and DeLuca, 1985) with a 40-point
moving average (high-frequency cutoff �200 Hz). To maximize
data throughput to our algorithms, we then decimated the data to
250 Hz. After this filtering (see Materials and Methods), we found
that substantially fewer than 10 components could be projected
through the mixing matrix W to reconstruct most of the variance
in the original EMG.

We recorded EMGs during an average of four sessions per

Figure 2. A, Data processing stream. Ten-channel EMGs filtered by RMS 40-point moving average were down-sampled to 250
Hz, periods of inactivity were excised, and activity periods were concatenated. The resultant 10 � 262,144 matrix of EMG data
(�1000 sec of activity) was subject to ICA. The mixing matrix and 10 activation time courses were then analyzed. B, Top left, Raw
EMG. Top right, Sample raw EMG and filtered EMG on expanded ordinate and time scale. Bottom left, Rectified EMGs (E) after
filtering. Bottom right, These are a linear combination of IC activations (C). W is a 10 � 10 matrix, called the mixing matrix,
transforming components C into EMG E: E � WC. Some EMG traces outlined in gray at the left are similar. Much of this similarity
comes from the first ICA component in the activations on the right. Muscles are numbered left 1–5 and right 6 –10 from top to
bottom. Component 1 projects heavily to muscles 3, 6, 7, and 8 (shaded and outlined; left). The muscles are ordered: 1, rectus
anticus (RA); 2, rectus internus (RI); 3, adductor magnus (AD); 4, semimembranosus (SM); 5, gluteus (GL); 6, vastus internus (VI);
7, biceps femoris (illiofibularis) (BI); 8, sartorius (SA); 9, vastus externus (VE); 10, semitendinosus (ST).
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frog. Records of at least 1048 sec of continuous motor activity in
the EMG were used in every analysis. Before analysis, each indi-
vidual EMG trace was normalized to have unit variance. The
result of the analysis was a complete description of the data as a
10 � 262,144 activation matrix consisting of the derived activa-
tions of the ICs and a linear 10 � 10 “mixing” matrix (W). The IC

activation matrix represented a collection
of 10 time series (one per channel). Each
corresponded to one of the independent
drives (or sources) generating muscle ac-
tivity (Fig. 2). The 10-component activa-
tion vectors and the mixing matrix W de-
rived from ICA together completely
describe the EMG data, with an appropri-
ate combination of independent compo-
nents providing perfect reconstruction of
the original data. The independent com-
ponents had minimal mutual informa-
tion. Subsequent analysis focused on the
mixing matrices and the activation time
series of independent components, to ex-
amine muscle grouping and temporal
structure, respectively.

Analysis of component
variance contributions
The mixing matrix W from ICA represents
the balance of EMG activity in the putative
premotor drives (represented by ICs). We
examined the properties of the mixing ma-
trices from the entire population of frogs
in the study. Each row of the square W
mixing matrix contained weights describ-
ing the contribution of each different in-
dependent component to a single EMG
channel. In contrast, each weight matrix
column represents the synchronous syn-
ergy activated by the independent drive.
Thus, weight matrix columns represent
the relative weightings in the motor pools
of the drive synergies as reflected in the
recorded EMG.

Because each EMG record was previ-
ously normalized to unit variance and be-
cause ICA is unconcerned with simple
variance per se, the drives embodied in W
were potentially comparable from frog to
frog. We wanted to determine which drive
synergies (weight matrix columns) in ma-
trix W were most important and whether a
small number of such premotor drives
(columns in W) captured most of the vari-
ance of the EMG signals within a single
frog. For this, the individual and cumula-
tive contributions to variance of each
component or premotor drive were exam-
ined (Fig. 3). We considered a component
interesting if it captured �10% of the vari-
ance. Usually six components were each
�10% variance and cumulatively contrib-
uted 80% or more of the total variance of
the signal (Fig. 3A). It is likely that the re-
maining components were influenced by

contributions of different noise processes (see below). In some
frogs, the percentage of variance accounted for by the first six
components in the rectified and filtered EMG data were as high as
95% (sample-rectified EMG and reconstructed data are shown in
Fig. 3B), and only in one frog did it fall below 70%. Mean variance
accounted for by the first six components in spinal frogs was

Figure 3. Six independent components captured most variances in all frogs. A, Components were projected through the
mixing matrix for approximate reconstructions of EMG recordings. The top two bar graphs show cumulative variance (above) and
individual component variance (below) for the brainstem frog. Spinal frogs are shown in bottom two bar graphs. The first six
components capture �80% of the variance (horizontal line) in all frogs. If one muscle equals one component, each component
will contribute 10% of EMG variance. In all frogs, the variance accounted for by individual components drops below 10% (hori-
zontal line) for components 7–10. The variance was distributed more equally between the first two components in brainstem
animals, but this difference was not significant. B, Reconstruction of 1 sec and two bursts of 10-channel rectified and filtered EMG
activity (solid) using only one (dashed line) or the first six independent (dotted line) components for reconstruction. Only a few
components are capable of capturing nearly all the variance of this signal. In this recording segment, one component captures
�85% and six components capture �95% of the original 10-channel EMG variance. The muscles are ordered: 1, rectus anticus
(RA); 2, rectus internus (RI); 3, adductor magnus (AD); 4, semimembranosus (SM); 5, gluteus (GL); 6, vastus internus (VI); 7, biceps
femoris (illiofibularis) (BI); 8, sartorius (SA); 9, vastus externus (VE); 10, semitendinosus (ST).
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80.2% with a SD in the population of
7.8%. Mean variance accounted for by the
first six components in brainstem frogs
was 79.9% with a SD in the population of
6.7%. These data suggest that each inde-
pendent component represents a common
or premotor drive that is supplied to sev-
eral of the muscles from which we re-
corded EMG activity (Fig. 2B, EMG and
ICA activations). Each activation weight
(i.e., weight matrix column element) rep-
resented a drive effect on muscle and was
positive for the first six extracted drives,
consistent with a net excitatory drive to the
motor pools and a positive rectified EMG
output. Additional analysis focused specif-
ically on these six components that ac-
counted for �80% of the variance.

Identification of similar muscle
groupings in different ICA
We wanted to compare the muscle group-
ings represented in matching drive syner-
gies (weight matrix columns) of the mix-
ing matrix W across animals. However, we
knew a priori that repertoires of behaviors
of spinal and brainstem frogs differed. To
compare mixing matrices, we needed to
ensure that similar muscle synergies were
contained in the same weight matrix col-
umns of different matrices. To achieve
this, we sorted the matrices and compo-
nents as described in Materials and Meth-
ods. We aligned similar synergies in the
matrix. If matrices comprised six con-
served components and four noise process
components, then such sorting should
only occur within, not between, these two
different groups. This was usually true,
and most sorting tended to be confined
within the six largest components and
within the four smallest. In �70% of the
sorts, all components in the six largest
components before sorting remained
there after sorting. Figure 4C shows sorted
(transposed) matrices graphically.

We posed three questions in this data
analysis: (1) How similar are synergies among spinal frogs? (2)
Are similar synergies used in spinal and brainstem preparations
of the same frog? and (3) How similar are synergies among all
preparations of frog tested?

Correlation of spinal synergies among frogs
To test how similar the synergies were across animals, we calcu-
lated the average correlation between each drive synergy (weight
matrix column) of each frog’s matrix and each drive synergy
(weight matrix column) of the template matrix.

We calculated a “correlation with template” statistic within
the spinal frogs using the inner product. This analysis allowed us
to determine the consistency of EMG weightings that were ob-
served within synergies in different spinal frogs. All six drive syn-
ergies (weight matrix columns) in spinal frogs correlated very

strongly with the matching drive synergies of the template matrix
(Fig. 4A, Spinal). The across matrices correlations were large. The
averaged over-synergies correlation coefficient was 0.88. The cor-
relation coefficient r of the six largest components (from the first
six components that captured most variance) were all larger than
0.9. There was very little individual variation in the muscular
balances of premotor drives across spinal animals (i.e., spinal
animals use a common set of premotor drives). Cross-correlation
of the remaining four drives (weight matrix columns that were
putative noise processes) yielded correlation coefficients that
were all substantially �0.9, and the weights also showed marked
increases in variance. The increase in variance indicates to us that
these processes (weight matrix columns) were relatively indepen-
dent and unique from animal to animal. This strongly suggests
that random noise processes played a much more substantial part
in these components.

Figure 4. Consistent muscle synergies were identified in sets of eight brainstem and eight spinal frogs’ records by averaging
the resorted mixing matrices (see Fig. 3 for sort). A, Mean correlations and SDs for correlation coefficients between individual
synergies and the spinal template synergies are shown for all frogs. A steadily accelerating decline in the correlation between
synergies occurred. The six largest synergies (reconstructing �80% of the signal variance) correlated with template synergies
�0.9, with correlations falling off rapidly after the sixth component or synergy. Vertical bars represent SDs. B, To examine
similarity among frogs, the elements of the mixing matrices from brainstem, spinal, and combined analyses were plotted as triples
in a three-dimensional space. This distribution was analyzed with PCA to determine how close the points were to a unity line in this
space. The first principal component was used as the best fit line to the cloud of points (line a) and was compared with the
theoretical unity line (line b). The two lines are separated by only �3°. The fitted line was deviated slightly toward the “brain-
stem” axis. Similarly, brainstem weights tended to be larger than the corresponding spinal weights. Brainstem synergies focused
signal energy in smaller numbers of muscles than spinal synergies. C, Grayscale illustration of weights. Each row in the matrix
displayed represents a synergy. Two mixing matrices from two brainstem and two spinal frogs are shown. The grayscale patterns
show the relative balances are very similar among all four matrices. Below each pair of matrices are stacked all rows of component
1 data from every spinal or brainstem frog grayscale. The average weights of this single component are shown at the bottom of
each top and bottom section and are plotted as bar graphs. The muscle balance is similar between the spinal and brainstem
synergies. Muscles: RA, rectus anticus; RI, rectus internus; AD, adductor magnus; SM, semimembranosus; GL, gluteus; VI, vastus
internus; BI, biceps femoris (illiofibularis); SA, sartorius; VE, vastus externus; ST, semitendinosus.
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Correlation of brainstem and spinal synergies within frogs
To compare brainstem synergies and spinal synergies, where pos-
sible, we paired each brainstem EMG record with a spinal EMG
record of the same frog. In the remaining frogs, we made random
pairings among brainstem and spinal data sets. We then concat-
enated these paired brainstem and spinal records into single data

sets and performed an ICA analysis on
each of the concatenated records. We thus
obtained a set of ICA mixing matrices cap-
turing both spinal and brainstem patterns
concurrently. The mixing matrix weight
values that corresponded to the six highest
variance components extracted from this
analysis were selected. These were then
used to separately analyze and reconstruct
the constituent spinal and brainstem
records. Again, an average of �80% of
spinal-only EMG variance and brainstem-
only EMG variance was captured by the six
most significant synergies in the mixing
weight matrix derived from spinal– brain-
stem combined records. This indicates a
high degree of similarity between extracted
brainstem and spinal muscle patterns both
within and even between animals. Partic-
ularly remarkable to us were results of ran-
dom pairings between different animals in
which stationarity of EMG pickup be-
tween the recordings was almost certainly
violated in the combined analysis.

Combined brainstem and spinal synergy
extraction and comparisons
Despite the tests of variance capture pre-
sented in the preceding paragraph, it re-
mained possible that matrices might differ
widely between the spinal, the brainstem,
and the combined data analyses, although
all of the analyses were capable of captur-
ing significant variance

We repeated the correlation analysis
for brainstem frogs. The individual corre-
lations between synergies of each resorted
brainstem weight matrix and the spinal
template matrix synergies were averaged
over animals. The overall average correla-
tion of brainstem mixing matrices with the
spinal template, averaged over all synergies
and animals, was 0.92. The average corre-
lation was plotted as a function of compo-
nent number (Fig. 4A, Brainstem) and was
similar to spinal frogs: the first six syner-
gies (weight matrix columns) all possess
the strongest average correlations with the
drive synergies of the template matrix
(�0.9).

We next focused analysis only on the six
most consistent components. We averaged
synergies to obtain the mean strength of the
contribution of each synergy to the EMG of
each muscle (Fig. 4C). The similarity be-
tween the largest brainstem and spinal com-
ponents in both individual and average mix-

ing matrices can be seen in the gray scale representation of weights
and more clearly in the average bar graph presented for one synergy
in Figure 4C. These mean mixing matrix values were then used for an
analysis of individual weight significance (see below and Fig. 5).

We also correlated the synergies in the mean mixing matrices
of the spinal and brainstem data. We examined correlation be-

Figure 5. Spinal and brainstem synergies show similarity in the general component structure. A, Average weights of each of
the first six components plotted as bar graphs for brainstem frogs. A standard t test assigned significance to mean values of the i,jth
element of W (i.e., the synergy contribution to a muscle EMG differed significantly from the lower amplitude weights and noise
processes in components 7–10). Muscles making significant contributions to synergies by these criteria are denoted in A, with a
plus sign. It should be noted that this test is ad hoc. In B and C, only significant muscles by this criterion are shown (those with a plus
sign in A equal the filled color in B). B, Synergies significant in averaged brainstem mixing matrices (red; see plus sign in A) are
shown in dorsal and ventral views of the limbs in each panel. C, Significant spinal synergies identified from average spinal mixing
matrices. Significant muscles in each synergy are shaded in red (significant in brainstem) and green (significant only in spinal).
Synergies are more focused in brainstem synergy patterns. Note components 2, 4, and 6 (asterisks). A muscle in each that was
recruited in the brainstem frogs was not significant using the t test criterion in the spinal frog. Muscles: RA, rectus anticus; RI, rectus
internus; AD, adductor magnus; SM, semimembranosous; GL, gluteus; VI, vastus internus; VE, vastus externus; ST, semitendino-
sous; BI, biceps; SA, sartorius.

Hart and Giszter • Modular Premotor Drive Structure J. Neurosci., June 2, 2004 • 24(22):5269 –5282 • 5275



tween the top six matching synergy components. We found a
mean (across all synergies) correlation coefficient of 0.95, indi-
cating a very strong similarity between each of these six compo-
nents in brainstem and spinal frogs.

PCA analysis of weight matrix relationships
As a final confirmation of similarity of muscular composition
within corresponding drive synergies of brainstem and spinal
frogs, we compared the individual weights extracted by all three
different analyses for cases in which a brainstem frog underwent
an additional subsequent spinalization (i.e., we compared brain-
stem, spinal, and combined weights in such frogs). We plotted
the relationship among the values of the corresponding mixing
matrix elements (i.e., elements from the same rows and columns)
from each of the brainstem, spinal, and concatenated brainstem–
spinal ICAs. Each element triplet (brainstem, spinal, and com-
bined) represented the corresponding weights in each analysis.
These were plotted as points in a three-dimensional parameter
space (Fig. 4B). Most points appeared to fall along a straight line
very near to the unit straight line, although there were some
outliers. The unity line would be expected if the muscular com-
position of mixing weight values were nearly identical between all
three analyses and conditions. We obtained an unbiased best
straight line fit to the triplet matrix element data by using a prin-
cipal components analysis. The first principal component ex-
tracted from the data (which accounted for �60% of the simple
variance of the weights) yielded a line that deviated only 3° from
the identity line. The line was deviated toward the brainstem axis
from the theoretical unit line. This deviation, although small,
may be attributable to significant brainstem weight values tend-
ing to be slightly larger than weights from the corresponding
spinal-derived mixing matrices. This indicated an increased
amount of signal energy focused within a smaller number of
significant weights in brainstem animals’ components.

Differences between spinal and brainstem frogs in significant
muscle synergies
As we have noted, the first six components captured �80% of the
entire EMG signal variance, whereas the four smallest compo-
nents generally contributed �5–9% of the EMG variance sepa-
rately. As such, the weights associated with the smallest four more
“random” components provide a rational choice for an ad hoc
random test population (brainstem frogs: mean, 0.1; SD, 0.2;
spinal frogs: mean, 0.13; SD, 0.25). Nonetheless, we recognize
that such weights cannot truly be considered statistically inde-
pendent. We used these as a population against which to judge
the significance of the weights of the other drive synergies (i.e., to
judge which muscles had a significant representation in each of
the first six independent components).

We used the mean mixing matrix weights obtained from the
analyses in Figure 4C to evaluate the most significant muscle
groupings within the synergies. We tested whether mean mixing
matrix elements from the sorted six largest components (aver-
aged over animals) differed significantly from the random test
population of all of the mixing weights from the four smallest
components treated as a single population. We assessed this dif-
ference using a Student’s t test (� level, 0.05). Significant muscle
groupings by this (ad hoc) criterion were identified in brainstem
and spinal animals. These significant muscles are shown in brain-
stem frogs in Figure 5A. This allowed a more precise comparison
of the spinal and brainstem frog modularity. In 5, B and C, the
significant muscles in spinal and brainstem are indicated on car-
toons of the frog anatomy, indicating the anatomical locations

and agonist–antagonist relationships in coarse form. The signif-
icant muscles in the patterns of the synergies were similar be-
tween spinal and brainstem frogs (compare red-shaded muscles
in Fig. 5B,C). However, very clearly, spinal frog synergies gener-
ally were composed of a greater number of significant participat-
ing muscles (a superset) compared with brainstem frog synergies
(compare green-shaded muscles in Fig. 5B,C). Significant biar-
ticular groupings of hip and knee extensor muscles (Fig. 5A, syn-
ergies 1 and 2) were found, as well as significant groupings of
flexors (Fig. 5A, synergy 5).

The main similarity between brainstem and spinal synergies
was the presence of two or three dominant muscles in common in
each spinal and brainstem frog component synergy. Around
these were gathered a supporting cast of additional significant
muscles in spinal frogs. There were other significant differences
in some synergies (Fig. 5C, asterisks, synergies 2, 4, and 6). In
these, a muscle identified as significant in the brainstem synergy
was not significant in the spinal synergy. Thus, the differences
between the conditions and motor pattern formation were more
than simple focusing of activity in some cases. The brainstem
synergies always represented a more focused core of muscles.
Perhaps this was an effect of the presence of greater inhibitory
and modulatory descending influences in the spinal circuits, pre-
sumably as a result of the pontine and medullary mechanisms
preserved in these preparations. The expansion of the core after
spinalization usually involved more extensive co-contraction of
nominal antagonists in the synergy (compare Fig. 5, B1 vs C1,
with a knee extensors in added in spinal; and Fig. 5, B5 vs C5, with
a dorsal hip extending and elevating muscle added in spinal).

Time-frequency analysis
Previous studies in our laboratory have found that there is a
characteristic burst duration associated with the motor pattern
composition and the putative activation of premotor drives in
spinal frogs (Giszter and Kargo, 2000; Kargo and Giszter, 2000a;
Giszter, 2001). Some preliminary data had suggested to us that
this dominant timing structure might be altered in brainstem
frogs to enrich the behavioral repertoire. It was therefore logical
to conduct an analysis of time courses of the activations them-
selves. We examined the temporal structure of the extracted pre-
motor drives in both spinal and in brainstem frogs. We used the
IC activation time series data from the previous analysis and
subjected these activation time courses to a time-frequency anal-
ysis. Time-frequency analysis characterizes a signal in terms of its
similarity to a family of pulse-like waveforms that are localized in
time and frequency (i.e., have a characteristic time scale). If the
temporal structure of the extracted IC components changed in
less reduced preparations (for example, if brainstem frog ICs are
dilated or contracted temporally when compared with spinal frog
ICs), then the comparison of their time-frequency analyses
would be able to detect such a change.

We used a CPA (see Fig. 6 and Materials and Methods). We
used two main optimization methods for this wavepacket analy-
sis. The first algorithm, called matching pursuit (Mallat and
Zhang, 1993), selects packets based on the variance they contrib-
ute to the original analyzed signal. Packets are selected in order of
decreasing contributed variance until all signal variance is ex-
plained. The second algorithm, the best-basis technique (Coif-
man and Wickerhauser, 1992), uses an information-based crite-
rion. Best-basis selects a set of packets as a basis that globally
minimizes the mutual information among the set of cosine pack-
ets chosen. The results of these two sets of analyses were almost
identical and will be treated as such below. The close similarity of
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results from both a maximum variance algorithm and a global
minimum mutual information algorithm gives us confidence in
these results.

Extraction of time-frequency atoms or common
duration bursts
CPA delivers a collection of pulses or packets that fully recon-
struct the original signal (Fig. 6A,B). Our hypothesis was that a
small and relatively uniform subset of packets captured most
signal variance. To test this, we classified IC-derived cosine pack-
ets in the time domain by using their duration as a measure of
time scale. We used the FWHM of the central peak of each cosine
packet, which should correspond with a “burst duration.” We
selected enough time-frequency packets (or pulses) to account
for at least 80% of activation variance from the complete basis
(e.g., from a best-basis analysis). We tested the hypothesis that
premotor drives in spinal animals operate at a dominant time
scale, and this may differ from the time scale of premotor drives
in brainstem animals. The distribution of FWHM durations was
divided into 20 bins for analysis. We examined both spinal and
brainstem frogs and both the single largest independent compo-
nent and all of the six largest and most consistent independent
components from the previous section. This analysis demon-

strated that in spinal animals the greatest
number of packets and the greatest
amount of signal energy was concentrated
at a time scale (FWHM) of �275 msec
(Fig. 7B, bottom, Spinal: Components 1
and 1:6). Smaller amounts of signal energy
were present in small peaks at shorter time
scales (�100 and 50 msec). Figure 6C
shows a reconstruction achieved with only
a 275 msec pulse or “atom.” This simplic-
ity of structure in the time-frequency anal-
ysis of components was not reflected in the
individual EMG channels, which showed
more peaks. In particular, there was often a
strong 550 msec duration peak in EMG
channels, as well as the 275 msec peak. This
is shown in the histogram in Figure 7A.
This was presumably a result of bursts in
different components causing apparent
period doublings in time series of individ-
ual muscles.

When we examined brainstem frogs,
we were forced to abandon our original
speculation that packet durations in brain-
stem animals would be more variable.
Brainstem animals demonstrated an even
more consistent time scale distribution. In
the first component, the number of pack-
ets in the 275 msec band increased when
compared with the same band in spinal
animals. This was reflected in the peak
probabilities (Fig. 7B, compare brainstem
peak probability of 275 msec packets
0.0819 with spinal peak probability of 275
msec packets 0.0593; and see Fig. 8A). This
increase in packet frequency was also seen,
although less pronounced, when all of the
first six components were examined (Fig.
7B, Component 1:6, Brainstem and Spi-
nal). Packet amplitudes also differed sig-

nificantly (Kolmogorov–Smirnov test; p � 0.04). The mean am-
plitude of the 275 msec packets of component 1 in brainstem
frogs was 2.1 units, whereas in spinal frogs it was 4.0 units. Across
all six components, the mean amplitude of 275 msec packets in
brainstem frogs was 2.0 units, whereas in spinal frogs it was 3
units. Thus, the 275 msec packets of spinal animals were, on
average, 50 –100% larger than packets in brainstem frogs. Appar-
ently, the motor patterns of brainstem animals consisted of
greater numbers of lower amplitude 275 msec band packets, and
these frogs showed more temporal precision as they generated
richer motor patterns.

To assess the idea that relatively fixed duration or time scale
pulses captured the most significant features of the premotor
drive behavior in both spinal and brainstem frogs, we compared
reconstructions of IC activations using packets of only particular
durations clustered around the 275 msec peak duration.

We were able to achieve an average of �60% reconstruction of
total IC activations using only five categories of packet durations
(250 –300 msec) (Fig. 8A) in both spinal and brainstem frogs.
Note that this measure of �60% variance capture in total signal is
equivalent to capture of �85% of the variance alone of the six
largest components. Reconstruction of IC activations using only
the dominant 275 msec time scale sometimes captured the most

Figure 6. Time-frequency analysis of ICA-derived time series generates a compact representation of burst and timing infor-
mation in IC records. A, Synergy time series (see Figs. 1 and 2) underwent CPA. This built an approximation or a full reconstruction
formed of sums of packets. B, Analysis occurs on several time scales or pulse durations. CPA repeatedly applies a set of low-pass and
high-pass filters to the data. Each filter application is a node in a graph or tree (B1). In the time domain, the filter impulse response
is a tapered cosine wave. A waveform is filtered with a low-pass filter (�; left branch) and a high-pass filter (�; right branch). The
resultant filtered waveforms are then filtered again with other low-pass filters and high-pass filters, and so on. So, the output of
filter branch � would itself be filtered, giving two nodes in the next level with net convolution filters �� (left branch) and ��
(right branch). A complete CPA of a record of N points will yield a set of 2 N packets in a tree structure occupying a range of time
scales (i.e., similar to B1). Many subsets of these packets can be used to completely represent the original waveform. An example
of cosine-packet decomposition and reconstruction can be seen in B2, B3, and B4. B2 shows a pulse of stereotypical synergy
activity. B3 is the time-frequency representation. Each shaded cell in B3 represents the relative energy contributed to the signal by
a single-packet frequency (or duration). B4 shows a reconstruction of the signal in B2 using only two packets from the tree in B1.
This reconstruction captures most of the timing, scaling, and amplitude features of B2 and accounts for a substantial variance. C,
A sample cosine packet decomposition performed on several seconds of IC activations made from EMGs of a spinal frog. A single
type of time-frequency atom was selected with full-widths at half maximum in the range of 275 � 12 msec, corresponding to a
small subset of tree nodes in B1. These packets constructed an approximation to the original signal. In the example, the single time
scale reconstruction captured �50% of the original variance. Information on pulse time was well preserved, with four of five
pronounced pulses successfully reconstituted at the correct time of onset. Including adjacent time scales would capture the most
variance (see Fig. 7).
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significant features of the pattern, as illustrated by the sample
data in Figure 8B, in which a single packet type captured 67% of
the signal variance of this component overall. A duration of 275
msec alone, on average, contributed �27% of the original acti-

vation energy in all spinal frogs. The other packets needed for
60% reconstruction in most frogs were the adjacent durations
(250 msec, 300 msec, etc). Similarly, packets of 275 msec dura-
tion alone captured 30% of the variance, on average, for brain-
stem animals (Fig. 8A). The dominance of a single packet type
indicates the presence of a preferred time course for pulses in the
EMG, at �275 msec. Adjustments or variations of up to 50 msec
in onset or offset may be indicated by the need for all five packets
in most frogs.

Because brainstem frogs show richer behavior, we reasoned
perhaps they showed more frequency jitter or variations in their
packets. To compare frequency jitter inside the dominant packets
used for IC and EMG reconstructions, we calculated the average
frequency spectra of 275 msec packets used for spinal or brain-
stem EMG reconstructions. We applied a variant of the Fisher test
for the discrimination of spectra over particular frequency bands

Figure 7. Pulses at a single dominant time scale comprise synergy activations in all frogs. A,
EMGs and synergy activations computed from EMGs underwent CPA. Packets extracted were
categorized by their time scale (full width at half maximum). Full widths at half maximum were
subdivided into 25 equally spaced bins ranging from 1 to 600 msec duration. The packet prob-
abilities are shown for spinal EMG and spinal synergies. These differ mainly in a peak in EMG at
�550 msec (asterisk), which is much reduced in the synergies extracted by ICA. This difference
at the 550 msec time scale was also observed in brainstem frogs. B, The amplitude of cosine
packets were divided into 20 equally spaced bins ranging from 0 to 24 units (units arbitrary after
normalization procedures). From these distributions, the probability of packets of particular
time scales and amplitudes are plotted (mesh plot and false color temperature plot in each
panel). The variance contribution of packets (data not shown) were nearly identical in form to
the probability plots. Top, Brainstem frogs, synergy/component 1 (left) and synergies 1– 6
(right). Bottom, Spinal frogs, synergy/component 1 (left) and synergies 1– 6 (right). Packets
describing the synergy (IC) contributing the most variance (left) are dominated by a single time
scale of �275 msec in all frogs. The probability mesh plots show that brainstem frog ICs
comprise greater numbers of packets at the 275 msec time scale than spinal frog ICs. The peak
probability for component 1 in brainstem is at 275 msec and is 0.0819, whereas in spinal it is
0.0593. For all six components taken together (right), the brainstem peak is 0.0717 and in spinal
it is 0.0623. Peak variance is captured for component 1 at 275 msec and in brainstem is 0.0492
and in spinal is 0.0338. For all six components, in brainstem the peak is 0.0434 and in spinal the
peak is 0.0387.

Figure 8. EMG reconstruction with pulses near 275 msec. Most synergy energy was at a time
scale centered on 275 msec. Reconstruction for the six largest synergies was examined �275
msec. These synergies reconstructed �80% EMG variance (hence, 80% upper bound; dotted
line). A, The variance accounted for in each 25 msec bin was assessed, and the bins from 225 to
325 msec were plotted as stacked bar graphs. This plot shows most signal energy occupied a
time scale band of �275 msec in both spinal and brainstem frogs. Nearly half of the EMG signal
energy was reconstructed by the packets between 250 and 300 msec. Differences in percentage
reconstruction between spinal and brainstem populations were not significant over the bands
considered. In some animals (right bars in brainstem and spinal plots), the 275 msec packet
class alone captured �60% of the total EMG variance (�80% of synergy variance). B, An
example of a 275 � 12 msec packet category successfully capturing 67% of the original acti-
vation component variance. A single channel of IC activation was selected for reconstruction
using only packets with time scales falling inside the 275 msec range.
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(Bendat and Piersol, 2000). The peak frequency spectra of 275
msec duration packets for both spinal and brainstem frogs were
very similar, below 8 Hz (Fig. 9). However, the power spectra of
spinal-derived packets fall off less rapidly at a higher frequency
than do the power spectra from brainstem-derived packets. At
higher frequency between 8 and 14 Hz, the frequency spectra of
brainstem animals tended to contain significantly less energy
than spectra from spinal frogs (� level, 0.05). This result indicates
that the packets constituting premotor drives in brainstem ani-
mals possessed considerably less high-frequency jitter (i.e., more
temporal regularity) than the packets constituting premotor
drives in spinal animals.

In summary, we have identified a low-dimensional modular
representation of the motor patterns in spinal and brainstem
frogs centered on a few synergies and an associated burst struc-
ture. The richer behavior in the brainstem frog was achieved by
using larger numbers of smoother packets (with more precision
at the same average duration) and by a more focused set of pre-
motor drives.

Discussion
Brainstem frogs show richer behavior than spinalized frogs. We
found six common drives in both brainstem and spinal animals.
However, brainstem frogs had more focused muscle groups than
spinal equivalents. Both brainstem and spinal drives consisted of
pulsed or burst-like activations. The dominant duration of bursts
in all animals was �275 msec. The brainstem frogs’ drives con-
sisted of more such bursts, with smaller average amplitudes. Our
data describe how brainstem frogs generate richer motor patterns
from modular drives and relate these to force-field primitives and
unit burst generation.

Assumptions of analysis
ICA assumes linear cascade mixing for combining drives. Mo-
toneurons can be linear summing junctions (Henneman, 1990).
However, various nonlinear effects occur in motoneurons (e.g.,
persistent inward currents effects) (for review, see Prather et al.,

2001; Lee et al., 2003; Li and Bennett, 2003). Because metabo-
tropic glutaminergic mechanisms in lower vertebrates induce
motoneuron plateaus (Svirskis and Hounsgaard, 1998), even spi-
nalized frogs could exhibit similar nonlinearities. However, these
are unlikely to cause ICA to fail. More probable, these alter drive
gain, recruitment gain, frequency response, and derecruitment.
Summation of drives in EMG is still a reasonable approximation.
However, waveforms extracted by ICA will not linearly reflect
premotor synaptic drives.

For us, multijoint mechanical interactions and recursive feed-
back were of more concern. Preliminary work showed ICA could
separate drives in EMG (Giszter, 2001). Here, we used simula-
tions of a two-link limb driven by multiple inputs with feedback
control to test ICA with feedback (Appendix 2, available at www.
jneurosci.org) (Fig. 10) (Giszter and Hart, 2003). ICA success-
fully extracted drives in simulation. Variance capture in frog data
reconstructions here was comparable with the capture in
simulation.

Choice of information-based techniques
ICA for blind separation of sources offers advantages. Primarily,
magnitude of individual channel variance (from variations in
EMG pickup or gain) does not affect ICA qualitatively. ICA ex-
ploits higher-order statistics of signal information rather than
variance in an attempt to minimize mutual information. Before
filtering, ICA-based analysis of the raw data did not support a set
of common drives but rather identified each muscle and its hom-
onymous feedback as a unit. There may be several physiological
processes desynchronizing motor units on short time scales
(Maltenfort et al., 1998). We normalized EMG channel variance
to generate unbiased measures of variance reconstruction in sub-
sequent analyses, but this step was not essential. After filtering,
both the significant six synergies and their activation patterns
extracted by ICA here were uniformly positive. However, the
algorithm did not guarantee this (see data analysis of Kargo and
Nitz, 2003) and indeed other component weights were not. With
lower-pass filtering we also observed negative weights. Because
we could ignore pickup variations, with ICA we could directly
compare extracted drives among frogs and surgical conditions.
Other decomposition methods, such as principal components
analysis, would need more constraints and can be biased by
choice of signal gain or variance differences.

A difficulty in ICA is assigning significance to the extracted
weights. All current methods are ad hoc (Duann et al., 2002). We
used parametric statistics of the weights of the low amplitude
components (i.e., presumed noisy and higher variance) as a test
set against which to evaluate weights in the six “interesting”
components.

Other approaches and results
Investigators have used PCA and factor analyses to examine mod-
ularity in both EMGs (Flanders and Herman, 1992; Davis and
Vaughan, 1993; Olree and Vaughan, 1995; Poppele et al.,
2002a,b) and modularity in kinematic data (Soechting and Lac-
quaniti, 1989; Sanger, 2000; Santello et al., 2002). Several re-
searchers (Sepulveda et al., 1993; Saltiel et al., 2001; Ting et al.,
1998; Raasch and Zajac, 1999; Tresch et al., 1999; Valero-Cuevas
et al., 1998; Valero-Cuevas, 2000; d’Avella et al., 2003) have used
both experimental and statistical methods, including constrained
least squares fits to examine the degrees of freedom problem in
motor control. All these analyses support reduction of excess
degrees of freedom by motor mechanisms at segmental or other

Figure 9. Brainstem frog packets possess less high-frequency jitter than spinal packets. The
275 msec scale band containing the largest number of packets and largest proportion of IC
signal variance was analyzed in the spectral domain. Frequency spectra of these packets were
calculated and averaged. The averaged spectra are shown. Note that the dominant time scale of
brainstem and spinal packets is identical but their spectra diverge in the higher-frequency
components. Significant increases (at an � level of 0.05) in spinal spectra over brainstem spec-
tra occurred between frequencies of 8 and 14 Hz [for test, see Bendat and Piersol (2000) and
Materials and Methods]. The brainstem frogs’ spectra exhibit more rapid falloff of amplitude
with increasing frequency content, and perhaps tighter control over the timing of packet onset
and offset. Circuits present in brainstem animals but absent from spinal preparations may aid in
stabilization of bursts in premotor drives.
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levels from the total available to a core set
adequate to achieve the tasks examined.

We have presented evidence that six
components (i.e., premotor drives) can
explain most (�80%) of the EMG signal
variance in brainstem and spinal frogs.
Tresch et al. (1999) analyzed spinal flexion
motor patterns and found a few synergies.
Our study extended this in spinal and
brainstem frogs to include different cate-
gories of behavior (walking/crawling,
turning, righting, wipe/scratch, jumping,
and kicking). Data resemble the results of
Poppele and Lacquaniti (Poppele et al.,
2002b; Ivanenko et al., 2003) in human lo-
comotion. Four drive patterns captured
most of the variance in EMG signals from
human gait. A lower number of patterns
could be because (1) a single category of
motion was studied, and (2) their analysis
used time-varying waveforms as the basis
of analysis. ICA assumed linear mixing of
drives but made no use of time scale or any
prior assumptions about pattern. d’Avella
et al. (2003) analyzed drives in EMG of
intact frogs. Like Poppele, d’Avella exam-
ined “time-varying synergies.” The work
by d’Avella extracted “chunks” of repeat-
ing patterns. We believe the burst or pulse
activations in our study would form the
“letters” in the more complex “words” in
the work of d’Avella or Ivanenko.

Unit burst structures in the frog motor patterns
Our analysis was two stage: ICA, then analysis of component time
series based on wavelet approaches. Flanders (2002) also used
wavelets with aggregate EMG, and Lin and McKeown (2002)
examined single-unit EMG. Regular bursts were detected in the
drives here. Modularity similar to that observed here, comprising
common duration elements, has been reported to occur in pat-
tern generation (bursts) (Stein and Daniels-McQueen, 2002), in
kinematics (kinematic strokes and segmentation) (Burdet and
Milner, 1998; Doeringer and Hogan, 1998; Krebs et al., 1999),
and in kinetics (torque pulses) (Vicario and Ghez, 1980).

To enrich behavior, brainstem frogs might have changed
pulse/burst duration compared with spinal frogs. However, we
found a common 275 msec duration wavepacket dominated both
brainstem and spinal motor patterns. Compared with spinal
frogs, brainstem drives showed even more pulses of 275 msec
duration. The brainstem frogs’ pulses were smoother: the bursts
of brainstem frogs had spectra with significantly less high-
frequency (�10 Hz) content.

Relating modularity here to CPGs, force-field primitives, and
ontogeny of motor system
The bursts here relate to pattern generation. Grillner (Grillner,
1981; Grillner and Wallen, 1985) proposed unit CPGs associated
with limb degrees of freedom. Unitary oscillators at a single joint
or several different joints are fundamental features of locomotor
motor control. However, the specific degrees of freedom used in
pattern generation are under active investigation. Modular CPGs
are often studied in fictive preparations and control groupings
analyzed (Stein et al., 1998b; Stein and Daniels-McQueen, 2002).

Recent results from cat fictive locomotion (Hamm et al., 1999)
using coherence measures suggest motor commands are multi-
joint to flexors and extensors. Spinal cord pattern generation
supports modular bursting that drives single-joint or multijoint
muscle synergies. Our data also support multijoint burst
generators.

Our data relate to the idea of motor primitives (Appendix 1,
available at www.jneurosci.org). Bizzi et al. (1991), Giszter et al.
(1993), and Mussa-Ivaldi et al. (1994) developed this description.
Using isometric limb end point force, they constructed force-
field descriptions in unparalyzed animals. Fields captured inter-
action of muscle recruitment, muscle force generation, and limb
kinematics (Appendix 1, available at www.jneurosci.org). A mo-
tor repertoire could be organized from a few force-field primi-
tives (Mussa-Ivaldi, 1992; Mussa-Ivaldi and Giszter, 1992;
Mussa-Ivaldi and Bizzi, 2000). Small numbers of force-fields seen
in cord stimulation or reflexes, suggested modular force-field
primitives organized reflex behaviors. The 275 msec burst dura-
tions in data here match those observed during reflex trajectory
formation and adjustment (Kargo and Giszter, 2000a). In correc-
tion responses in the study by Kargo and Giszter (2000a), a spe-
cific synergy (coactivated hip and knee flexors: iliopsoas, gluteus,
iliofibularis, and sartorius) could be directly related to the kine-
matic correction and to an isometric force-field measurement
associated with correction. Our current data build on these ob-
servations, to suggest the biomechanical force-field descriptions
developed previously can be linked directly to unitary premotor
burst generators from pattern generation. In data here, such syn-
ergy bursts were extracted statistically from the motor pattern but
have features needed to support the properties of force-fields

Figure 10. ICA can extract independent drives in a simple two-link manipulator governed by two distinct control circuits. A, A
model planar, two-link manipulator was developed. Two separate controllers [each being 2 stacked proportional derivative (Pd)
controllers, one acting at each joint] competed to guide the limb to separate locations in its work space. The two stacked Pd
controllers experienced common, amplitude-dependent noise sources (varied 1 to 20%), while also subject to additive sensor
noise (varied 1 to 20%). Each stacked Pd controller pair was a multijoint drive and feedback (analogous to a postural or motion
synergy plus feedback). Corrective forces generated by each Pd controller at each joint were multiplied by gating drive pulse trains.
Pulse trains for each PD controller were random and statistically independent of one another. These output of the simulated
activating controllers to the motor apparatus. The summed corrective torques here can be equated with EMG activities contributed
to by several underlying premotor drives. B, ICA applied to torque records from the model. The time course of each activation can
be seen below the most similar Pd controller pulse train (top). The correlation of each extracted component and the most similar
pulse train was high, with r 2 values of 0.8 amd 0.83, respectively (bottom). The performance of ICA is dependent on the angular
distance between the limb positions each controller regulates. If the limb positions are much more than a quadrant apart the
performance will degrade. In the extreme limb positions �180° apart, under optimal noise conditions, we achieved r 2 values of
�0.6. Other limb configurations produced better separations, with r 2 values of �0.95. Sensitivity to limb configuration is
attributable to the intrinsic nonlinearity of the dynamics of the limb. ICA extracted good approximations of Pd drive activity over
a large fraction of the work space.
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described in our previous work (see Appendix 1, available at
www.jneurosci.org). In the studies by Kargo and Giszter (2000)
and Giszter and Kargo (2000), such bursts were recruited in a
controlled manner by cutaneous impact of the leg with obstacles,
or were spontaneously deleted from the pattern by the spinal cord
itself. In both cases, the specific synergy and burst could also be
associated directly with force-fields.

Burst-like motor patterns also occur during ontogeny of mo-
tor activity. Muscles organize into oscillating groups during de-
velopment. These groups elaborate more sophisticated phase
patterns as development proceeds (for review, see Vinay et al.,
2002). This activity may organize the neuromuscular junction,
patterns of feedback, and interneuronal organization. Models
have also been proposed in which developmental mechanisms
build primitives for both phasic and cyclic pattern generation
(Todorov and Ghahramani, 2003).

Unit bursts here could represent structural circuits of the
CPG, or these could be emergent patterns of the CPG. Alterna-
tively, they might be independent “downstream” elements re-
cruited by CPGs. Only more detailed understanding of spinal
circuitry can resolve these questions.

The basis of more complex movements
Our data address how richer motor repertoires are built from
simpler building blocks. Controls might alter the composition of
drives or alter durations of bursts in drives or the phases among
bursts (Giszter et al., 2001). Our data emphasize the first idea.
Brainstem drives used less muscles than spinal (Fig. 5), although
brainstem muscle groups were similar to spinal groups. There
was more co-contraction after spinalization. However, three spi-
nal synergies also dropped one muscle from this brainstem
“core” as well as adding others (i.e., there were muscles in the
brainstem frog’s synergies not found in corresponding spinal
synergies). Muscle groupings in spinalized frogs are not an irre-
ducible basis set for supraspinal control. Descending pathways
play a crucial role in organizing modularity of spinal circuits. The
interaction of brainstem and spinal circuits further sculpts syn-
ergies. Descending pathways modulate communication among
spinal segments and muscles, via primary afferent depolarization
(Fleshman et al., 1988; Eguibar et al., 1997) and properties of
motoneuron dendrites (Hounsgaard and Kiehn, 1993; Lee et al.,
2003). Loss of inhibition and modulation probably contributes to
the alteration of the spinalized frog synergies and to more antag-
onist co-contraction. This change slows limb movement and de-
creases efficiency of motor patterns, consistent with a reduced
repertoire.

Conclusions
Our data show spinal cord motor patterns can be considered
modular, comprising characteristic drives and bursts that have
minimal mutual information. These bursts are reused in multiple
behaviors. Brainstem mechanisms shape the bursts, improving
smoothness and reducing cocontraction. The bursts here relate to
force-field descriptions obtained previously and to unit burst
generators in pattern generation. Amplitude and timing control
of modular unit bursts driving six synergies can account for 80%
of motor pattern structure and an extensive repertoire. In sum-
mary, a simple modular motor organization of burst generators
and drives may explain most of the behavioral repertoire of the
frog.
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