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Natural Stimulus Statistics Alter the Receptive Field
Structure of V1 Neurons

Stephen V. David,' William E. Vinje,>* and Jack L. Gallant>*
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Berkeley, Berkeley, California 94720-1650

Studies of the primary visual cortex (V1) have produced models that account for neuronal responses to synthetic stimuli such as
sinusoidal gratings. Little is known about how these models generalize to activity during natural vision. We recorded neural responses in
area V1 of awake macaques to a stimulus with natural spatiotemporal statistics and to a dynamic grating sequence stimulus. We fit
nonlinear receptive field models using each of these data sets and compared how well they predicted time-varying responses to a novel
natural visual stimulus. On average, the model fit using the natural stimulus predicted natural visual responses more than twice as
accurately as the model fit to the synthetic stimulus. The natural vision model produced better predictions in >75% of the neurons
studied. This large difference in predictive power suggests that natural spatiotemporal stimulus statistics activate nonlinear response
properties in a different manner than the grating stimulus. To characterize this modulation, we compared the temporal and spatial
response properties of the model fits. During natural stimulation, temporal responses often showed a stronger late inhibitory compo-
nent, indicating an effect of nonlinear temporal summation during natural vision. In addition, spatial tuning underwent complex shifts,
primarily in the inhibitory, rather than excitatory, elements of the response profile. These differences in late and spatially tuned inhibi-
tion accounted fully for the difference in predictive power between the two models. Both the spatial and temporal statistics of the natural

stimulus contributed to the modulatory effects.
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Introduction
Many computational theories have been proposed to explain the
functional properties of neurons in the primary visual cortex
(V1). Models based on these theories account for properties
ranging from basic linearity (Hubel and Wiesel, 1959; Movshon
et al., 1978; Jones et al., 1987) to nonlinear properties such as
phase invariance in complex cells (Pollen and Ronner, 1983; Ad-
elson and Bergen, 1985) and nonlinear temporal summation
(Tolhurst et al., 1980). Neurophysiological data supporting a
given model generally consist of responses to stimuli synthesized
specifically to modulate the property of interest. These stimuli
differ qualitatively from natural visual stimuli, and it is not
known how models developed with synthetic stimuli generalize
to natural vision.

Natural scenes have complex high-order statistics that reflect
the structure of the visual world. Phenomena such as the three-
dimensional geometry of objects, the projection of the world
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onto the retina, and the dynamics of eye movements give rise to
complex but systematic spatiotemporal patterns in visual inputs
(Field, 1987; Zetzsche et al., 1993; Woods et al., 2001). It has been
proposed that the visual system takes advantage of these regular-
ities to recognize and react to the natural environment (Barlow,
1961; Olshausen and Field, 1997). The fact that visual neurons
respond in a nonlinear manner suggests that natural stimuli
could evoke substantially different responses from what would be
predicted by current models estimated using synthetic stimuli.
Understanding the behavior of neurons during natural stimula-
tion is critical for developing accurate models of information
transmission and coding, yet few studies have investigated this
issue directly, particularly in the visual cortex (Vinje and Gallant,
1998; Ringach et al., 2002; Smyth et al., 2003; Weliky et al., 2003).

In this study, we asked two questions related to this problem.
First, in the framework of current models, do natural spatiotem-
poral statistics affect response properties in primate V1? To ad-
dress this question, we recorded the responses of neurons to two
classes of stimuli: one that closely approximated natural visual
stimulation in primates and the other composed of synthetic
sinusoidal gratings. We used the response data to estimate spa-
tiotemporal receptive fields (STRFs) for each stimulus class (De-
Boer and Kuyper, 1968; Theunissen et al., 2001). To study both
simple and complex cells in the same framework, we developed a
nonlinear STRF model that accounted for response properties of
both types of neurons (David et al., 1999). We compared STRFs
estimated using the two stimulus classes according to how well
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they predicted natural visual responses (Theunissen et al., 2000).
If one STRF predicted responses more accurately than the other,
then we could infer that it provided a more accurate description
of V1 response properties during natural vision (Gallant, 2003).
In more than half the neurons we studied, STRFs estimated using
the natural stimulus predicted natural visual responses signifi-
cantly better than STRFs estimated using the synthetic stimulus.

Second, we asked what aspects of STRFs estimated using the
natural stimulus contribute to their improved predictions. We
compared the spatial and temporal structure of STRFs estimated
using each stimulus class. Natural stimulation increased late tem-
poral inhibition and induced complex shifts in inhibitory spatial
tuning. After controlling for these changes, differences in predic-
tive power were eliminated. This suggests that nonlinear modu-
lation of inhibition is the primary source of differences between
stimulus conditions. Models that account explicitly for this mod-
ulation should show improved performance for both stimulus
classes. They may also be useful for deriving synthetic stimuli that
drive neurons in visual cortex in the same manner as natural
stimuli.

Materials and Methods

Data collection

We recorded spiking activity from 74 well isolated neurons in parafoveal
area V1 of two awake, behaving male macaques (Macaca mulatta). Ex-
tracellular activity was recorded using tungsten electrodes (FHC, Bow-
doinham, ME) and amplified (AM Systems, Everett, WA); a custom
hardware window discriminator was used to identify action potentials
(temporal resolution, 8 kHz). During recording, the animals performed
a fixation task for a liquid reward. Eye position was monitored with a
scleral search coil, and trials were aborted if eye position deviated >0.35°
from fixation. All procedures were performed under a protocol approved
by the Animal Care and Use Committee at the University of California
and conformed to National Institutes of Health standards. Surgical pro-
cedures were conducted under appropriate anesthesia using standard
sterile techniques (Vinje and Gallant, 2002).

After isolating a neuron, we estimated its receptive field size and loca-
tion manually using bars and gratings. For 32 neurons, we used an auto-
matic procedure that confirmed these estimates by reverse correlation of
responses to a dynamic sparse noise stimulus consisting of black and
white squares positioned randomly on a gray background (Jones et al.,
1987; DeAngelis et al., 1993; Vinje and Gallant, 2002). Squares were
scaled so that six to eight squares spanned the manually estimated recep-
tive field (0.1-0.5°/square). The classical receptive field (CRF) was des-
ignated as the circle around the region where sparse noise stimulation
elicited spiking responses. Our manual and automatic estimation proce-
dures were generally in good agreement.

Stimuli

We used three types of stimuli to probe neural responses (Fig. 1): natural
vision movies, grating sequences, and natural image sequences. All stim-
uli had the same mean luminance and root mean squared (RMS) con-
trast. They were presented on a cathode ray tube (CRT) display with a
gray background matched to the mean stimulus luminance. Stimuli were
centered on the receptive field of the neuron while the animal fixated.
Each stimulus sequence was divided into several 5 sec segments. Different
segments were presented on successive fixation trials in random order;
trials from different stimulus classes were not interleaved. To avoid tran-
sient trial onset effects, the first 196 msec of data acquired on each trial
was discarded before analysis.

Natural vision movies. Natural vision movies mimicked the stimula-
tion occurring in and around the CRF during free inspection of a natural
scene with voluntary eye movements. A Monte Carlo model of eye move-
ments was used to extract an appropriate series of image patches from a
natural scene (Vinje and Gallant, 2000, 2002). Fixation durations were
chosen randomly from a Gaussian distribution (mean, 350 msec; SD, 50
msec). Saccade directions were selected randomly from a uniform distri-
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bution. Saccade velocities and lengths were chosen randomly from a
B-spline fit to the distribution of eye movements recorded during free
viewing of stationary photographs of natural scenes. Natural scenes were
1280 X 1024 pixel images obtained from a high-resolution commercial
photo compact disk library (Corel). Images included landscapes, man-
made objects, animals, and humans. Color images were converted to gray
scale before extraction. These images were not calibrated to match natu-
ral luminance and contrast levels exactly, but they did contain the higher-
order spatial structure of natural scenes. Circular image patches were
extracted from the scene along the simulated scan path, clipped to two to
four times the CRF diameter, and blended into the display background to
avoid edge effects (outer 10% of the patch radius). To reduce temporal
aliasing artifacts that might result from using a display with a 72 Hz
refresh rate, each 14 msec frame was constructed by averaging 14 images
representing the position of the CRF at intervals of 1 msec. A segment
taken from a natural vision movie showing each 14 msec frame during
the transition between two simulated fixations appears in Figure 1 A. The
frames appearing in a series of simulated fixations appear in Figure 1B,
along with the response recorded from a single neuron averaged over 10
repeated trials.

Figure 1E shows temporal and spatial statistics of a natural vision
movie. The temporal autocorrelation function (left) decreases at a con-
stant rate until it reaches a value near zero at time lags of ~500 msec. This
pattern is attributable to the low temporal frequency bias created by the
dynamics of the simulated saccades used to construct the movies. Log
spatial power (Fig. 1E, right) was averaged over the entire natural vision
movie and plotted in the phase-separated Fourier domain (for details on
the phase-separated Fourier transformation, see below). Each subpanel
shows the two-dimensional power spectrum of the natural vision movie
at a different spatial phase; brighter pixels indicate greater power. Power
falls off linearly from low frequencies at the center of each subpanel,
reflecting the 1/f> power spectrum typically observed in natural images
(Field, 1987). Horizontal and vertical orientations have slightly higher
power because of their predominance in natural scenes. The empty
points at the center of all but the top right subpanel reflect the fact that
mean (DC) luminance is always positive and real in the images, so that its
power lies entirely in the ¢p = 0 phase channel in the Fourier domain.
Attenuation at low frequencies in the top left (¢ = 180) subpanel is an
effect of the Hanning window applied before the Fourier transform to
reduce edge artifacts.

For each neuron, the total duration of natural vision movies ranged
from 10 to 200 sec. Two different procedures were used to select a seg-
ment for display on each trial. For 17 neurons, each trial contained a
unique segment of a natural vision movie, and no segment was repeated.
In these cases STRFs were estimated from the peristimulus time histo-
gram (PSTH) approximated from a single stimulus presentation. For the
remaining 57 neurons, fewer natural vision movie segments were used,
and each segment was repeated 10—30 times. In these cases, reverse cor-
relation was performed on the PSTH obtained by averaging responses
over repeated presentations of each movie segment. For all neurons, an
additional data set was acquired in which a 5-10 sec natural vision movie
was repeated 20—40 times. These data were not used in the reverse cor-
relation analysis but were reserved for evaluating responses predicted by
the STRFs (see below).

Grating sequences. Grating sequences consisted of a series of sinusoidal
gratings that varied randomly in orientation, spatial frequency, and spa-
tial phase (Ringach et al., 1997; Mazer et al., 2002). Orientation was
sampled uniformly from 0 to 180°, spatial frequency from 0.5 to 6 cycles
per CRF diameter, and phase from 0 to 360°. All gratings were two to four
times the CRF diameter, and their outer edges (10% of the radius) were
blended into the gray background of the display. Mean luminance and
RMS contrast were normalized to match natural vision movies. For 33
neurons, stimuli were updated on each video refresh (72 Hz). For an
additional 15 neurons, stimuli were shown at 24 Hz. The total duration of
grating sequence stimulation ranged from 50 to 150 sec, depending on
the neuron. A brief segment taken from a grating sequence appears in
Figure 1C, and a typical response appears in Figure 1 D.

Figure 1F shows the temporal and spatial statistics of a grating se-
quence, plotted using the conventions of Figure 1E. Because grating
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parameters are varied randomly in each 14 msec frame, the temporal
autocorrelation is zero for all nonzero time lags. The log spatial power
spectrum is nearly flat, with a slight bias toward low spatial frequencies.
This reflects the fact that gratings were sampled uniformly in orientation
and spatial frequency, and fewer orientation bins exist at low spatial
frequencies in the Fourier domain. Despite the slight bias, the grating
sequence has less power at low frequencies and more power at high
frequencies than the natural vision movie. Total power (integrated over
the entire spatial power spectrum) was the same for both stimulus classes.

Natural image sequences. Natural image sequences were used as a con-
trol stimulus to dissociate the effects of natural spatial and temporal
statistics on response properties. They were constructed with the spatial
statistics of natural vision movies and temporal statistics of grating se-
quences. Each 14 msec frame of the natural image sequence contained a
random image patch taken from the same library of images used to
generate natural vision movies. All patches were two to four times larger
than the CRF, and their outer edges (10% of the radius) were blended
linearly into the gray background of the display. Natural image sequences
were updated on each video refresh (72 Hz). The total duration of natural
image sequence stimulation ranged from 100 to 150 sec, and each
sequence was shown only once. Natural image sequences were used to
acquire data from 21 neurons. The temporal autocorrelation of nat-
ural image sequences is the same as for grating sequences (Fig. 1F),
whereas their spatial power spectrum is the same as for natural vision
movies (Fig. 1E).

Linearized spatiotemporal receptive field model

Sensory neurons using a rate code can be modeled in terms of a linear
STRF (DeBoer and Kuyper, 1968; Marmarelis and Marmarelis, 1978;
Theunissen et al., 2001). Given an arbitrary stimulus, s(x,t), varying in
space and time, the instantaneous firing rate response, (1), is:

+

r(0) = | D D h(xouw)s(xpt — u) — 0] + €(t). (1)

i=1 u=0

The value of the linear filter, &, at each point in space, x;, and time lag, u,
describes how a stimulus at time ¢ — u influences the firing rate at time ¢.
Time lags range from 0 to U, so this model assumes that the system is
causal and has memory no longer than U. Positive values of / indicate
excitatory stimulus channels that increase response for larger values of s,
whereas negative values indicate inhibitory channels that decrease re-
sponse. The spatial coordinates, x; € {x;, x,, . . . X}, represent N discrete
input channels. We modeled the spiking threshold observed in cortical
neurons by half-wave rectification (Albrecht and Geisler, 1991). Rectifi-
cation is represented by, |X| © = max (0, X), with threshold specified by
the scalar 6. (We tested other output nonlinearities, e.g., expansive non-
linearity and sigmoid, and found that STRF estimates and their predic-
tive power were not substantially different. However, for most neurons,
rectification did improve performance over models with no output non-
linearity.) The residual, €(t), represents deviations from linear behavior
attributable to either noise or unmodeled nonlinear response properties.
The STRF model is shown schematically in Figure 2 A.

Phase-separated Fourier domain. Simple cells in the primary visual
cortex respond to stimuli having appropriate orientation, spatial fre-
quency, and spatial phase (Hubel and Wiesel, 1959; Daugman, 1980).
These neurons obey spatial superposition and so can be modeled as a
linear transformation between the luminance at positions (x,y) in space
and the mean firing rate, r(t). According to this image domain model, the
input channels are simply the luminance values at each point in space,
x; = (xy) (Jones et al., 1987).

Complex cells have tuning properties similar to those of simple cells,
except that they are insensitive to spatial phase (Hubel and Wiesel, 1959;
DeValois et al., 1982). These neurons violate spatial superposition be-
cause luminance at any point within the receptive field may be either
excitatory or inhibitory, depending on the luminance at nearby loca-
tions. Because the image domain model requires consistent excitation or
inhibition at each spatial position, it cannot be used to estimate STRFs for
phase-invariant complex cells (DeAngelis et al., 1995; Theunissen et al.,
2001; Touryan et al., 2002).
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Complex cells have rarely been studied within the STRF framework
because of the limitations of the image domain model. A few studies have
estimated complex cell STRFs by removing all spatial phase information
from the stimulus, thereby linearizing the stimulus—response relation-
ship (Ringach et al., 1997; Mazer et al., 2002). A similar approach has
been used in the temporal dimension for data in the auditory system
(Aertsen and Johannesma, 1981; Theunissen et al., 2000; Machens et al.,
2004). However, this procedure cannot recover simple cell STRFs be-
cause it discards the phase information required to determine which
spatial channels are excitatory or inhibitory. We therefore developed a
new linearizing procedure that can recover the STRF for both simple and
complex cells (David et al., 1999). According to this model, each STRF is
a linear filter in the phase-separated Fourier domain. This is accom-
plished by applying a spatial Fourier transform to each stimulus frame
and projecting the resulting complex numbers onto the cardinal real and
imaginary axes:

Sps(wy, @, 0,) = [Re(S(w,, ooy,t))|+
Sps(w,, wy, 90,1) = [Im(S(w,, ooy,t))|+ (2)
Sps(wy, @y, 180,1) = [Re(S(w,, wy,t))|’
Sps(wy, @y, 270,1) = [Im(S(w,, wy,t))|’ .

Here S(w,, w,,t) is the spatial Fourier transform of the stimulus. Spatial
channels are defined over the three-dimensional space, x; = (w,,0,,d).
This transformation preserves all of the information in the stimulus but
creates an overcomplete representation. In the Fourier domain, spatial
phase determines the relative magnitude of real and imaginary compo-
nents at each spatial frequency. By projecting onto the complex axes,
power at different spatial phases is assigned to different spatial channels.
The excitatory and inhibitory influence of individual spatial frequency—
phase channels is determined by the coefficient associated with each
spatial channel in h(x;u). In general, both complex and simple cells
respond to a narrow range of orientations and spatial frequencies (De-
Valois et al., 1982) so that only a small number of spatial channels should
show excitatory tuning in phase-separated Fourier STRFs. However, our
procedure for STRF estimation does not place any constraints on which
or how many channels will have either excitatory or inhibitory influence
on neural responses.

According to the phase-separated Fourier model, a simple cell will
have positive coefficients for one or two adjacent phase channels that
excite responses, and negative coefficients at the opposite phase (offset by
180°) (see Fig. 2B). In contrast, a complex cell will have positive coeffi-
cients for all phases (Fig. 2C). Using this model, a neuron can be classified
as simple or complex merely by examining the STRF. In practice, many
neurons fall between strict classification as simple or complex, and this
model can easily account for intermediate spatial phase tuning. Another
advantage of the phase-separated Fourier model is that it can reveal
spatially tuned inhibition. That is, negative coefficients in h(x;,u) indicate
spatial channels that are correlated with a decrease in response. After the
initial nonlinear transformation, the remaining stages of the phase-
separated Fourier model are identical to the classical linear STRF model.

Space-time separable model. One simplification of the phase-separated
Fourier model is to constrain STRFs to be space—time separable. A space—
time separable STRF is the product of a spatial response function, f(x;),
and a temporal response function, g(u):

h(x;, u) = flx) g(u). (3)

The space—time separable model requires fewer parameters than the
more general inseparable model and therefore can be estimated more
accurately than the inseparable STRF when data are limited. A spatial
response function estimated using the phase-separated Fourier model
can capture simple and complex cell properties in the same way as an
inseparable STRF (Fig. 2D,E).

There is evidence that some V1 neurons possess a significant space—
time inseparable component (Mazer et al., 2002; Shapley et al., 2003).
Because the space—time separable model may fail to capture some re-
sponse properties of such neurons, we compared STRFs estimated using
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the inseparable model (Eq. 1) with those estimated using the space—time
separable model. Across the sample of 74 neurons, predictions were not
significantly different (randomized paired ¢ test). Some neurons had
space—time inseparable components, but their contributions were out-
weighed by the improved signal-to-noise ratio of the separable model.
We did not observe any systematic tuning differences other that those we
report for the separable model. However, a more exhaustive study of the
inseparable model with larger data sets would be required to confirm
this. We chose to use the separable model because it lent itself well to
quantitative analysis of spatial and temporal response properties.

Hybrid model. A space—time separable STRF can be decomposed easily
into spatial and temporal response functions. We took advantage of this
feature to construct a hybrid STRF that combined the spatial response
function estimated using grating sequences with the temporal response
function estimated using natural vision movies:

Pgpria(%18) = foyn (%) Gnac(10). (4)

The hybrid model allowed us to isolate the effects of natural stimulus
statistics on spatial and temporal tuning properties.

For our analysis of natural image sequence data, we estimated two
additional types of hybrid STRF, one that combined natural image se-
quence spatial response functions with temporal response functions es-
timated using grating sequences and another that combined natural im-
age sequence spatial response functions with temporal response
functions estimated using natural vision movies. These hybrid models
were formed in a similar manner as Equation 4, but substituting spatial
and temporal response functions estimated using the appropriate stim-
ulus class.

Positive space model. The coefficients of a spatial response function can
have positive or negative values indicating relative excitatory or inhibi-
tory tuning, respectively. To examine the unique contributions of the
excitatory aspects of tuning, we constructed a separable model with only
positive coefficients in its spatial response function:

f+(xi) = l]((xi)|+ . (5)

This representation includes no negative coefficients in the spatial re-
sponse function, effectively removing the spatially inhibitory influences.
The positive space model still allows STRFs to have negative coefficients
but only if the temporal response function contains negative coefficients.
Thus, for any single time lag, all coefficients in & must be either excitatory
or inhibitory.

STREF estimation theory

Reverse correlation algorithm. We used reverse correlation to estimate
STREFs for each stimulus class independently. Reverse correlation exper-
iments are typically based on responses to white noise. White noise has a
flat power spectrum and no correlation between spatiotemporal chan-
nels (Marmarelis and Marmarelis, 1978; Jones et al., 1987). In this case,
the minimum mean-squared error estimate of the STRF is simply the
cross-correlation in time of the mean zero response, 7(t), and stimulus,
s(xp1):

—_

M =

Cn(xou) = 7 2, (st = u) = 5(x))(r(1) = 7). (6)

t

1

Here, 5(x;) and 7 indicate the mean over time of the stimulus and re-
sponse, respectively. When white noise is used to evoke responses, re-
verse correlation is equivalent to computing the spike-triggered average
stimulus.

Correction for natural stimulus bias. Natural vision movies are not well
modeled by white noise. Natural scenes have a 1/f* spatial power spec-
trum (Fig. 1E) (Field, 1987) as well as complex higher-order spatial
correlations (Field, 1993; Zetzsche et al., 1993; Schwartz and Simoncelli,
2001). Saccadic eye movements bias the temporal power spectrum, con-
centrating temporal energy in the range of 3—4 Hz (Fig. 1 E) (Vinje and
Gallant, 2000; Woods et al., 2001). These correlations introduce a bias
into the spike-triggered average, making it appear that a neuron is tuned
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to artificially low spatial and temporal frequencies (Theunissen et al.,
2001; Willmore and Smyth, 2003; Machens et al., 2004).

To estimate an STRF from responses to natural vision movies accu-
rately, stimulus bias must be removed from the spike-triggered average.
Classical methods for bias correction assume the stimulus is stationary;
i.e., the correlation between two points depends only on the distance
between them rather than their absolute position. In such cases, the
cross-correlation can simply be normalized by the power spectrum of the
stimulus (Marmarelis and Marmarelis, 1978). In general, the spatial au-
tocorrelation of natural scenes (Field, 1987) and the temporal autocor-
relation of a random sequence of fixations are stationary. However, after
the nonlinear phase-separated Fourier transformation, the spatial auto-
correlation is no longer stationary. A correction for stationary temporal
and nonstationary spatial stimulus autocorrelation is required (Theunis-
sen et al., 2001).

The autocorrelation of a stimulus that is nonstationary in space but
stationary in time is described by:

LT
(X x5 ) = T 2 (s(x51) = 5(x))(s(ogt + 1) — 5(x5)). (7)

t=1

The value of ¢ indicates the strength of correlation between two points
in space, x; and x;, separated by time lag u. The spike-triggered average, ¢,
(Eq. 6), is related to the STRF by convolution with the stimulus autocor-
relation (Theunissen et al., 2001):

Cs(xpu) = 2 2 (X3 x5 u + V)h(x; v). (8)

v=-U j=1

We remove stimulus bias by applying the inverse of the autocorrelation,
c2.', to both sides of the equation:

U N
h(x;, u) = Z E (% x5 u + V)ey (x5, 11). (9)
v=—U j=1
The autocorrelation function, c,,, can be described by a matrix, and c_, ' is
simply its matrix inverse. This procedure has no effect on the estimated
STRF when the stimulus has no autocorrelation (e.g., white noise). For
correlated stimuli, the magnitude of the bias correction is proportional to
the strength of stimulus autocorrelation. Because natural vision movies
have much stronger autocorrelation than grating sequences, this proce-
dure introduces a larger correction to STRFs estimated using natural
vision movies than to those estimated using grating sequences.

STREF estimation procedure

Estimation and validation data sets. The STRF estimation procedure used
here requires fitting many model parameters. In such cases, optimal
predictions can only be obtained if care is taken to avoid overfitting to
noise. Therefore we divided the data from each neuron into two different
data sets: an estimation set that was used to estimate model parameters,
and a validation set that was used exclusively to test predictions. The
estimation set contained ~90% of the available data (repeated or single
trial), and the validation set containing the remaining 10% of the data
(5-10 sec/neuron, repeated trials) was reserved exclusively for evaluating
predictions. The use of a separate validation data set ensured that our
estimates of prediction accuracy would not be artificially inflated by
overfitting.

Data preprocessing. We used the estimation data set to measure both
stimulus—response cross-correlation and stimulus autocorrelation di-
rectly. To estimate STRFs, the stimulus was first cropped with a square
window circumscribing twice the CRF diameter. The window was con-
stant, regardless of the true stimulus size, which was two to four times the
CRF diameter. To reduce both noise and computational demands, each
stimulus frame was smoothed and downsampled to 18 X 18 pixel reso-
lution before analysis. This low-pass filtering procedure preserved spatial
frequencies up to 4.5 cycles per CRF, which was always high enough to
reveal the spatial tuning profile from responses to grating sequences. In
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theory an analysis using higher spatial resolution would produce a more
accurate STRF model. Because of the bias toward low spatial frequencies
in natural images, however, larger data sets would be required to achieve
sufficient signal-to-noise levels at these high spatial frequencies. Edge
artifacts were minimized by applying a Hanning window to each stimu-
lus frame before applying the phase-separated Fourier transform.

The response PSTH, r(t), was defined as the instantaneous spike rate
within each time bin (or the mean spike rate when repeated trials were
available). Well isolated spikes recorded from each neuron (1 msec res-
olution) were convolved with a boxcar filter (width 14 msec) and binned
at 14 msec, synchronized with the 72 Hz refresh cycle of the CRT. STRFs
were calculated across time lags ranging from 0 to 196 msec (U = 14 time
bins).

Regularization procedure to reduce estimation error. STRF estimation
requires fitting a large number of coefficients with a relatively small
number of data samples. The accuracy of these estimates is therefore
often limited by sampling, and regularization can substantially improve
model accuracy. Our regularization procedure combined a jackknife al-
gorithm and a pseudoinverse approximation for stimulus bias correc-
tion. First, 20 jackknife data sets were generated by excluding different
5% segments from the complete estimation data set (Efron and Tib-
shirani, 1986). Each jackknife set was used to obtain an STRF estimate,
h,(x;, u). The mean, }_l(xi, u), and SE, &(x;, u), of each spatiotemporal
channel were calculated from these jackknifes, and the ratio of mean to
SE was taken as the signal-to-noise ratio for each channel. Coefficients
were scaled according to a shrinkage filter to produce a final STRF esti-
mate (Brillinger, 1996):

h(x;, u) = h(x, 1) \/]1 — Y (x w)H (x, 1)| . (10)

The brackets, |...| *, indicate half-wave rectification. The optimal shrink-
age parameter, v, varies according to global signal-to-noise level. STRFs
were estimated for a range of y (from 1.0 to 2.0), and the optimal value
was chosen in conjunction the pseudoinverse tolerance value (see
below).

As noted earlier, bias in the stimulus statistics must be removed from
the STRF to obtain an accurate estimate of neuronal tuning properties.
Bias removal involves multiplying the spike-triggered average by the in-
verse of the stimulus autocorrelation matrix (Eq. 9). However, the spatial
autocorrelation matrix for natural vision movies is nearly singular, and
the true inverse tends to amplify estimation noise. Therefore, we needed
to approximate the spatial autocorrelation inverse for estimating insep-
arable STRFs and spatial response functions. (For temporal response
functions, stimulus bias could be corrected without approximation.)

We used a singular value decomposition (SVD) algorithm to construct
a pseudoinverse of the autocorrelation matrix, c;p;mx(xi,xj,u) (Theunis-
sen et al., 2001; Smyth et al., 2003). Pseudoinverse construction via SVD
requires selection of a tolerance value that determines the fraction of total
stimulus variance preserved in the inverse. The optimal tolerance value is
a function of both stimulus statistics and neural noise and cannot be
determined a priori for a given neuron. To determine the optimal toler-
ance for each neuron, we calculated separate STRFs over a range of tol-
erance values. STRFs generated from each tolerance and shrinkage pa-
rameter (7, from above) were used to predict responses in the entire
estimation data set, including segments that were excluded in each jack-
knife estimate (but not using the reserved validation data). By selecting
the tolerance value and shrinkage parameter simultaneously, we avoided
overfitting to the estimation data. The STRF with the smallest mean
square prediction error was selected as the optimal STRF.

Estimation of space—time separable STRFs. Space-time separable STRFs
were obtained through an iterative process. First, a space—time insepara-
ble STRF was estimated using the procedure described above. Because
the inseparable STRF contains a large number of coefficients, the regu-
larization procedure tended to select relatively underfit STRFs. Estimat-
ing spatial and temporal response functions separately allowed for im-
proved signal-to-noise levels and thus less severe regularization.

Approximate spatial and temporal response functions were derived
from the inseparable STRF by singular value decomposition. The first
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two components of the decomposition satisfy the criterion of best mean-
squared error estimate of the full STRF,

[fapprox('xi)> gapprox(u)] = arg min(h('xb M) - f(xi) g (u))l . (11)
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The sign of the approximate temporal response function, g,,,.ox(t4), is
ambiguous, given only in Equation 11. Its sign was fixed so that it pro-
duced a positive inner product with the inseparable STRF averaged over
space. This function was used to estimate the spatial response function by
convolution with the stimulus:

Sspace (xi)t) = E (S(Xi)t - 1/[) = (xi)) Sapprox (M) (12)

u=1

The result, s,,,.(x;,t), was the stimulus transformed so that stimulus
energy correlated with the neural response was concentrated at a time lag
of u = 0. The spatial response function, f(x;), was then estimated using
Equations 6 and 9 but substituting s, .(x;,t) for the stimulus and con-
straining the maximum time lag to be zero, U = 0.

The spatial response function was then used to estimate the temporal
response function. The stimulus was filtered by the spatial response
function:

Sime () = 2 (s(xt) = 5 (6))f (). (13)

i=1

The resulting s;,,,.(#) indicated how well the stimulus matched the spatial
response function at each pointin time. The temporal response function,
g(u), was estimated using Equations 6 and 9 for the case with only one
dimension of space, N = 1. Spatial and temporal response functions
estimated in these last two steps were then combined according to Equa-
tion 3 to form the space—time separable STREF.

Estimation of hybrid STRFs. A hybrid STREF is a space—time separable
STRF with spatial response properties estimated using grating sequence
data and with temporal response properties estimated using natural vi-
sion movie data. The spatial response function, f;,,(x;), was estimated
using grating sequence data as described above. Then f, ,(x;) was used
with natural vision movie data to estimate the temporal response func-
tion, g,,.(1). Other than using different data sets to estimate spatial and
temporal components, this procedure was identical to that used to esti-
mate other space—time separable STRFs.

In our control analysis that studied the effects of natural spatial statis-
tics alone, we also estimated hybrid STRFs using natural image sequence
data. In this case, the spatial response function was estimated using nat-
ural image sequence data, and the temporal response function was esti-
mated using either grating sequence data or natural vision movie data.

Estimation of positive space STRFs. A positive space STRF has no neg-
ative coefficients in its spatial response function. This constrains it so that
it can account for spatially tuned excitation but not inhibition. Positive
space STRFs were estimated using both natural vision movie and grating
sequence data. First, spatial response functions were estimated using the
appropriate data set. Then their negative coefficients were set to zero
according to Equation 5, producing positive spatial response functions
fi(x,) and f;;n(xi), respectively. Finally, temporal response functions
were estimated for both using natural vision movie data. Combined with
the spatial response functions, this produced a positive space natural
vision STRF and a positive space hybrid STRF. In general, temporal
response functions were quite similar for positive space STRFs and for
STRFs estimated using natural vision movies.

Nonlinear threshold estimation. The STRF model also contains a non-
linearity that represents response threshold (6 in Eq. 1). The threshold
for each STRF was selected only after applying the jackknife filter and
selecting the optimal SVD cutoff. The threshold was chosen to maximize
correlation between predicted and observed responses in the estimation
data set. Again, validation data were not used at this or any other stage of
the STRF estimation procedure.
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Generating and evaluating predictions
For each neuron, STRFs obtained using natural vision movies and grat-
ing sequences were evaluated in terms of their ability to predict responses
using a novel validation data set not used for STRF estimation. Predicted
responses were generated according to the procedure outlined in Figure
2 A. First, the validation stimuli were cropped and downsampled to
match the size used for estimation. Second, they were then transformed
according to the phase-separated Fourier nonlinearity in Equation 2.
Responses were binned at 14 msec in the same manner as the estimation
data. Third, the estimated STRF was convolved with the transformed
stimulus in time, summed over space and thresholded according to
Equation 1. Finally, prediction accuracy was quantified in terms of the
correlation coefficient between the predicted and observed response
(Pearson’s 7). Note that correlation measurements are strongly influ-
enced by the size of time bins and by temporal smoothing. Comparison
of prediction correlation between analyses therefore requires careful
consideration of how the response has been binned and smoothed
(Theunissen et al., 2000). Correlations reported in this study were all
measured against validation responses sampled at 14 msec and smoothed
by a 14 msec boxcar filter.

A Matlab implementation of this STRF estimation and validation pro-
cedure is available for download at http://strfpak.berkeley.edu.

Comparing response properties

Temporal inhibition index. Temporal response properties observed with
the different stimulus classes were compared by means of a temporal
inhibition index, which measures the ratio of negative power to total
power in the temporal response function:

D(lg (w)])?
a= :;7 (14)
> (g W)

Values of a are constrained to fall between 0 and 1. Small values corre-
spond to temporal response functions with little negative power, which
suggests that the neuron shows little inhibition in the temporal response
function.

Normalization of residual spatial bias. An important consideration
when comparing spatial response functions is that STRFs estimated using
natural vision movies may be residually biased by natural spatial statis-
tics. This is a well known limitation of the pseudoinverse correction
method (Theunissen et al., 2001; Smyth et al., 2003; Machens et al.,
2004). For natural spatial response functions, the effect of the pseudoin-
verse correction is to damp power at high spatial frequencies at which the
signal-to-noise ratio is worst, effectively preserving the bias in those
channels. Spatial response functions estimated using grating sequences
do not suffer from residual correlation bias because grating sequences
have only a weak autocorrelation (resulting from the presence of a single
grating in each frame). Thus, even if the response properties of a neuron
are the same under the two stimulus conditions, a residually biased nat-
ural spatial response function and an unbiased grating spatial response
function may appear different.

Although spatial correlation bias cannot be removed entirely from
natural vision spatial response functions, the residual bias can be mea-
sured. This bias can be applied to the unbiased grating spatial response
function for the same neuron. After bias normalization, any remaining
differences between two spatial response functions must reflect differ-
ences in the spatial tuning properties of the neuron. If a natural vision
movie has spatial autocorrelation, ¢ (x;;), and its inverse is approxi-
mated, ¢! (x;,x;), then the grating spatial response function with nor-

approx

malized residual bias is:

N N
From () = 20 D o (%0 2)c(x,21) fign (0. (15)

=1 k=1
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(Because we are considering spatial response functions only, we can con-
sider the spatial autocorrelation with no time lag.)

In the data reported here, the correlation bias was not as severe in the
temporal dimension. Residual bias in the natural vision temporal re-
sponse functions would drive apparent tuning toward lower temporal
frequencies than for gratings, whereas our data showed a strong trend in
the opposite direction.

Spatial similarity index. We compared spatial response functions ob-
tained with different stimulus classes using a spatial similarity index. The
index was computed by taking the correlation between the natural vision
spatial response function and the bias-normalized grating spatial re-
sponse function:

E fnal (xl) ﬁmrm (xl)

b= . (16)
Efim(xi) Efiorm (xl)

Values of b can range from — 1 to 1. A value near 1 indicates a high degree
of similarity between spatial response functions, and a value near 0 indi-
cates no similarity. Values near —1 indicate anticorrelated spatial re-
sponse functions, but this rarely occurs in practice.

Results

We recorded from 74 neurons in the primary visual cortex of two
animals performing a fixation task. Stimuli consisted of natural
vision movies that simulated the spatial and temporal pattern of
stimulation to a receptive field during free viewing of a natural
scene (Fig. 1 A,B; see Materials and Methods) (Field, 1987; Vinje
and Gallant, 2000; Woods et al., 2001). Figure 1B illustrates the
typical time-varying response evoked by a natural vision movie in
a single neuron. Approximately 50 msec after the onset of each
simulated fixation, the neuron shows a strong, transient increase
in firing, followed by a weaker sustained response during the
remainder of the fixation. The magnitudes of the transient and
sustained responses vary from fixation to fixation. Thus, this neu-
ron appears to code information both about the temporal dy-
namics of the stimulus as well as its spatial content. Natural vision
movies evoke such rich, dynamic responses from most V1
neurons.

We also recorded responses to a second stimulus class, dy-
namic grating sequences, which consisted of a single sine wave
grating whose spatial frequency, orientation, and phase varied
randomly in each 72 Hz frame (Fig. 1C). A typical response to a
grating sequence is shown in Figure 1D. This PSTH bears little
similarity to the natural vision movie PSTH. Neither the tempo-
ral structure associated with fixation onsets nor the variations in
response strength associated with different spatial patterns are
obvious. These differences could arise from two factors. The tun-
ing properties of the neuron may be the same in both cases, and
the differences merely reflect differences in the statistical proper-
ties of the stimuli. Alternatively, the tuning properties of the neu-
ron may be modulated by the statistical properties of the stimu-
lus. This would imply that the neuron would transmit different
information about the stimulus, depending on stimulus class
(Theunissen et al., 2000).

Phase-separated Fourier STRFs

Our goal in this study was to determine whether stimulus statis-
tics influence neuronal response properties and, if they do, to
determine what specific mechanisms are affected. Comparison of
response properties between stimulus classes required an objec-
tive framework independent of any parametric description of a
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A Natural vision movie
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neurons. The model simple cell consisted
of a temporally modulated Gabor function
(Daugman, 1980) followed by a rectifying
nonlinearity and Poisson spike generator
(Tolhurst et al., 1983). Model parameters
were peak orientation 30° counterclock-
wise from vertical, peak spatial frequency

14 ms

" | | | | | | two cycles per receptive field, even spatial
23 i E ' |' 7 T phase, and peak latency of 49 msec. Re-
93 | i Oy ol il ! sponses were generated by stimulating the
=] H H . .
= | Y Y model cell with a 9000-frame natural vi-
] 1 . . . .
: PR n movie, comparabl h th n
S 00 A S 4 sion movie, compa able with the quantity
Time (ms) cellro110a  Of data collected for many of our neurons.

C  Grating sequence

The phase-separated Fourier STRF esti-
mated from these data fully recovers the
tuning properties of the simple cell. Figure
2 B displays the STREF as a series of panels
representing spatial tuning at progres-

sz sively later time lags. At each time lag, the
& four subpanels show spatial frequency and
2 orientation tuning at four spatial phases.
% ‘l an \ AM 4 Orientation and spatial frequency are plot-
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Figure1.

Naturaland synthetic stimuli. A, Natural vision movies mimic the pattern of stimulation in a parafoveal receptive field

panel (¢ = 0), consistent with the fact that
the model had even, on-center spatial
phase tuning. The top left subpanel reveals

during free viewing of a static, monochromatic natural scene. The stimulus remains constant during simulated fixations and
changes rapidly during simulated saccades (compare frames 2, 3 with 5, 6). B, Five seconds of the same movie are shown
schematically in the top row. The pattern appearing during each simulated fixation appears once, aligned on the left edge to the
time of fixation onset. Below is the PSTH averaged over 10 repeated movie presentations. After the onset of each new fixation
(dotted lines) the neuron responded with a brief burst of activity, followed by a weaker sustained response. C, Several frames from
a grating sequence. The sine wave grating shown in each 14 msec frame varies randomly in orientation, spatial frequency, and
spatial phase. D, The plot shows the PSTH averaged over 10 repeated presentations of a 5 sec grating sequence. £, Temporal and
spatial statistics of a natural vision movie. Temporal autocorrelation (left) decreases linearly to zero at lags of ~500 msec because
of the temporal dynamics of simulated saccades. The log spatial power spectrum (right) is plotted in the phase-separated Fourier
domain, where each subpanel refers to a different spatial phase (for details, see Materials and Methods, Fig. 2). Power decreases
linearly from low frequencies at the center of each subpanel, reflecting the 1/f* power spectrum of natural images. F, Temporal
and spatial statistics of a grating sequence, plotted in the same manner as £. There is no temporal autocorrelation at nonzero time
lags because the grating pattern changes randomly in each frame. Log spatial power is nearly uniform, reflecting the sampling of

weak relative inhibition at a 180° phase
offset, reflecting the influence of the
threshold nonlinearity. Scattered nonzero
values in other phase subpanels reflect es-
timation noise resulting from finite sam-
pling and noise in the response of the
model neuron. Figure 2D shows the spa-
tial and temporal response functions that
compose the simple-cell STRF. The left
panel shows the spatial patterns used to
generate responses. Because this was a sim-

grating parameters.

particular stimulus class. Because the population of neurons in
V1 is composed of both simple and complex cells, the analytic
framework also had to be applicable to both cell classes. Given
these constraints, we chose to characterize neurons by estimating
STRFs from the responses to each stimulus class (Theunissen et
al., 2001; Smyth et al., 2003). To ensure that STRFs could be
estimated for both simple and complex cells, we developed a new,
nonlinear phase-separated Fourier model that accounts for re-
sponse properties of both cell types (Fig. 2A; see Materials and
Methods) (David et al., 1999). According to this model, each
STRF is expressed as a set of coefficients describing how neuronal
responses are influenced by stimulus orientation, spatial fre-
quency, spatial phase, and time lag.

To confirm that the phase-separated Fourier model could re-
cover tuning properties of both simple and complex cells, we
applied our estimation algorithm to data produced by model

ple cell, only one subunit was active.

We also applied the STRF estimation
algorithm to a model complex cell. This
model was constructed by summing the rectified output of four
simple cells in the quadrature phase before input to the Poisson
spike generator. Orientation, spatial frequency, and temporal
tuning were identical to those of the simple-cell model tested
above, and responses were generated by stimulating with the
same natural vision movie. The resulting STRF is shown in Figure
2C, with spatial and temporal response functions in Figure 2 E.
Relative excitatory responses appear at the peak time lag in all
four subpanels, reflecting the phase invariance of the complex
cell. Other tuning properties are identical to those of the simple
cell, as expected.

Neuronal responses during simulated natural vision

Figure 3 compares the STRFs obtained from one V1 neuron using
both natural vision movies and grating sequences. Tuning prop-
erties can be visualized by decomposing each STRF into spatial
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and temporal response functions. The spa-
tial response function estimated using a
natural vision movie (Fig. 3A) is tuned to
horizontal orientations and low spatial
frequencies. The temporal response func-
tion shows excitation at short time lags,
followed by strong inhibition at later time
lags. Compared with the natural vision
STREF, the STRF estimated using a grating
sequence (Fig. 3B) preserves tuning for
horizontal orientations but is tuned to
slightly higher spatial frequencies. The
temporal response is also substantially
different from the one obtained with
natural vision movies. It has a slightly
longer latency and shows no inhibition
at later time lags.

To determine which of these STRFs
better described natural visual responses,
we compared how well they could predict
responses to a second natural vision
movie. Data from this second movie were
not used to fit the original STRFs, so any
differences in predictive power could not
be an artifact of overfitting. The response
predicted by the natural vision STRF is
shown in Figure 3C (solid line) overlaid on
the observed response (dashed line). Pre-
diction accuracy was evaluated in terms of
the correlation between the predicted and
observed responses. A correlation of 1.0
indicates perfect prediction, whereas a
value of 0 indicates a prediction that is no
better than random. Given that many
sources of noise limit the accuracy of STRF
estimates (e.g., spiking noise, finite sam-
pling, and unmodeled nonlinear response
properties), it is unlikely that an STRF will
predict perfectly. However, prediction
correlations for two STRFs can be com-
pared as a relative measure of which pro-
vides a better model of natural visual re-
sponse properties. For this neuron, the
natural vision STRF predicts the natural
vision movie responses with a correlation
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Figure 2.  Linearized STRF model. The phase-separated Fourier model incorporates a nonlinear spatial transformation at its
input stage to account for response properties of both simple and complex cells. A, Visual input is the time-varying sequence of
gray scaleimages at the left. The stimulus is Fourier-transformed and projected onto quadrature spatial phase channels according
to Equation 2. The transformed stimulus is convolved with a spatiotemporal filter and thresholded according to Equation 1 to
produce the instantaneous firing rate, r(t). B, STRF estimated using natural vision movie data for a model simple cell. Brighter
regions indicate input channels correlated with an increase in firing (excitation), whereas dark regions indicate channels corre-
lated with a decrease in firing (inhibition). At each time lag, the four subpanels show spatial frequency and orientation tuning at
four spatial phases (key at far right). Spatial frequency and orientation are plotted in the Fourier domain. Radial position in the
subpanel corresponds to spatial frequency, and angle corresponds to orientation. For this neuron, excitatory responses are
confined to the top right subpanel, consistent with the fact that the model simple cell had even, on-center spatial phase tuning.
The top left subpanel reveals inhibition at a 180° phase offset, reflecting the linear phase tuning of the simple cell. ¢, STRF
estimated for a model complex cell. Spatial and temporal tuning resemble that in B, except all four phase channels drive excitatory
responses. D, Spatial (middle) and temporal (right) response functions for the simple cell STRF in B. At left is the Gabor function
showing the actual spatial tuning of the model simple cell. The spatial response function shows excitatory tuning at the phase
corresponding to the even, on-center Gabor. £, Spatial and temporal response functions composing the complex cell STRFin . The
model complex cell is excited by spatial patterns matching any of the four Gabor functions at the left. Thus, all four phase channels
indicate excitatory tuning at the corresponding orientation and spatial frequency. Inhib., Inhibition; Excit., excitation.

of r = 0.55. The grating STRF performs significantly worse (Fig.
3D) (r = 0.36; p < 0.05, randomized paired ¢ test). We infer from
the difference in predictive power that the natural vision movie
activated functionally important response properties in a differ-
ent manner than their activation by the grating stimulus.

In the first example, temporal response properties were
strongly affected by natural stimulus statistics, whereas spatial
response properties were mostly unchanged. For other neurons,
such as in Figure 4, both temporal and spatial response properties
are dependent on stimulus statistics. For this neuron, the natural
vision STRF (Fig. 4 A) is tuned to near-horizontal orientations at
low spatial frequencies, with little spatially tuned inhibition. Peak
excitatory latency is at 40 msec, followed by an inhibitory com-
ponent at later time lags. The STRF estimated using a grating
sequence (Fig. 4B) has similar orientation tuning but prefers
higher spatial frequencies. Unlike the natural vision response, the
grating spatial response function also has substantial inhibitory
tuning. As in the previous example, the grating temporal re-

sponse function has a much weaker late inhibitory component
than the natural vision temporal response. These tuning differ-
ences affect STRF predictions of natural vision movie validation
responses. The natural vision STRF predicts responses with a
correlation of r = 0.49 (Fig. 4C), whereas the grating STRF pre-
dicts with a significantly lower correlation of just r = 0.22 (Fig.
4D) (p <0.05, randomized paired f test).

Predictive power of STRFs depends on estimation stimulus

To determine the prevalence of changes in tuning properties aris-
ing from differences in stimulus statistics, we compared the pre-
dictive power of natural vision and grating STRFs across a sample
of 44 neurons for which appropriate data were available. For each
neuron, predictions were evaluated with natural vision movie
data that were not used in STRF estimation (i.e., a validation data
set). In 24 neurons (55%), natural vision STRFs predict natural
vision movie responses significantly better than grating STRFs
(p < 0.05, randomized paired ¢ test) (Fig. 5A, filled circles). In
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of 0.31, a significant improvement (p <
0.001, randomized paired t test). Thus,
both natural vision and grating STRFs pre-
dict responses best within the stimulus
class used for estimation, and they predict
poorly across stimulus classes. The consis-
tent advantage of within-class predictions
confirms that response properties of V1
neurons are modulated by differences be-
tween the stimulus classes. Given that neu-
ral response properties are nonlinear, a
model fit to one stimulus class should, in
principal, predict responses to that stimu-

Grating
temporal response

100

Time lag (ms)

. lus class better than a model fit to another
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e H H ! . . . . .
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Figure 3.  Natural stimulus statistics influence temporal response properties. A, STRF estimated using natural vision movie. v v 8 8

Axes are as in Figure 2. The spatial response function, left, is tuned to stimuli just counterclockwise of horizontal, with peak
spatial frequency tuning of 1.1cycle/°. The temporal response function shows a peak latency of 35 msec followed by a negative,
inhibitory component at greater time lags (63—91 msec). B, The STRF estimated using a grating sequence shows some differences
in tuning. The spatial response function is similar to that in A, although with slightly higher excitatory spatial frequency tuning
(peak, 1.4 cycle/°). However, the temporal response is quite different, with a peak latency of 49 msec and no late inhibitory
component. (, STRFs were compared by measuring their ability to predict natural vision movie validation data. The prediction by
the natural vision movie STRF (solid line) is overlaid on the observed PSTH (dashed line). This neuron gave a highly transient
response during each fixation epoch in the natural vision movie. The predicted PSTH matches these transients well, with a
correlation of r = 0.55. D, The grating sequence STRF fails to predict the transient responses and has a significantly lower
prediction correlation (r = 0.36; p << 0.05, randomized paired t test). Inhib., Inhibition; Excit., excitation.

quences evoke different, functionally im-
portant tuning properties. The phase-
separated Fourier model used for STRF
estimation can model both linear re-
sponses (which, by definition, do not vary
across stimulus classes) and nonlinear
phase invariant responses. The different
stimulus classes do not drive responses
that are more or less linear. Instead, differ-
ences between STRFs reflect the influence

only 3 cases (7%) do natural vision STRFs predict responses sig-
nificantly less accurately than grating STRFs ( p < 0.05, random-
ized paired t test) (Fig. 5A, shaded circles). Across the entire
sample of 44 neurons, natural vision STRFs predict with a mean
correlation of 0.42, whereas the correlation for grating STRFs is
just 0.19. This difference is significant ( p < 0.001, randomized
paired ¢ test). When all 74 neurons with natural vision movie data
are included, the mean correlation of natural vision STRF predic-
tions with observed responses is 0.38. This is not significantly
different from the mean obtained with the subset of natural vi-
sion STRFs analyzed above.

In the above comparisons, the superior predictive power of
natural vision STRFs could simply reflect a greater degree of noise
in the grating STRF estimates. That is, both models could predict
equally well, but the grating STRFs might suffer from noisier
data. This is unlikely, given that similar amounts of data were
available for both classes. In fact, grating STRFs should be less
noisy than those obtained with comparable amounts of natural
vision movie data because grating sequences sample a sparse
stimulus space with little stimulus autocorrelation. Nevertheless,
to ensure that the predictions of grating STRFs were not noise-
limited, we evaluated how well natural vision and grating STRFs
predicted responses to a reserved validation data set collected
with grating sequences (single-trial data). Across the sample of 44
neurons, natural vision STRFs predict grating responses with a
mean of only 0.11. In contrast, grating STRFs predict with a mean

of additional unmodeled nonlinearities
that are differentially activated by natural vision movies and grat-
ing sequences.

To obtain a better understanding of the nonlinear mecha-
nisms underlying differences between STRFs estimated using the
two stimulus classes, we divided potential nonlinearities into two
distinct types: temporal nonlinearities that change the temporal
response profile and spatial nonlinearities that change spatial
tuning. To investigate these two types of nonlinearity separately,
we decomposed the space-time separable STRFs (Eq. 3) into
their spatial and temporal response functions.

Characterization of temporal nonlinearities

One simple way to visualize the typical V1 temporal response
under different stimulus conditions is to compute the average
temporal response across a large sample of neurons. We obtained
the average temporal response function across all 44 neurons for
which both natural vision movie and grating sequence data were
available (Fig. 6A,B). Individual temporal response functions
were normalized to have unit variance before averaging. The av-
erage temporal responses obtained with each stimulus class are
similar to those from the single neurons shown in Figures 3 and 4.
Natural vision movies reliably evoke a biphasic temporal re-
sponse: an initial excitatory component followed by a late nega-
tive component approximately one-third as large (Fig. 6 A, solid
line). In contrast, grating sequences evoke a monophasic positive
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response with no substantial late negative
component (Fig. 6 B, solid line).

The running integral of the temporal
response function is the step response.
This gives the response we would expect
from stimuli with the temporal structure
of natural vision movies, when stimuli en-
ter the receptive field abruptly and remain
fixed there for several hundred millisec-
onds (Fig. 6A,B, dashed lines). The step
response evoked by natural vision movies
shows the transient behavior characteristic
of responses to natural vision movies (Fig.
1B). In contrast, the step response evoked by
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sponse function (Eq. 14). STRFs with a bi-
phasic temporal response will have tempo-
ral inhibition indices near 0.5, whereas

those that are monophasic will have indi-  Figure 4.
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Natural stimulus statistics influence spatial tuning in some neurons. A, Spatial and temporal response functions

ces near 0. Figure 6C compares indices ob-
tained using the two stimulus classes. Val-
ues for natural vision temporal response
functions are distributed broadly around a
mean of 0.37. Indices for grating temporal
response functions have a mean of 0.18

estimated using natural vision movie data indicate a preference for horizontal stimuli at 1.0 cycle/°. Peak latency is 49 msec,
followed by an inhibitory response (77-91 msec). B, The grating spatial response function also shows excitatory tuning to
horizontal stimuli, but spatial frequency tuning is higher (2.4 cycles/°). Inhibitory tuning is also clearly present. The time course is
quite brief (peak latency, 49 msec) and lacks a strong negative component. , The natural vision STRF predicts a substantial portion
of the observed PSTH (r = 0.49). D, The grating STRF predicts with significantly lower accuracy (r = 0.22; p < 0.05, randomized
paired t test). In addition to missing transient responses, it also fails to predict modulation between fixations as well as the natural

and are almost always lower than the cor-
responding index for natural vision mov-
ies. This difference is significant (randomized paired ¢ test, p <
0.001), confirming that temporal inhibition is stronger during
stimulation by natural vision movies than by grating sequences.
The magnitude of the change in inhibition, however, varies sub-
stantially across neurons.

Contribution of nonlinear temporal responses to predictions

The preceding analyses demonstrate that natural visual stimuli
evoke a strong, late inhibitory response that is absent during
stimulation with grating sequences. Does this change in temporal
response explain the fact that natural vision STRFs predict natu-
ral visual responses better than grating STRFs? To answer this
question, we constructed a third, hybrid STRF for each neuron.
Each hybrid STRF was created by combining the grating se-
quence spatial response function with the natural vision tempo-
ral response (Eq. 4). For example, to construct a hybrid STRF for
the neuron shown in Figure 3, we combined the grating spatial
response function from Figure 3B with the natural vision tempo-
ral response function from Figure 3A. Because the hybrid STRF
followed the temporal profile of the natural vision STRF, any
difference in its predictive power relative to the natural vision
STRF must reflect differences in spatial response properties
evoked by the two stimulus classes.

Figure 3 illustrates a case for which the hybrid STRF has sub-
stantially better predictive power than the grating STRF. For this
neuron, saccadic transitions in the natural vision movie elicit
large transient responses. The biphasic structure of the natural
vision temporal response enables it to predict the transients,
whereas the monophasic grating temporal response fails to do so

vision STRF. Inhib., Inhibition; Excit., excitation.

(Fig. 3, compare C, D). The hybrid STRF, which incorporates the
biphasic temporal response, predicts responses to natural vision
movies with a correlation of r = 0.66, significantly better than the

grating STRF (r = 0.36; p < 0.05, randomized paired t test). This
correlation is greater, although not significantly different from
the prediction correlation obtained using the natural vision STRF
(r = 0.55). Thus, for this neuron, the difference in the ability of
natural vision and grating STRFs to predict natural visual re-
sponses stems primarily from a temporal nonlinearity evoked
differently by the two stimulus classes.

For the neuron in Figure 4, a nonlinear temporal response
does not account entirely for the discrepancy between natural
vision and grating STRFs. The poor performance of the grating
STRF can be attributed only partially to its inability to predict
transient responses. The hybrid STRF prediction (r = 0.33) is
better than that of the grating STRF (r = 0.22; p < 0.05) but still
significantly lower than that of the natural vision STRF (r = 0.49;
p < 0.05). Instead, the difference in the ability of natural vision
and grating STRFs to predict natural visual responses reflects
both spatial and temporal nonlinearities evoked differently by the
two stimulus classes.

In general, hybrid STRFs predict natural vision movie re-
sponses better than grating STRFs. The mean prediction correla-
tion for hybrid STRFs is 0.30, whereas the mean prediction cor-
relation for grating STRFs is 0.19, a significant difference (p <
0.001, randomized paired t test). Despite their improvement,
however, hybrid STRFs do not predict natural vision movie re-
sponses as accurately as natural vision STRFs on average (Fig.
5B). The mean prediction correlation for hybrid STRFs is signif-
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Figure 5.  Predictive power depends on estimation stimulus class. A, Comparison of natural vision STRF and grating STRF

predictions of natural vision movie validation responses. The position on the x-axis shows the correlation (Pearson’s r) between
the grating STRF prediction and the observed response. The y-axis shows the prediction correlation for natural vision STRFs. Filled
points above the dashed line correspond to neurons with significantly more accurate natural vision STRF predictions, whereas
shaded points below the line indicate more accurate grating STRF predictions (p << 0.05, randomized paired ¢ test). Natural vision
STRFs predict responses (mean r = 0.42) consistently better than grating STRFs (mean r = 0.19; p << 0.001, randomized paired
ttest; n = 44). B, Comparison of natural vision movie predictions by hybrid STRFs and natural vision STRFs. Hybrid STRFs are
composed of grating spatial response functions and natural vision temporal response functions. Natural vision STRFs predict
responses (mean r = 0.42) significantly better than hybrid STRFs (mean r = 0.30; p < 0.001, randomized paired ¢ test). Thus,
incorporating natural vision temporal responses into both STRF classes decreases but does not account entirely for the gap in
predictions. ¢, Comparison of natural vision movie predictions by positive space hybrid STRFs and positive space natural vision
STRFs. These STRFs have excitatory spatial tuning estimated using grating sequence and natural vision movie data, respectively.
However, both incorporate natural vision temporal responses and have negative coefficients removed from their spatial response
functions. Positive space natural vision movie STRFs (mean r = 0.34) predict responses no better than positive space hybrid STRFs
(meanr = 0.35; not significant, randomized ¢ test). Thus, changes in temporal response and spatially tuned inhibition account for
the differences in predictive power of STRFs estimated using the two stimulus classes.
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Figure 6.  Statistics of natural stimuli affect temporal response properties. A, The mean natural vision temporal response

function (solid line) shows a strong biphasic pattern: excitation at early latencies, peaking at 49 msec, followed by a negative
component. The step response (dashed line), found by integrating the temporal response in time, predicts transient responses to
fixation epochs. B, The mean grating temporal response function is primarily monophasic. The time course of the excitatory
component is similar to that for natural vision movies, but it lacks the late inhibitory component. The step response predicts a
sustained response without a transient. (, Scatterplot compares temporal inhibition indices (Eq. 14) measured using grating
sequences (x-axis) with those measured using natural vision movies (y-axis). Larger index values correspond to a stronger
negative component in a temporal response function. Most points lie above the line of unity slope, indicating that temporal
inhibition index values were larger for natural vision movie responses. The mean inhibition index for natural vision movies (0.37)
is significantly higher than for grating sequences (0.18; p << 0.001, randomized paired ¢ test; n = 44).

icantly lower than for natural vision STRFs (mean, 0.30 vs 0.42,
respectively; p < 0.001, randomized paired f test).
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Spatial response functions estimated
using the two stimulus classes for the same
neuron are compared in Figure 7. The
grating spatial response functions have
been normalized to match the residual
correlation bias in the natural vision
spatial response functions according to
Equation 15. In the first example (Fig.
7A), both excitatory and inhibitory tun-
ing are similar in the two spatial re-
sponse functions. We compared spatial
response functions according to the spa-
tial similarity index defined in Equation
16. Index values near 1 indicate a high
degree of similarity between the func-
tions, whereas values near 0 indicate lit-
tle similarity. The similarity index of
these spatial response functions is 0.88.

Not all neurons show such a high de-
gree of similarity. The pattern in Figure 7B
is typical of neurons showing differences
in spatial tuning. Excitatory tuning is sim-
ilar in both spatial response functions.
However, inhibition is more tightly tuned
in the natural vision spatial response func-
tion (left) than the grating spatial response
function (right). This pair of spatial re-
sponse functions has a similarity index of
0.68, lower than the previous example. Be-
cause the majority of difference is in inhib-
itory tuning, we also measured the similar-
ity index separately for the positive and
negative components of the functions. For
this neuron, the similarity index of the pos-
itive spatial response functions is 0.85,
whereas the similarity of the negative spa-
tial response functions is just 0.38.

The histogram in Figure 8 A plots the
distribution of similarity indices between
spatial response functions. Index values
are distributed broadly around a mean of
0.37. Figure 8 B shows a histogram of sim-
ilarity indices for the positive spatial re-
sponse functions. Relative to the full spa-
tial response comparison, the distribution
is shifted significantly toward greater sim-
ilarity, with a mean of 0.49 (p < 0.001,
randomized paired £ test). In contrast, the
distribution of index values for the nega-

tive components of spatial response functions (Fig. 8C) is biased
toward lower values, with a mean of 0.30 (p < 0.05, randomized

paired t test). Thus, similarity is greater for excitatory tuning

Spatial response properties during natural visual stimulation

The results in the previous section demonstrate that differences
in temporal response properties account for some of the deficit in
predictive power observed in grating STRFs, compared with nat-
ural vision STRFs. However, hybrid STRFs, which incorporate
natural vision temporal response functions but preserve grating
spatial response functions, still predict less accurately than STRFs
estimated entirely using natural vision movies in 36% (16 of 44)
of the neurons in our study (Fig. 5B, filled points). This suggests
that the statistical properties of natural vision movies also drive
changes in spatial response functions.

rather than inhibitory tuning across the entire set of neurons.

Contribution of nonlinear spatial inhibition to predictions

The comparison of spatial tuning properties for different stimu-
lus classes (Fig. 8) suggests that differences in inhibitory tuning
may explain the superior predictive power of natural vision
STREFs over hybrid STRFs. If this hypothesis is true, then removing
the negative component of the spatial response function before con-
structing space—time separable STRFs should cancel the difference in
predictive power. To test this, we compared the predictive power of
two final STREF classes that controlled for the differences in spatially
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Figure 7.  Spatial response functions compared between stimulus classes. A, Natural vision

(left) and grating (right) spatial response functions estimated for a single neuron. Both have
excitatory tuning to diagonal orientations at 3.0 cycles/°. Inhibitory tuning is localized to a small
range of spatial channels. Residual correlation bias has been normalized for this spatial response
function pair. B, Other neurons in V1 reveal stimulus-dependent patterns in their spatial re-
sponse functions. The natural vision and grating spatial response functions for this neuron have
similar excitatory tuning, but inhibition is much broader in the grating spatial response. The
effect of residual bias normalization can be seen by comparing this grating spatial response
function with Figure 4 B. Inhib., Inhibition; Excit., excitation.

tuned inhibition. First, the positive space natural vision STRF was
estimated by extracting only the positive component of a natural
vision spatial response function (Eq. 5) before estimating the tem-
poral response function using natural vision movie data. Second, the
positive space hybrid STRF was estimated using only the positive
component of a grating spatial response function and the natural
vision temporal response function.

The effect of removing inhibitory spatial tuning from natural
vision and hybrid STRFs is summarized in the scatterplot in Fig-
ure 5C. Positive space hybrid STRFs predict with a mean corre-
lation of 0.35, which is not significantly different from the mean
correlation of 0.34 for positive space natural vision STRFs (ran-
domized paired t test; n = 44). This result reflects primarily a
decrease in predictive power for natural vision STRFs, whereas
STRFs with spatial tuning estimated using grating sequences
show a small but insignificant improvement. The distribution of
points in Figure 5C is clustered along the line of unity slope,
indicating that both models perform similarly for most neurons.

David et al. « Natural Stimulus Statistics Modulate V1 Receptive Field Structure

[
=

Number of cells
¥ ,]

-0.5 0 0.5 1
Spatial response
similarity index

[am—y
o

Number of cells
¥, ]

-0.5 0 0.5 1
Similarity index
(positive spatial response)

C 2 7
q; 10
8
.g 5
Z
-0.5 0 0.5 1
Similarity index

(negative spatial response)

Figure 8.  Natural stimuli affect spatially tuned inhibition. A, Histogram of similarity index
values (Eq. 16) between spatial response functions estimated using natural vision movies and
grating sequences. The distribution of index values has a mean of 0.37 (dotted line; n = 44). 8,
Histogram of similarity index values between only the positive coefficients of the same spatial
response functions. The distribution is shifted significantly toward higher values relative to A
(arrow), with a mean of 0.49 (p << 0.001, randomized paired ¢ test). C, In contrast, the histo-
gram of spatial similarity between the negative coefficients reveals a significantly lower mean
0f 0.30 (p < 0.05, randomized paired t test), suggesting that the greater difference between
spatial response functions lies in inhibitory tuning.

Thus, increased late temporal inhibition and changes in spatially
tuned inhibition account for the differences in response proper-
ties we observed under the two stimulus conditions.

Effects of natural spatial versus temporal stimulus statistics
The preceding results demonstrate that synthetic gratings and
natural visual stimuli elicit different spatial and temporal re-
sponse properties in V1 neurons. Ultimately, understanding the
nonlinear mechanisms that underlie these differences in response
properties will require identifying the specific features of natural
stimuli that cause them. This is a complicated issue because nat-
ural vision movies and grating sequences differ in many ways and
the statistical structure of natural images is only partially under-
stood. It may be possible to discover general principles, however,
such as how basic differences in spatial and temporal stimulus
statistics influence spatial and temporal response properties.

In theory, differences in either spatial or temporal stimulus
statistics could cause changes in the spatial response properties of
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Figure 9.  Sources of stimulus-dependent modulation. A, Differences in either spatial or
temporal stimulus statistics (stats.) could potentially modulate spatial and temporal response
propertiesin V1. The four possible relationships between stimulus statistics and response mod-
ulation are indicated by arrows 1—4. Solid arrows indicate observed relationships. B, We as-
sessed these potential relationships by comparing predictions of hybrid STRFs estimated using
natural vision movies, grating sequences, and natural image sequences (n = 21 neurons).
Labels marking each comparison indicate the relevant relationship in A. Solid lines indicate
significant improvements in prediction accuracy (p << 0.05). These comparisons indicate that
natural temporal stimulus statistics modulate both spatial and temporal response properties.
Natural spatial statistics modulate spatial response properties, but they do not influence tem-
poral response properties (dashed line). For details, see Results.

V1 neurons, changes in their temporal response properties, or
changes in both temporal and spatial properties (Fig. 9A). To
explore these possibilities, we collected data using a third stimu-
lus class, natural image sequences. Natural image sequences con-
sist of a stream of natural image patches chosen randomly for
each 14 msec frame. Thus, they share spatial statistics with natu-
ral vision movies but share temporal statistics with grating
sequences.

Effects of spatial stimulus statistics on response properties

To determine whether the spatial statistics of natural images in-
fluence responses in V1 in any way (Fig. 94, arrows 1, 2), we
compared the predictive power of STRFs estimated using natural
image sequences with those obtained with grating sequences.
Predictions were evaluated against responses obtained with nat-
ural vision movies. We reasoned that if STRFs estimated using
stimuli with natural spatial statistics are different from those es-
timated from gratings, then natural image sequence STRFs
should predict natural visual responses more accurately.

For the 21 neurons with appropriate data, natural image se-
quence STRFs predict with a mean correlation of 0.28, whereas
grating STRFs predict with a mean of just 0.22, a significant dif-
ference (p < 0.05, randomized paired ¢ test) (Fig. 9B). Thus,
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differences in the spatial statistics of gratings and natural stimuli
elicit different response properties in area V1.

Relationship between spatial stimulus statistics and temporal
response properties

We next determined whether the spatial statistics of natural im-
ages affect the temporal response properties of V1 neurons (Fig.
9A, arrow 2). If this is true, then a hybrid STRF that combines the
spatial response function obtained with natural image sequences
and the temporal response function obtained with grating se-
quences should predict natural visual responses less accurately
than the original natural image sequence STRF.

However, STRFs estimated using natural image sequences
predict responses to natural vision movies no better than these
hybrid STRFs (mean correlation, 0.28 vs 0.27, respectively; not
significant, randomized paired ¢ test) (Fig. 9B). The previous
section demonstrated that natural image sequence STRFs predict
natural visual responses better than grating STRFs. The differ-
ence in predictive power is eliminated when the spatial response
function evoked by grating sequences is replaced with the spatial
response evoked by natural image sequences. Therefore, we con-
clude that differences between the spatial statistics of natural
stimuli and gratings have a significant influence on the spatial
response properties of V1 neurons (Fig. 9A, arrow 1) but do not
influence their temporal response properties (Fig. 94, arrow 2).

Relationship between temporal stimulus statistics and spatial
response properties
We performed a similar analysis to determine whether natural
temporal statistics affect the spatial response properties of V1
neurons (Fig. 9A, arrow 3). If this is true, then a hybrid STRF that
combines the spatial response function obtained with natural
image sequences and the temporal response function obtained
with natural vision movies should not predict natural visual re-
sponses as well as the original natural vision movie STRF.
Across the sample of 21 neurons, these hybrid STRFs predict
natural visual responses with a mean correlation of 0.38, whereas
the original natural vision STRFs show a mean correlation of
0.49. This difference is significant ( p < 0.05, randomized paired
ttest) (Fig. 9B). These STRFs were estimated using stimuli having
the same spatial statistics but different temporal statistics, and
they use a common temporal response function. Therefore, this
difference in predictive power must reflect nonlinear modulation
of the spatial response properties of V1 neurons by temporal
stimulus statistics.

Relationship between temporal stimulus statistics and temporal
response properties

Results presented above (see Fig. 5) have already demonstrated
that temporal response properties of V1 neurons depend on tem-
poral stimulus statistics (Fig. 9A, arrow 4). For completeness, we
also addressed this issue using data acquired with natural image
sequences. If temporal stimulus statistics influence temporal re-
sponses, then a hybrid STRF that combines the spatial response
profile obtained with natural image sequences and the temporal
response profile obtained using natural vision movies should
predict natural visual responses better than the original natural
image sequence STRF.

As noted earlier, STRFs estimated using natural image se-
quences predict responses to natural vision movies with a mean
correlation of 0.28. The hybrid STRFs predict with a mean of
0.38, a significant difference ( p < 0.05, randomized paired ¢ test)
(Fig. 9B). This confirms that natural temporal statistics evoke
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temporal response properties that are not found with stimuli that
have different temporal statistics.

In summary, the analyses presented here demonstrate that
spatial and temporal stimulus statistics have specific effects on
both the spatial and temporal response properties of V1 neurons.
Spatial statistics influence spatial response properties but do not
affect temporal response properties. In contrast, temporal stim-
ulus statistics influence both spatial and temporal response prop-
erties of cells in area V1. Some caution should be exercised when
comparing the effects of estimation stimulus properties in terms
of absolute difference in prediction correlation. For example,
when STRFs are estimated using stimuli without natural tempo-
ral statistics, the improvement in prediction correlation from
natural spatial statistics may be relatively small. For many neu-
rons, STRFs estimated without natural temporal statistics predict
with no better than random accuracy (see Fig. 5A). For these
neurons, using stimuli with natural spatial statistics to estimate
STRFs may provide little or no improvement to predictions. In-
troducing natural spatial statistics to STRFs that have been esti-
mated using stimuli with natural temporal statistics, in which a
greater number of STRFs have better than random predictions
(Fig. 5B), might lead to alarger increase in prediction correlation.
Thus, the absolute difference in prediction correlation reported
in each comparison in Figure 9 should not be interpreted strictly
as the size of the effect but instead as a measure of whether the
influence of a particular stimulus property on STRF structure is
significant.

Discussion

Natural vision and neural response properties

This study demonstrates that both the spatial and temporal tun-
ing properties of V1 neurons differ under natural and synthetic
stimulus conditions. The dependence of tuning on stimulus sta-
tistics is functionally important: a model that incorporates spatial
and temporal tuning observed during natural visual stimulation
is able to predict novel natural visual responses significantly bet-
ter than a model incorporating tuning observed during stimula-
tion by synthetic gratings. We identified two major components
of the tuning changes. During natural vision, neurons in V1 show
increased inhibition at late time lags and complex shifts in the
spatial tuning of inhibition. These tuning changes reflect differ-
ential activation of nonlinear response properties by the two
stimulus classes. Therefore, natural tuning properties cannot be
predicted from responses to grating sequences and vice versa.

Temporal inhibition

V1 STRFs estimated using natural visual stimuli show substantial
late inhibition that gives rise to transient responses. This inhibi-
tion is much weaker or even absent in STRFs estimated using
grating sequences. The changes in temporal inhibition depend on
differences in temporal stimulus statistics and are consistent with
previous observations of nonlinear temporal summation (Tol-
hurst et al., 1980; Mancini et al., 1990; Reid et al., 1992). Grating
sequences are temporally white (up to 72 Hz), whereas natural
vision movies are biased toward saccade frequencies (3—4 Hz).
This difference in temporal stimulus statistics has a substantial
enough effect on tuning properties to dramatically influence the
predictive power of STRFs.

This temporal nonlinearity is found in most neurons in our
sample, although some neurons have a linear temporal response
that does not vary appreciably with stimulus class. Transient re-
sponses could reflect depression of subcortical input to V1
(Chance et al., 1998) or local inhibition by intracortical circuitry
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(Troyer etal., 1998; Miiller et al., 1999). In either case, our obser-
vations are consistent with the idea that V1 neurons adapt their
temporal filtering properties to accommodate changing stimulus
statistics and thereby increase information transmission and ef-
ficiency (Dan et al., 1996; Richmond et al., 1999; Fairhall et al.,
2001; Lesica et al., 2003).

Spatially tuned inhibition

Our STRF estimation procedure reveals both spatially tuned ex-
citation and inhibition in V1 neurons. In the phase-separated
Fourier model, excitatory and inhibitory channels each represent
patterns at a single orientation, spatial frequency, and phase that
increase and decrease spiking responses, respectively; they do not
correspond to “on” and “off” subfields described in image do-
main models (Jones etal., 1987; DeAngelis et al., 1993). Our study
demonstrates that the excitatory spatial channels are consistent,
regardless of whether natural stimuli or gratings are used.
However, inhibitory channels vary substantially with stimulus
statistics.

Inhibitory channels likely reflect suppressive influences such
as cross-orientation inhibition (Bonds, 1989; Carandini et al.,
1997), off-peak suppression (Bauman and Bonds, 1991; Shapley
et al,, 2003), contrast gain control (Wilson and Humanski 1993;
Carandini et al., 1997), and short-term adaptation (Miiller et al.,
1999). Nonlinear modulation has been shown to vary across the
classical and nonclassical receptive field (Gilbert and Wiesel,
1990; Walker et al., 1999; Vinje and Gallant, 2000) and may de-
pend on the relative phases of spatial frequencies composing the
stimulus (Mechler et al., 1998). The variability we observed in
inhibitory tuning may result from the fact that patterns of sup-
pression are stimulus-dependent. For example, cross-orientation
inhibition is observed when two gratings are presented simulta-
neously (Carandini et al., 1997), but this effect may be absent or
attenuated for a rapidly changing sequence of individual gratings.
The pattern of inhibition found using natural vision movies re-
flects the specific influence of the statistical properties of natural
visual stimuli.

The differences in temporal and spatial inhibition observed
with natural vision movies and grating sequences are attributable
to differences in both spatial and temporal stimulus statistics. A
more detailed understanding of activity in V1 during natural
vision will require identifying the specific differences that give
rise to these changes (e.g., stimulus power spectrum, phase spec-
trum, or bandwidth in space or time). Furthermore, there is a
possibility that the statistical properties of the stimulus might
interact to produce unanticipated changes in spatial and tempo-
ral tuning. For example, nonlinear interactions in the local cir-
cuitry of V1 could depend on both the time course and the spatial
composition of the stimulus. In that case, natural spatial and
temporal statistics could combine synergistically to produce a
pattern of tuning not predicted by stimuli with only natural spa-
tial or temporal statistics.

Phase-separated Fourier model

The linearized STRF framework used here is closely related to
classical white noise analysis (Marmarelis and Marmarelis, 1978).
In white noise analysis, each STRF is composed of a series of
kernel functions of increasing polynomial order. The first-order
kernel provides the best linear model of response properties in
the domain of stimulation, and nonlinear response properties are
captured by the second- and higher-order kernels. In principal,
such models can predict responses to arbitrary stimuli. Linear
white noise analysis has proved valuable at early stages of sensory
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processing, in which a first-order kernel explains a large portion
of response variance (Jones et al., 1987; DeAngelis et al., 1993).
However, this approach has proved less successful when applied
to nonlinear neurons [e.g., complex cells (DeAngelis et al., 1995)]
or at higher stages of visual processing (Mazer et al., 2000). Spe-
cialized algorithms have been developed to estimate second-
order kernels (Mancini et al., 1990; Touryan et al., 2002), but
these methods require spatially and temporally restricted stimuli
to achieve adequate signal-to-noise levels.

Our linearized STRF approach directly addresses the limita-
tions of classical linear kernel estimation in two ways. First, by
placing a nonlinear transformation at the input stage of the
model, we estimate nonlinear STRFs without a drastic increase in
the number of model parameters. This avoids the exponential
increase in parameters required to estimate higher-order kernels
in the image domain using other methods. Second, our approach
permits the use of natural stimuli that drive neurons at all stages
of visual processing. Natural stimuli contain high-order statisti-
cal properties that the visual system has evolved to exploit (Bar-
low, 1961; Field, 1987; Simoncelli and Olshausen, 2001). The
space of natural stimuli is far from small, but it is much more
compact than the space of white noise typically used for STRF
estimation. Linearized STRFs estimated in this natural stimulus
domain provide a more accurate description of tuning properties
during natural vision than STRFs estimated using another
stimulus.

By appropriate choice of a nonlinear transformation at the
input stage, the linearized STRF framework can account for a
wide variety of nonlinear mechanisms. For example, the classical
energy model could be incorporated more fully by including a
temporal Fourier transform at the input stage. This would pro-
vide an explicit model of direction selectivity and might increase
predictive power. However, incorporating additional nonlinear
parameters also introduces greater susceptibility to estimation
noise. Without careful attention to data limitations, a model with
more parameters suffers greater risk of overfitting and even re-
duced prediction accuracy.

Overview of the prediction framework

This study is the first attempt to evaluate a model of V1 in terms
of how well it predicts time-varying activity during natural vision.
Our approach includes two innovations that impose stricter cri-
teria on measurements of prediction accuracy than many previ-
ous studies. These innovations represent critical steps toward
developing a concrete understanding of how well existing models
describe the actual function of V1.

First, we maintained a complete segregation between estima-
tion and validation data. This approach avoids entirely the pos-
sibility of overfitting to the data used for evaluating predictions.
Thus, the correlations reported here give an unbiased measure of
how the model generalizes to an arbitrary novel stimulus.

Second, predictions from different models were evaluated
against a common time-varying response to a natural stimulus.
This provides an absolute metric of how well models describe
both spatial and temporal response properties to natural stimuli
(Gallant, 2003; Olshausen and Field, 2004). To the extent that the
visual system is nonlinear, neurons may respond differently to
synthetic stimuli than during natural vision. Therefore, any
model, whether produced with a synthetic or natural stimulus,
must ultimately be tested under natural viewing conditions. This
provides a powerful tool for comparing models. In this study, we
estimated STRFs with arbitrary data (e.g., natural vision movies
or grating sequences) and with different model constraints (e.g.,
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positive spatial response functions) and compared them in an
unbiased manner.

Because of the introduction of these criteria into our methods,
a direct comparison of correlation values in these results with the
typically higher values reported in other studies would not be
meaningful. The definitive model of VI response properties
would predict with perfect correlation values of 1 and, at the same
time, take natural vision properties into account. Our absolute
prediction scores are well below unity. Although phase-separated
Fourier STRFs represent a significant advance in the ongoing
effort to produce the definitive model of V1, they cannot be in-
terpreted as a realization of that ideal.

The natural vision estimation—prediction approach used here
will be useful for developing models of higher visual processing in
extrastriate cortical areas. Neurons in these areas respond poorly
to synthetic stimuli such as bars or sinusoidal gratings but often
give substantial responses to more complex stimuli (Gallant,
2003). The prediction framework also offers a powerful tool for
estimating and comparing models of arbitrary complexity.
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