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Rats can make extremely fine texture discriminations by “whisking” their vibrissa across the surface of an object. We have investigated
one hypothesis for the neuronal basis of texture representation by measuring how clusters of neurons in the barrel cortex of anesthetized
rats encode the kinetic features of sinusoidal whisker vibrations. Mutual information analyses of spike counts led to a number of findings.
Information about vibration kinetics became available as early as 6 msec after stimulus onset and reached a peak at �20 –30 msec.
Vibration speed, proportional to the product of vibration amplitude (A) and frequency ( f ), was the kinetic property most reliably
reported by cortical neurons. Indeed, by measuring information when the complete stimulus set was collapsed into feature-defined
groups, we found that neurons reduced the dimensionality of the stimulus from two features (A, f) to a single feature, the product Af.
Moreover, because different neurons encode stimuli in the same manner, information loss was negligible even when the activity of
separate neuronal clusters was pooled. This suggests a decoding scheme whereby target neurons could capture all available information
simply by summating the signals from separate barrel cortex neurons. These results indicate that neuronal population activity provides
sufficient information to allow nearly perfect discrimination of two vibrations, based on their deflection speeds, within a time scale
comparable with that of a single whisking motion across a surface.
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Introduction
Rats rely on their whisker sensory system to collect information
about the surrounding environment. Among the behaviors that
depend on the whisker sensory apparatus are object localization,
judgment of the size and shape of objects, and comparison of the
roughness or texture of surfaces (Guic-Robles et al., 1989; Brecht
et al., 1997). Texture discrimination is the focus of the present
work. In measuring the surface features of objects, humans and
rats have approximately equivalent capacities (Carvell and Si-
mons, 1990). In searching for neuronal codes, the leading candi-
dates are those features of neuronal activity that vary most reli-
ably with changes in the stimulus. Our working model is that as
the rat whisks across an irregular surface such as sandpaper (see
Fig. 1a), relative motion between the whisker and the surface
induces a vibration along the whisker shaft with distinct texture-
specific parameters (see Fig. 1b). The kinetic features of the vibra-
tion are encoded in neuronal activity (see Fig. 1c) that constitutes
the brain’s representation of the texture because the activity dis-
tinguishes the current stimulus from other candidates (see Fig.
1d). To test the model, the present experiments used sinusoidal

whisker movements as stimuli. Although the whisker shaft vibra-
tions induced by sweeping across surfaces are not sinusoidal, this
simplified form of whisker movement is defined by just two pa-
rameters, frequency ( f) and amplitude (A), and therefore allows
measurement of how kinetic features are encoded under con-
trolled conditions. A previous report suggested that neuronal
firing is related to vibration velocity (Arabzadeh et al., 2003). To
gain a quantitative understanding of how cortical neurons report
tactile events, here we address the following questions: Which
stimulus features are encoded by neuronal activity? How reliably
can these stimulus features be decoded from a single trial obser-
vation of neuronal activity? How rapidly? Do different neuronal
clusters across cortical columns respond differently and, if so, do
their differences convey salient information? We addressed these
issues by using an information theoretic approach (Shannon,
1948; Cover and Thomas, 1991) to analyze neuronal data. This
approach permits a rigorous and objective quantification of how
well target neurons integrating the activity in question could “de-
code” the stimulus (Rieke et al., 1997; Borst and Theunissen,
1999).

Materials and Methods
Electrophysiology. All experiments were conducted in accordance with
National Institutes of Health, international, and institutional standards
for the care and use of animals in research. A summary of methods is
given below; for a detailed description of surgery and data acquisition, see
Rousche et al. (1999) and Arabzadeh et al. (2003). Surgical anesthesia was
induced by urethane (1.5 gm/kg) in five adult male Wistar rats weighing
250 –350 gm. A 10 � 10 grid of 1.5-mm-long electrodes with 400 �m
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tip-to-tip spacing (Cyberkinetics, Salt Lake City, UT) was inserted into
the vibrissa region of the left somatosensory cortex, identified according
to vascular landmarks and stereotaxic coordinates (Hall and Lindholm,
1974; Chapin and Lin, 1984). The minimum and maximum depths of
electrode penetrations were 700 –1000 �m in all experiments. The wave-
forms emitted by a multiunit neural cluster of �3–5 neurons at each
channel (Rousche et al., 1999) were selected off-line using spike-sorting
programs (Cyberkinetics), and their time stamps were saved for addi-
tional analysis. Single-unit data are not presented here.

Whisker stimulation paradigm. Using thin, lightweight glass micropi-
pettes, we made a five-rung “ladder” and attached it to a piezoelectric
wafer (Morgan Matroc, Bedford, OH). We positioned the ladder on the
right side of the animal’s snout so that the five rungs lay just below the
20 –25 whiskers in the corresponding five rows of whiskers (A-E), each
whisker shaft resting lightly on the ladder �5 mm from the skin. Typi-
cally, the stimulus involved A1– 4, B1– 4, C1–5, D1–5, and E1–5. The
piezoelectric wafer was driven vertically by sinusoidal voltages of varying
amplitude and frequency. Each vibration began with an upward move-
ment starting from position 0, where the position in one cycle ranged
from �1/2 A to �1/2 A.

With a custom-built optic sensor, we monitored the displacement of
the whisker shaft to verify that whisker movement “followed” and
matched wafer movement across the full range of frequencies and ampli-
tudes (Arabzadeh et al., 2003). Sinusoid frequency and amplitude on
each trial assumed one of seven values (frequency � 19, 30, 50, 81, 131,
211, and 341 Hz; amplitude � 8, 12, 21, 33, 54, 87, and 140 �m). The
resulting 49 different frequency–amplitude combinations (see Fig. 2a)
were presented in pseudo-random order 100 –200 times per stimulus.
The vibration duration was 500 msec with a 1 sec interval between con-
secutive vibrations.

After delivery of the full stimulus set, all whiskers were cut 3 mm from
their base and stimulated individually by a piezoelectric wafer with 1 Hz
square pulses for 1 min. The resulting data were used off-line to deter-
mine for each electrode whether the neuronal cluster had a statistically
significant response to any single whisker and, for such clusters, to iden-
tify the principal whisker and to construct barrelfield maps. Neuronal
clusters that gave a statistically significant response and had a clear prin-
cipal whisker were selected for analysis of responses to vibration stimuli;
there were 24, 16, 37, 35, and 18 acceptable electrodes in experiments
1–5, respectively. Response onset latencies were in the range of 5– 8 msec,
signifying that recording sites were in a cortical layer receiving direct
thalamic input.

Information theoretic analysis of spike trains. To measure how stimulus
features are encoded by barrel cortex spike trains, we computed the
mutual information between sensory stimuli and neuronal responses.
Mutual information (Shannon, 1948) (denoted in the following simply
as “information”) quantifies how well an ideal observer can discriminate
between all members of the stimulus set based on the neuronal responses
of a single trial. We first computed the information I({ A, f};R), which can
be extracted from the neuronal responses about the two sinusoid param-
eters, amplitude ( A) and frequency ( f ):

I��A, f�;R	 � � �
r

P�r�A, f 	log2

P�r�A, f 	

P�r	 �
�A, f�

(1)

where P(r�A, f ) is the conditional probability of observing a neuronal
response r given presentation of a vibration defined by an amplitude–
frequency combination { A, f}, P(r) is the unconditional probability of
response r [the average of P(r�A,f ) across all stimuli], and 
. . . �{ A, f}

denotes an average across all stimuli weighted by the probability P( A, f )
of presenting an ( A, f ) whisker vibration stimulus. In these experiments,
all 49 frequency–amplitude combinations were equi-probable and thus
P( A, f ) � 1/49. The response of each channel was defined as the number
of spikes on one trial emitted in a fixed post-stimulus time window. We
thus investigate stimulus discriminability afforded by a “spike count”
code only. Additional information may be obtained from the precise
timing of spikes of barrel cortex neurons (Panzeri and Schultz, 2001;
Panzeri et al., 2001; Petersen et al., 2001).

To explore population coding, we analyzed the information carried by
(1) the neuronal clusters at single-electrode channels, (2) all recorded
neuronal clusters of the array, summated together, and (3) two neuronal
clusters at pairs of electrode channels. In the last case, we considered two
types of information: (1) the “labeled-line” information and (2) the
“pooled” information (Reich et al., 2001; Panzeri et al., 2003; Won and
Wolf, 2004). The labeled-line information assumes that the decoding
neuron can maintain the identity of the source, or the “label,” of each
incoming spike. It is thus computed from Equation 1 by defining the
response as r � (r1,r2), r1 and r2 being the number of spikes recorded at
channels 1 and 2, respectively, in the selected time window. The pooled
information assumes that the decoding neuron does not maintain the
identity of the source of each incoming spike, instead summing all spikes.
The pooled information is thus computed from Equation 1 by defining
the response as r � r1 � r2.

A principal goal was to find out which stimulus features are encoded.
Each vibration stimulus is fully defined by its joint values of A and f. Yet,
the observed neuronal responses might be determined by only a smaller
subset of stimulus parameters; for example, either by the features indi-
vidually (i.e., A alone or f alone) or by the relationships between features
(i.e., Af or A/f ). An important question is whether such a simplified
description reflects a “dimensionality reduction” performed by the ner-
vous system. To address this question, we used a “stimulus grouping”
approach, as outlined below (see also Fig. 4a– d). In this approach, stim-
uli are grouped into classes that correspond to one of the simplified
descriptions outlined above. When this is done, the number of unique
stimuli in the set is reduced. For frequency grouping, the 49 stimuli
defined by joint values of f and A are reduced to seven groups in which all
stimuli within a group have the identical value of f. Likewise, amplitude
grouping yields seven groups defined by identical values of A. Grouping by
identical values of the product Af or by A/f yields 13 groups. Information
I( g;R) available about the stimulus set grouped in one of these ways is:

I� g;R	 � � �
r

P�r�g	log2

P�r�g	

P�r	 �
g

(2)

Applying the information–theoretic “data processing inequality” (Cover
and Thomas, 1991), it follows that I( g;R) for any grouping rule must be
less than or equal to I({ A, f};R), the information about the full, un-
grouped data set. I({ A, f};R) can be equal to I( g;R) if, and only if, neurons
respond only to the stimulus feature that characterizes the grouped re-
sponses (Cover and Thomas, 1991). Thus, comparing I( g;R) with
I({ A, f};R) provides a novel and objective information–theoretic metric
to assess to what extent a smaller subset of stimulus parameters dictates
neuronal responses (for a different approach to this problem, see Adel-
man et al., 2003).

The stimulus–response probabilities in the above formula are not
known a priori and must be estimated empirically from a limited num-
ber, N, of experimental trials for each unique stimulus ( A, f ). In our data
set, N was 100 (one experiment), 150 (three experiments), and 200 (one
experiment). Limited sampling of response probabilities can lead to an
upward bias in the estimate of mutual information (Optican et al., 1991;
Panzeri and Treves, 1996; Golomb et al., 1997; Victor, 2000; Paninski,
2003). The bias magnitude depends on the number of trials per stimulus:
as N increases, the estimated probabilities become more accurate, and the
bias decreases. An approximate expression for the bias has been formu-
lated (Panzeri and Treves, 1996) and can be subtracted from direct in-
formation estimations (Eq. 1), provided that N is at least two to four
times greater than the number of different possible responses, R (Panzeri
and Treves, 1996; Pola et al., 2003). For single channels, the number of
possible responses is equal to nmax� 1, where nmax is the maximum
number of spikes observed across all trials at a single channel. In our data
set, this number was 
30 even for the longest time windows considered
(0 –500 msec after stimulus). Thus, all single-channel results were well
sampled and free from bias artifact. For pairs of channels (see Fig. 5), for
labeled-line information, the number of possible responses R was equal
to (nmax� 1) 2. We thus limited the post-stimulus window to 0 –20 so that
R remained of the order of 20 –30. The experiment that used only 100
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trials/stimulus was excluded. When computing the information ob-
tained from pooling the spikes from all channels (see Fig. 6), the number
of different responses R can be larger than the number of trials per
stimulus N. To obtain unbiased estimates in this case, we reduced the
dimensionality of the response space R by grouping the spike counts into
up to 40 classes before applying the bias subtraction procedure.

Results
Neuronal responses to sinusoidal whisker vibrations
Our hypothesis is that the encoding of whisker vibration features
is the basis for the neuronal representation of texture (Fig. 1).
This hypothesis is plausible only if the kinetic features of vibra-
tions are reliably encoded by neuronal activity. Therefore, the
present experiments measured cortical neuronal encoding of si-
nusoidal whisker movements. Sinusoidal movements are a sim-
plified form of the whisker vibration that might occur when the
whisker sweeps across a surface; if sinusoidal stimuli are not reli-
ably encoded, then the hypothesis outlined above must be dis-
carded. Moreover, a detailed understanding of which stimulus
parameters are encoded, and by what coding mechanisms, will

give us more specific predictions concerning the complex vibra-
tions associated with whisker movement across textures.

In five experiments in urethane-anesthetized rats, a 100-
microelectrode array was implanted in the middle layers (layers
III or IV) of the whisker representation of the somatosensory
cortex. The matrix of electrodes typically sampled �20 barrel
columns, and each electrode recorded the activity of a small clus-
ter of neurons. The whole grid of facial whiskers was moved
together by application of a sinusoidal deflection. To explore
cortical coding of the vibration, its frequency and amplitude on
each trial assumed one of seven values (frequency � 19, 30, 50,
81, 131, 211, and 341 Hz; amplitude � 8, 12, 21, 33, 54, 87, and
140 �m). The resulting 49 different frequency–amplitude com-
binations (Fig. 2a) were presented in pseudo-random order 100 –
200 times per stimulus.

Figure 2b shows the response of a neuronal cluster in barrel B2
(experiment 1) to the entire set of 49 stimuli, each point of the
grid associated with one frequency–amplitude combination. The
z-axis refers to the spike count averaged over the 500 msec stim-
ulus duration across 200 trials per stimulus; the color scale refers
to the same measure and is interpolated between data points. The
firing rate increased as either vibration amplitude (A) or fre-
quency ( f) increased. Averaged across a large number of trials,
then, the firing rate was monotonically related to these physical
features of the stimulus, suggesting that the neuronal activity
could support discriminability among different vibrations. How-
ever, because the sensory system under natural conditions can
make texture discriminations without averaging across a large
number of presentations (Carvell and Simons, 1990), the more
behaviorally relevant question concerns how reliably neuronal
activity reports the feature of interest on a single trial. The issue of
trial-by-trial variability is introduced in Figure 2c, in which re-
sponses to four stimuli are illustrated using the raster plots from
30 trials (selected randomly from 200 trials) and peristimulus
time histograms (PSTHs; all 200 trials). The four stimuli are the
ones denoted i–iv in Figure 2b. Although the PSTHs confirm that
stimuli with higher values of A and f, on average, evoked a greater
number of spikes, a significant amount of trial-by-trial variability
is evident in the raster plots. To better illustrate the spike count
variability, we have plotted the distribution of spike counts (0 –
500 msec) for all 200 trials as a histogram (Fig. 2d). The dotted
line shows mean spontaneous activity measured during the 500
msec prestimulus interval, and the arrows show the average
stimulus-evoked spike counts. Despite the monotonic increase in
average spike count as vibration amplitude and frequency in-
creased, there is considerable overlap between the four histo-
grams. What was the effect of this variability in trial-to-trial spike
count on stimulus representation? Below, we use mutual infor-
mation measures (Shannon, 1948) to consider how reliably an
ideal observer could identify the stimulus from a single-trial spike
count.

Time course of information transmission
We first investigated how well a single neuronal cluster encoded
vibration stimuli and over what time scale information was en-
coded. Figure 3a plots the mutual information (Eq. 1) about the
total set of 49 stimuli carried in the spike counts of a neuronal
cluster in barrel B2 (same cluster as in Fig. 2). Spike counts were
measured over time windows that began at stimulus onset and
ended at the time indicated on the x-axis. For example, the value
at 20 msec refers to the mutual information in the spike count
from 0 –20 msec. We refer to this as “cumulative” mutual infor-
mation. Cumulative information rose above 0, starting at 4 – 6

Figure 1. Schematic model for texture discrimination based on the proposal that the kinetic
“signature” of whisker vibrations is encoded by neurons. In this scheme, vibrations take the
simplest possible form, sinusoidal waveforms. See Introduction for details.
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msec, and it reached a peak at �20 –30
msec (see inset); most of the information
was transmitted within this cumulative
time window. There was a slight decrease
in cumulative mutual information as the
window reached 70 – 80 msec. The de-
crease resulted from the lower firing rate
occurring after the initial response, as seen
in the raster plots and PSTHs of Figure 2c.
A second, smaller wave of information was
transmitted between �100 and 150 msec.
Thereafter, no additional information was
present, suggesting that the spikes emitted
later than �150 msec were either (1) non-
stimulus evoked, reflecting only back-
ground activity, or (2) redundant (i.e.,
they did not add any extra information be-
yond that already provided by the early
spikes).

To resolve the above ambiguity and de-
termine how the late, “adapted,” part of
the neural response encoded stimuli, we
calculated mutual information based on
spike counts within a sliding window of 25
msec length instead of a cumulative time
window. We refer to this as “ongoing” in-
formation. Figure 3b gives the mutual infor-
mation between all 49 stimuli and spike
counts measured in the 25 msec window
preceding the x-axis value. Two peaks of on-
going information are evident, centered at
30 and 100 msec. Thereafter, the late re-
sponse (150–500 msec) was not as informative as the early response
but still carried a significant amount of ongoing information. Thus,
the early part of the response was more informative, but late spikes
were also stimulus related. This, combined with the cumulative in-
formation results, shows that late spikes carried information that was
fully redundant to that of the early spikes.

Finally, the amount of information divided by the average
number of spikes in each time window provides an estimate of
information per spike (Fig. 3c). From this plot, we note that the
earliest spikes were the most informative, yet spikes throughout
the entire response period carried information.

To study the generality of these observations across many
neuronal clusters, we calculated average values across all 130 neu-
ronal clusters recorded in five rats of the same measures shown in
Figure 3, a– c. The results are given in Figure 3, d–f. The error bars
show SEM. The findings made for the single-electrode cluster in
Figure 3, a– c, were reproducible for different neuronal clusters
and in different rats. In summary, the cumulative information
(Fig. 3d) saturated very rapidly (20 msec). The ongoing informa-
tion plot (Fig. 3e) indicates that activity in the later response
windows remained informative, albeit less than that in the early
response. The saturation in Figure 3d thus occurred because late
responses were redundant. The information per spike plot (Fig.
3f) shows that late activity was less informative not only because
there were few spikes but also because each spike tended to carry
less information (whereas early spikes conveyed as much as 1
bit/spike of information, the later ones conveyed �0.2 bit/spike).

Which vibration features are encoded?
To understand vibration encoding more deeply, we tested
whether cortical neurons perform a dimensionality reduction of

the stimulus space. Any sinusoidal stimulus is fully defined by its
joint values of A and f (Fig. 2a). Beyond characterizing neuronal
response to (A, f), we also measured whether responses are selec-
tive to some smaller subset, individual stimulus features (A alone
or f alone) or relationships between features (i.e., Af or A/f). We
can learn precisely which of all possible features dictates neuronal
activity by collapsing the complete stimulus set into groups de-
fined by a selected feature or by a relationship between features
(see Materials and Methods for details). Figure 4, a– d, shows the
full stimulus set grouped by f alone, A alone, Af, and A/f. This
amounts to neglecting the features not selected for; grouping by
vibration frequency, for example, ignores any possible effect of
vibration amplitude on neuronal output. For this reason, neuro-
nal information about a grouped stimulus set, I({g};R), must be
less than or equal to the information about the stimulus set de-
fined by both parameters, I({A, f};R). Comparing the values of
I({g};R) and I({A, f};R) quantifies how much of the total informa-
tion that neurons carried about A and f is indeed related to the
stimulus features described by the grouping g. Figure 4e plots
I({g};R), the cumulative spike count information about f, A, Af, or
A/f averaged over 130 neuronal clusters recorded in experiments
1–5. These are scaled against I({A, f};R), the “ungrouped” cumu-
lative information shown in Figure 3d. When the stimulus set was
reduced to seven frequency groups, neurons carried �40% as
much information as the maximum. The result was identical
when the stimulus set was reduced to seven amplitude groups.
The �50% loss of information means that neuronal response on
a single trial could not be accounted for by either feature alone as
well as it could by both features together. In contrast, when the
stimulus set was reduced to 13 groups defined by Af, there was
only a very small loss of neuronal information (within range of

Figure 2. Stimulus set and the characteristics of neuronal responses. a, The combination of seven frequencies (horizontal axis
of grid) and seven amplitudes (vertical axis of grid) yielded the stimulus set of 49 sinusoidal vibrations. The numbers given in each
element of the grid are the amplitude, frequency. b, Spike counts for each stimulus over the 0 –500 msec time window (vibration
onset, 0 msec) averaged over 200 trials for a neuronal cluster in barrel column D2, experiment 1. Because the frequency and
amplitude scales are logarithmic, points are spaced evenly along the frequency and amplitude axes. c, Raster plots and PSTHs for
the stimuli denoted i-iv in b. Dots in the top parts show spike times across 30 trials; the 200-trial PSTH (bin size, 5 msec) is aligned
below the raster plot. Stimulus presentation is from 0 to 500 msec. d, Distribution of spike counts (0 –500 msec) across 200 stimuli
for the same four stimuli. The dotted line shows the average spontaneous activity (7 spikes/500 msec) for this neuronal cluster,
and the arrows mark the average spike counts for each stimulus. Note how widely the trial-by-trial spike counts varied around the
mean.
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error bars). This demonstrates that all the information that the
neurons transmit about A and f was indeed about their product
Af and that neuronal response on a single trial could be accounted
for simply by the product Af as well as it could by both features
together.

It is interesting to consider the effect of stimulus grouping on
the efficiency of information transmission, the quantity of infor-
mation neurons reported divided by the maximum information
available in the stimulus set. The upper bound of information
that could be transmitted by the neuronal responses is defined by
the stimulus set entropy (Cover and Thomas, 1991); for equi-
probable stimuli, this is the base 2 logarithm of the number of
different stimuli. Reducing the stimulus set from 49 unique stim-
uli to 13 Af-grouped stimuli decreased its entropy from 5.6 to 3.7
bits. Because compression of the stimuli into the Af groups did
not reduce the amount of information present in neuronal spike
counts, the efficiency of information transmission was much
higher when stimuli were considered according to Af. Thus, an-
other way to interpret the results is that barrel cortex neurons
were �50% more efficient in transmitting Af information than in
transmitting (A, f) information.

It is interesting to note that the sum of f-grouped information
and A-grouped information was �20% less than the information
about (A, f). Thus, neurons did not encode A and f indepen-
dently. If not encoded separately, A and f must have been encoded
jointly, and the results obtained above show that this joint feature
was the value of the product of Af. Af corresponds to a physical
feature of the stimulus: it is proportional to the average speed of
the sinusoidal vibration.

We also grouped the stimuli according to the feature A/f,
which unlike f, A, and Af does not represent any physical quantity
of the vibration. This grouping was chosen as a control for its
similarity to Af grouping in terms of the two elemental features
combined, the number of groups (13) and the number of unique
stimuli within each group. We also refer to this as “orthogonal”
grouping because in the stimulus grid, the diagonal bands group-
ing stimuli by A/f are orthogonal to the diagonal bands grouping
stimuli by Af (Fig. 4d). Orthogonal grouping caused the loss of
almost all information.

Closer examination of Figure 2b provides an explanation for
these findings. This typical neuronal cluster was informative
about f and A because its firing rate increased monotonically as
either parameter increased. However, within a single frequency
group, spike counts could vary widely as vibrations of different
amplitude were collapsed together (the same observation holds
for each amplitude group). The effect of collapsing dissimilar
responses into a single group was to reduce information trans-
mission. In contrast, collapsing stimuli into Af groups did not
increase response variability because similar firing rates were
evoked for different vibrations, so long as the product Af was
constant. Thus, both the qualitative examination of the neuronal
responses and the quantitative information theoretic analysis
converge to the conclusion that vibration speed was the primary
variable encoded by firing rate, whereas either frequency or
amplitude alone were encoded in the neuronal responses in an
indirect way, as a reflection of the encoding of Af.

The next analysis was aimed at detecting possible differences
in coding properties between neuronal clusters. Does every neu-
ronal cluster encode vibration speed? Are some clusters more
efficient in encoding frequency than amplitude, others more ef-
ficient in amplitude than frequency? Figure 4f shows the effect of
stimulus grouping on mutual information for each of 130 neu-
ronal clusters recorded in five experiments. For each point, the
x-value gives the information carried by the neuronal cluster
about the full stimulus set, and the y-value gives the information
about a grouped stimulus set. Thus, the distance below the diag-
onal line indicates the loss of information caused by grouping
according to the selected feature. For every neuronal cluster,
grouping the stimuli by Af (black points) caused only a minimal
loss of information. Grouping the stimuli by f (red points) or by
A (blue points) caused losses in information ranging from �30 to
70%. Orthogonal grouping of the stimuli by A/f caused huge
losses in information. From this, we conclude that all neuronal
clusters encoded vibration speed (Af), and none were selectively
“tuned” to either frequency or amplitude alone.

Decoding the responses of multiple barrel cortex neurons
We now turn to the question of how the response of a barrel
cortex neuronal population could be most efficiently decoded, or
“read off,” by the target neurons. Decoding must occur for the
successful transmission of information from one group of neu-
rons to a second group. To conserve all sensory information dur-
ing synaptic transmission, the target neuron must conserve the
label of the spikes arriving from multiple input neurons at differ-
ent sites on its dendritic tree (Fig. 5a, left). Given the biophysical
difficulty in integrating each spike separately, a simple alternative
to spike labeling has been proposed: spike pooling (Darian-Smith
et al., 1973; Shadlen et al., 1996; Panzeri et al., 2003; Won and
Wolf, 2004). In this scheme, target neurons simply sum up the
activity of the afferent population (Fig. 5a, right). If the neurons
in a population are tuned to similar features, and if their trial-to-

Figure 3. Time course of information of �49 stimuli carried by a single neuronal cluster
(left)andbyallclusters(right).a,Cumulativeinformation:spikecountsmeasuredfromstimulusonset
until the time indicated on the x-axis. b, Ongoing information: spike counts measured in the 25 msec
time window preceding the time indicated on the x-axis. c, Information per spike, calculated by divid-
ing ongoing information ( b) by the average number of spikes in each time window. d–f, The same
plots in a– c averaged over all 130 neuronal clusters recorded in experiments 1–5. In all plots, the inset
is a magnified view of the earliest part of the curve (0 –100 msec).
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trial variability (“noise”) is only weakly
correlated, then pooling of their activity
can average away part of the response vari-
ability of individual channels and thus lead
to a population signal that is more reliable
on a single trial than that carried by the
most informative individual neurons
(Darian-Smith et al., 1973; Zohary et al.,
1994). However, pooling causes large
amounts of information loss if the
summed neurons are tuned to different
stimulus features. Because all sampled bar-
rel cortex neurons seem to be tuned to the
same stimulus features (Fig. 4f), we would
predict that the activity of neuronal clus-
ters could be pooled without information
loss. We tested the prediction directly by
comparing information carried by pairs of
neuronal clusters (1) when their spikes are
labeled according to which neuronal clus-
ter emitted them, and (2) when their
spikes are pooled, disregarding the source
of the spikes. We then asked whether the
relative positions of the clusters affects
their pooled information.

For each pair of neurons, three cumu-
lative mutual information curves about
the 49-stimulus set were derived: (1) labeled,
(2) pooled, and (3) maximum; this last refers
to the maximum information carried by one
of the two clusters at each time point. The
average of the curves across all possible pairs
of neuronal clusters is given in Figure 5b.
Comparing the labeled curve to the maxi-
mum curve, we observe that, beginning at 10
msec, the second neuron added �20–25%
more information. When the activity of the
two neurons was pooled, there was a loss of
only �7% of the information present in the
labeled activity (the upper limit for the pair
of neuron clusters).

How does the relative location of the
two neuronal clusters affect the outcome
of pooling? Figure 5c plots the comparison
between pooled and labeled information
for different barrel locations. Neuronal re-
sponse was defined as the spike count in a
20 msec post-stimulus time window. As in
the preceding plot, there was approximately a 7% difference be-
tween the labeled and pooled information in the average of all
pairs. When the neuron pair was recorded at two different elec-
trodes in the same barrel, there was no significant difference be-
tween the information carried by pooled and labeled spikes. For
neuronal clusters in non-neighboring barrels, spike pooling
caused only a small loss in information.

In summary, the two analyses illustrated in Figure 5 indicate
that a target population would gain additional information about
vibration parameters from integrating the spikes of multiple neu-
ronal clusters and would capture nearly all the available informa-
tion without the need to label the incoming spikes according to
the source neurons. If there are differences in the stimulus tuning
of neurons in distant barrels, such differences do not seem to
carry significant amounts of information.

Information carried about pairs of stimuli
In analysis up to this point, we have quantified the mutual infor-
mation between neuronal activity and the total set of stimuli, in
which the stimuli were either considered separately or grouped
according to a selected feature. In contrast, behavioral tasks often
do not require the discrimination among large numbers of stim-
uli but between just two possible stimuli (i.e., forced choice par-
adigm). To measure how reliably barrel cortex activity could sup-
port discrimination between pairs of stimuli, neuronal responses
in experiment 3 were defined as the 0 –500 msec spike counts
pooled from all electrodes. Figure 6a illustrates randomly selected
single-trial responses to compare the whole-array output for
stimulus pairs (i), (ii), and (iii). How reliably could a “decoder”
of barrel cortex output identify each stimulus in the pair? To
answer this, we measured mutual information between the

Figure 4. Stimulus grouping rules and their effect on information transmission. a– d, Four different stimulus grouping rules. a,
Stimuli grouped into seven vertical iso-frequency bands. For the information analysis, all vibrations possessing the same fre-
quency value were considered to be the same stimulus. The defining value is given within the band. b, Stimuli grouped into seven
horizontal iso-amplitude bands. c, Stimuli grouped into 13 diagonal iso-speed bands. Within each band, the value of the product
Af is given. d, Stimuli grouped into 13 diagonal A/f bands; orthogonal grouping. e, Cumulative information about the stimulus set
grouped according to the features f, A, Af, and A/f plotted against the upper limit, the information about the entire set of 49 stimuli
(no grouping). The data with no grouping are carried over from Figure 3d. Each curve represents the average from 130 neuronal
clusters recorded in experiments 1–5. Error bars are the SEs of the mean across clusters. f, The effect of stimulus grouping on each
neuronal cluster. For each neuronal cluster, the quantity of information transmitted was taken to be the maximum value of
cumulative information curve. The x-axis denotes the information carried about the full stimulus set, and the y-axis denotes the
information for the same neuronal cluster when stimuli were grouped according to a selected rule.
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whole-array spike count and each possible pair of stimuli, with a
possible range from 0 bits (random discriminability) to 1 bit
(errorless discriminability).

Each stimulus pair was classified according to the number of
groups that separated them along the frequency dimension and
the amplitude dimension (Fig. 4a,b). Stimulus pairs correspond-
ing to the top left to bottom right diagonal in Figure 6b belonged
to the same Af group, the frequency difference and amplitude
difference being of equal magnitude but opposite sign; such stim-
ulus pairs were indistinguishable by spike output (0 bits of infor-
mation). Each step from this diagonal represents an increase in
the Af difference between the members of the pair by one addi-
tional Af group. Stimulus pairs just three steps apart in A and f
could be discriminated nearly perfectly. For example, for stimu-

Figure 5. Information available based on labeled-line versus pooled decoding models. a,
Schematic representation of the two decoding models. Two neurons (light and dark gray pyra-
mids) emit spike trains. The target neurons may integrate each spike separately and conserve
the label of the source neuron (left) or may pool the incoming spikes without conserving the
label (right). b, Cumulative information curves averaged over all pairs (n � 276) of neuronal
clusters in experiment 1. Error bars are SEM mutual information across pairs. c, Effect of relative
positions of the same 276 pairs of neuronal clusters on their pooled and labeled-line informa-
tion. Neuronal response is defined as spike counts in 0 –20 msec after stimulus onset.

Figure 6. Discriminability between pairs of stimuli. a, Three pairs of sinusoidal vibrations
and associated single-trial neuronal responses. Each response is the result of pooling the activity
across all 37 electrodes in experiment 3. Illustrated responses were selected randomly from the
150 trials for each stimulus. b, Information carried about pairs of stimuli. To make the graph, all
stimulus pairs were classified according to f1-f2 and A1-A2, in which the frequency and ampli-
tude distances refer to steps along the selected dimension (see Fig. 4a,b). The color of each
element in the graph gives the average information about all stimulus pairs with the indicated
values of f1-f2 and A1-A2. Information is measured from the whole-array pooled spike count in
the interval 0 –25 msec after stimulus onset.
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lus pair (ii) in Figure 6a, the top vibration was defined as f � 341
Hz, A � 140 �m, and the bottom vibration as f � 81 Hz, A � 33
�m, such that the f difference and the A difference were both 3.
The whole-array spike count carried 0.85 bits of information
about all stimulus pairs with this f and A difference, as indicated
by (ii) in Figure 6b. These observations confirm vibration speed,
Af, as the stimulus feature that is most directly encoded by neu-
ronal output and show that a target population decoding barrel
cortex activity on a single trial could reliably classify vibrations
according to their speed.

Discussion
In previous work, we measured the firing rate of barrel cortex
neurons, averaged over hundreds of presentations of sinusoidal
whisker vibrations. The results led us to propose that neurons
encode the kinetic features of the vibration and that the firing rate
is a candidate coding mechanism (Arabzadeh et al., 2003). Sen-
sory systems, however, must support behavioral decisions by rep-
resenting external events sampled for only short periods. Using
the whisker system, rats can select surface textures after a small
number of whisks (Guic-Robles et al., 1989; Carvell and Simons,
1990). Therefore, to support the hypothesis that encoding of vi-
bration kinetics is the neuronal basis of texture discrimination,
we examined how reliably neuronal activity reports vibration fea-
tures on a single trial. Mutual information measures provide an
upper bound to the coding efficiency of neurons, quantifying
how reliably an ideal observer of firing rate could identify the
stimulus on a single trial. Here, using information theory meth-
ods, we were able to quantitatively address some of the critical
issues regarding this coding scheme.

Which stimulus features are encoded by neuronal activity?
To gain a more precise understanding of which are the most
efficiently coded vibration parameters, we collapsed the complete
49-member stimulus set into groups defined by a selected feature
or by a relationship between features. Information loss will be
minimal if the stimuli within a group produce very similar re-
sponse profiles; in that case, “mixing” stimuli across the selected
group causes no greater trial-to-trial response variability than do
repetitions of one single stimulus. For all the neuronal clusters in
our data set, stimulus grouping by A and f produced approxi-
mately a 30 –70% information loss, but grouping by Af produced
only a negligible loss. Stimuli with varying frequency and ampli-
tude could thus be combined into a single group without causing
any additional variability in neuronal responses, provided that
the members of the stimulus group all have the same mean speed.

Note that all the conclusions drawn here apply to the encoding
of the quantity (Af)n, where n can have any positive value. The
quantity (Af)2 is proportional to the kinetic energy of the stimu-
lus. We have interpreted the results in terms of Af, proportional
to mean vibration speed, consistent with descriptions of the cod-
ing of velocity (for ramp and hold stimuli) by primary afferent
neurons (Shoykhet et al., 2000).

The amount of information carried by neurons on a single
trial might seem low compared with the entropy of the stimulus
set (5.6 bits for 49 stimuli). Another way to judge neuronal cod-
ing efficiency is to consider how discriminations would be made
between just two stimuli at a time. Behavioral tasks in laboratory
settings usually require animals to select between two stimuli.
Viewed in this way, efficiency rises dramatically because the bar-
rel cortex spike count could support perfect discriminations be-
tween two stimuli that differed by a few steps in vibration speed.

How rapidly are stimuli discriminable in neuronal activity?
The early period of neuronal response carries the bulk of the
vibration information. Information carried by the cumulative
firing rate becomes available as early as 4 – 6 msec after stimulus
onset and peaks �30 msec after stimulus onset. Ongoing infor-
mation, that present in a sliding 25 msec window, peaks �30 – 40
msec after stimulus onset. We speculate that, in freely moving
rats, textures are converted to whisker vibrations by whisker mo-
tion across the surface during whisker protraction (forward
movement). If a rat whisks at 10 Hz (Harvey et al., 2001), the
protraction phase of each whisk cycle will last �50 msec; contact
with an object will be maintained for some tens of milliseconds in
each whisking cycle (Sachdev et al., 2001). Our data indicate that
essentially all the information about surface features induced will
be present in cortical neurons on the time scale of a single forward
whisk. The findings thus agree with a series of investigations of
tactile, visual, and auditory sensory cortex that emphasize the fact
that the earliest cortical responses can carry large quantities of
stimulus information (Optican and Richmond, 1987; Tovee et
al., 1993; Victor and Purpura, 1996; Buracas et al., 1998; Rolls et
al., 1999; Mickey et al., 2003).

Comparison to coding of stimulus location
Previous work (Petersen and Diamond, 2000; Panzeri et al., 2001;
Petersen et al., 2002) has explored characteristics of cortical pop-
ulation coding of stimulus location, encoding on a single trial,
which of a set of possible whiskers was deflected. Here, we find
that several of the coding principles generalize to whisker vibra-
tion coding. First, the temporal profile of information is similar
both for the simple task of detecting which whisker was stimu-
lated and the more complicated task of distinguishing vibrations;
in both cases, most of the information in the spike count becomes
available as early as 6 msec and rises until 20 –30 msec. Second, in
both cases, spike counts play a significant role in the coding of
stimulus features (the present work has not explored whether
additional information is carried by precise spike timing or spike
correlations). One important comparison between coding of the
identity of the stimulated whisker and the coding of vibration
involves the information carried by the columnar identity of the
cortical neurons, as estimated by the effect of pooling the spikes
of separate neurons or neuron clusters (Panzeri et al., 2003). For
both types of stimulus, pooling of the spike output of neurons
from the same column has only a negligible effect on the infor-
mation available to an ideal decoder. The difference emerges in
the pooling of the spikes from neurons of different columns. In
the case of whisker identity, such pooling leads to the loss of
25–55% of the information carried when the spikes are labeled
according to the columnar location. In the case of vibration,
pooling of different-column spikes leads to the loss of just 7% of
the total labeled spike information. Increasing the distance be-
tween columns does not affect the amount of information lost.
Whisker identity, then, is represented in a topographic frame-
work, whereby which neuron is active and which is not carries
considerable information. Vibration is represented, in our data
set, in a non-topographic framework, whereby differences in the
activity of different columns are not informative.

Conclusions
In primates, there are two main viewpoints concerning the neu-
ronal mechanisms for tactile texture discrimination. One view
holds that spatial signals are, by themselves, sufficient to encode
most sorts of textures, including grades of roughness, because
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type I slowly adapting (SAI) skin receptors contain an isomorphic
representation of the surface in their discharge patterns (Connor
et al., 1990; Connor and Johnson, 1992; Hsiao et al., 1993; Blake
et al., 1997; Yoshioka et al., 2001). A second view emphasizes the
contribution of temporal signals, based on evidence that some
texture tasks in humans can be solved even in the absence of
spatial cues (Gamzu and Ahissar, 2001), presumably because of
vibration-sensitive rapidly adapting receptors. Likewise, two
viewpoints are emerging with regard to tactile texture discrimi-
nation in rodents. Recently, it has been argued that textures may
be represented by a spatial code. Whisker length varies systemat-
ically across different arcs on the rat’s snout (Brecht et al., 1997);
as a consequence, the longer caudal ones resonate at lower fre-
quencies than the shorter rostral ones (Neimark et al., 2003).
During whisking, there could be texture-specific differences in
the strength of activation of rostral or caudal whiskers. In con-
trast, our current work emphasizes the temporal signals that
might be available in texture-induced vibrations, what we refer to
as the coding of the kinetic signature of the vibration. Thus, our
working hypothesis for texture representation in the rodent whis-
ker system is closer to the primate model that focuses on tempo-
ral signals.

In summary, we used sinusoidal vibrations of the whisker
shaft as simplified test stimuli, on the assumption that such stim-
uli contain the elemental kinetic features of which the more com-
plex vibrations induced by textured surfaces are composed. We
determined that the product Af (proportional to mean vibration
speed) is the vibration parameter most reliably represented by
barrel cortex neurons. A spike count code for vibration speed,
which could be quickly and robustly decoded from the output of
large barrel cortex populations, might act as a basic element for
the discrimination of irregular surface textures. Much additional
work remains to confirm vibration speed as a critical encoded
feature under more natural conditions. First, sensory coding
must be examined while the rat is actively whisking rather than
passively receiving stimuli. A recent report pointed out that re-
sponses differ in several fundamental ways when the sensory sys-
tem functions in the active versus passive modes (Szwed et al.,
2003). Second, neuronal responses must be measured when the
sensory system faces natural surface-induced vibrations rather
than regular sinusoidal vibrations. Third, the perceptual signifi-
cance of velocity coding should be evaluated. In its strictest form,
velocity coding implies that all sinusoidal vibrations with equal
mean speed would be perceptually indistinguishable because they
would produce the same spiking output: a rat would not be able
to discriminate, for example, a 131 Hz, 21 �m vibration from a 30
Hz, 87 �m vibration. If rats can be successfully trained to dis-
criminate between such iso-speed stimuli, then we would be
forced to conclude either that two iso-speed stimuli can induce
different spike counts in awake, behaving rats or else that some
coding mechanism beyond the firing rate is at play.
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