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Dissociating Detection from Localization of Tactile Stimuli

Justin A. Harris, Thida Thein, and Colin W. G. Clifford
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In what they described as “a tactile analog of blindsight,” Paillard et al. (1983) reported the case of a woman with damage to the left parietal
cortex who was profoundly impaired in detecting tactile stimuli but could nonetheless correctly identify their location (also Rossetti et al.,
1995). This stands in direct contrast to reports of neurological patients who were unable to accurately locate stimuli that they could
successfully detect (Head and Holmes, 1911; Halligan et al., 1995; Rapp et al., 2002). The combination of these findings suggests that
detecting and locating tactile stimuli are doubly dissociable processes, presumably mediated by different neural structures. We con-
ducted four psychophysical experiments seeking evidence for such a double dissociation in neurologically intact subjects. We compared
people’s accuracy in detecting versus locating a tactile stimulus presented to one of four fingers and followed by a vibrotactile mask
presented to all four fingers. Accuracy scores for both the yes-no detection and four-alternative forced-choice location judgments were
converted to a bias-free measure (d’), which revealed that subjects were better at detecting than locating the stimulus. Detection was also
more sensitive than localization to manipulations involving the mask: detection accuracy increased more steeply than localization
accuracy as the target-mask interval increased, and detection, but not localization, was affected by changes in the mask frequency. By
comparing these results with simulated data generated by computational models, we conclude that detection and localization are not
mutually independent as previous neurological studies might suggest, but rather localization is subsequent to detection in a serially

organized sensory processing hierarchy.
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Introduction

“Blindsight” is a striking neuropsychological syndrome in which
a patient with damage to visual cortical areas is able to identify
attributes of an object (e.g., its location) despite reporting that
they cannot “see” the object (Weiskrantz et al., 1974; Azzopardi
and Cowey, 1997; Stoerig and Cowey, 1997). Descriptions of this
syndrome have had an enormous impact in psychology, neurol-
ogy, and philosophy. Evidence for an equivalent dissociation be-
tween conscious perception of a stimulus and knowledge of its
spatial properties is comparatively rare among sensory modalities
other than vision, but one area in which such evidence exists is
touch. Paillard et al. (1983) reported the case of a woman with
damage to the left parietal cortex who was profoundly insensitive
to tactile stimuli applied to her right hand and lower right arm.
Despite this, she showed above-chance accuracy in identifying
the location of stimuli that she failed to detect. A similar somato-
sensory deficit (as might be called “numb touch”) was reported
by Rossetti etal. (1995) in their study of a man with a left thalamic
lesion. The ability of these patients to locate tactile stimuli in the
absence of conscious detection contrasts with classic reports
(Head and Holmes, 1911) and more recent demonstrations (Hal-
ligan et al., 1995; Rapp etal., 2002) of patients who were unable to
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accurately locate stimuli that they could successfully detect. The
combination of these findings indicates that detecting and locat-
ing tactile stimuli are doubly dissociable processes, presumably
performed by different neural structures.

Although neurologically induced dissociations are an ex-
tremely important source of evidence regarding the functioning
of perceptual systems, one must exercise caution when using the
behavior of patients with brain damage to make inferences about
normal functioning. Moreover, such neurological evidence is of-
ten based on a small number of cases for which relevant premor-
bid data are almost never available. In this regard, evidence for
equivalent, but less dramatic, process dissociations in intact
“normal” subjects is invaluable. Not surprisingly, there have been
attempts to demonstrate blindsight in normal subjects. In one
study, people made correct forced-choice judgments about the
location of near-threshold visual stimuli that they reported not
detecting (Meeres and Graves, 1990). However, such demonstra-
tions, and indeed most clinical reports of blindsight, suffer a basic
confound arising from the fact that yes—no detection decisions
are subject to response bias, whereas forced-choice judgments are
not (Campion et al., 1983). Thus, such dissociations may reflect
differences in response bias rather than changes in perceptual
processes (but see Azzopardi and Cowey, 1997). There has been
one report of blindsight among normal observers that was not
subject to this confound (Kolb and Braun, 1995); however, this
particular study has met with controversy on other grounds
(Morgan et al., 1997; Robichaud and Stelmach, 2003).

Given the problems that have afflicted the search for
blindsight-like dissociations of visual perception, the objective of
the present study was to examine this issue in a different sensory
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modality: touch. As mentioned earlier, studies of neurological
patients have revealed a double dissociation between localization
and detection of tactile stimuli, including evidence for
blindsight-like localization of undetected stimuli. Thus, our psy-
chophysical study has sought to obtain evidence for a similar
dissociation in neurologically intact subjects.

Materials and Methods

The objective of the present experiments was to compare people’s accu-
racy in detecting versus locating tactile stimuli. Under normal condi-
tions, these tasks are trivially easy, and thus ceiling effects would preclude
the possibility of observing any dissociation. Therefore, in these experi-
ments, we used a backward masking procedure to reduce performance,
permitting us to identify a possible separation between accuracy in tactile
detection versus localization.

In each experiment, subjects were presented with a brief tactile stim-
ulus (the target) on one of four fingers of their right hand (excluding the
thumb). This was followed shortly afterward by a vibrotactile stimulus
(the mask) presented simultaneously to all four fingers. The subjects
were asked to report on the presence versus absence of the target stimulus
and to identify its location (which finger). The temporal interval between
the target and mask was systematically varied to document changes in
detection and localization judgments as the target became more salient
(with increasing separation between target and mask). Different stimulus
onset asynchronies (SOAs) between the target and vibration were used in
each experiment. Typically, these varied between 40 and 100 msec, with
the exception of a very short SOA (20 msec) included in experiment 4
and a wider range of SOAs (30—180 msec) in experiment 2. Experiment 4
introduced a second manipulation of the mask. In addition to varying the
target—mask SOA, the experiment examined the effect of changing the
frequency of the vibrotactile stimulus used as the mask. We anticipated
that differences in mask frequency would affect the amount of masking.

In experiments 1, 3, and 4, subjects gave a yes—no response to report
whether they detected the target stimulus or not and a four-alternative
forced-choice (4AFC) response to name the finger on which the target
was presented. To avoid the confound arising from differences in sensi-
tivity to response bias between yes—no and forced-choice responses, all
response-accuracy data were converted to a bias-free score (d’). As an-
other means to avoid this confound, experiment 2 investigated differ-
ences in detection versus localization accuracy by using the same re-
sponse measure (2AFC) for both judgments. On each trial of this
experiment, the subjects felt two masks, separated by 1 sec, both of which
were presented to two fingers (index and middle) simultaneously. One of
the two masks was preceded by the target stimulus presented to one of the
two fingers. Thus, for the detection judgment, the subjects had to report
when the target occurred (before the first or second mask); for the local-
ization judgment, they had to report which finger received the target
(index or middle).

In experiments 1 and 2, the detection judgment and the location judg-
ment were made in separate blocks of trials. This provided independent
measures of the subjects’ accuracy on each task (i.e., so that the subjects’
location judgment was not contaminated by their detection response or
vice versa). In experiments 3 and 4, the subjects were required to make
both detection and localization judgments on every trial. This enabled us
to examine the subjects’ localization accuracy conditional on their detec-
tion response (i.e., compare their accuracy in reporting the location of
stimuli they detected vs stimuli they missed).

Finally, we compared the experimental findings to simulated data gen-
erated using different computational models. Specifically, we tested three
models in which yes—no (detection) and forced-choice (localization)
judgments were based on (1) the output of a single sensory process, (2)
two different sensory processes arranged serially (the second process was
performed on the output of the first process), or (3) the product of two
independent sensory processes (operating in parallel). A summary of the
different experiments is presented in Table 1.

Experimental subjects. Forty-one first-year psychology students, aged
between 17 and 25 years, participated in the experiments to obtain course
credit. Of the total number, 24 were female, and 38 were right handed.
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Table 1. Summary of experimental designs

Tasks Mask (Hz)  SOAs (msec)
Experiment 1 Detect (yes—no) or locate (4AFC) 50 40, 60, 80, 100
Experiment2  Detect (2AFC) or locate (2AFC) 50 30, 60, 90, 120, 150, 180
Experiment3  Detect (yes—no) and locate (4AFC) 50 40, 60, 80
Experiment4  Detect (yes—no) and locate (4AFC)  250r50 20,40, 60, 80, 100

The recruitment of subjects and the experimental procedures had been
approved by the institutional ethics committee.

Experimental apparatus. The target stimulus and vibration mask were
produced using nickel bimorph wafers (38 X 19 X 0.5 mm, length X
width X thickness; Morgan Matroc, Bedford, OH) individually driven by
electric pulses from custom-built amplifiers controlled by a computer
running Labview (National Instruments, Austin, TX). The wafers were
individually mounted on plastic blocks, aligned side-by-side and spaced
25 mm apart (center-to-center), housed inside a custom-built plastic
case. Small plastic rods (15 mm tall, 3 mm diameter) were glued to the
top face at the end of each wafer. These rods stood vertically with their
end projecting through a small hole drilled into the top face of the case.
The subjects placed their fingers directly onto the ends of these rods
(buttons) so that the vertical deflections generated by the wafers were
transmitted directly to their fingertips. The target was a single upward
square-wave deflection lasting 5 msec. The amplitude of the target was
100 wm in experiment 1 but was increased to 150 wm in experiments 2, 3,
and 4 (because of poor performance of many subjects in a pilot version of
experiment 2). The mask was a sequence of square waves, alternating
from the down position to the up position, holding each for 5 msec, in
which the two positions differed in height by 150 wm (for illustration of
stimulus sequence, see Fig. 1). In experiments 1, 3, and 4, the vibration
lasted a total of 500 msec but was shortened to 250 msec in experiment 2
because two vibrations were presented on each trial. The frequency of the
vibration was 50 Hz (i.e., the onset of each square wave was separated by
20 msec) or 25 Hz for half of the trials in experiment 4 (the onset of each
square wave was separated by 40 msec).

Experimental procedure. The subjects sat with the four fingertips of
their right hand (excluding the thumb) resting lightly on the buttons of
the apparatus. The task was explained to them, and they were familiar-
ized with both the target stimulus (presented on each finger without the
mask) and the mask (presented on all fingers). The subjects then com-
menced a block comprising trials with different target—-mask SOAs or
different mask frequencies (experiment 4), all randomly intermixed (dif-
ferent random orders were generated for different subjects). On any trial,
the target had equal probability of occurring on any of the four fingers (or
two fingers, in experiment 2). Experiments 1, 3, and 4 also contained
catch trials randomly intermixed among the experimental trials. On
catch trials, there was no target stimulus; thus, this condition was used to
determine each subject’s false alarm rate for detection.

In experiments 1 and 2, subjects were asked to report whether they felt
the target was present or absent (respond either “yes” or “no”) on half
of the trials and to report to which finger the target had been presented on
the remaining trials. Half of the subjects made the detection decision
during the first half of the experiment and the localization decision dur-
ing the second half; the remaining subjects were tested in the reverse
order. In experiments 3 and 4, subjects made both detection and local-
ization judgments (in that order) on all trials.

Computer simulations. To simulate performance in detection and lo-
calization tasks, we cast the specific decision procedures within the for-
mal framework of Signal Detection Theory (Green and Swets, 1966).
Briefly, when the target stimulus is present, the sensory signal elicited by
the stimulus is given a numerical value greater than zero (the size of the
number is varied systematically to represent changes in the strength of
the signal). This value (s) is added to a random number (1) from a
Gaussian distribution with a mean of zero and specified SD. The random
number represents the “noise” inherent in the transduction and process-
ing of the sensory signal, and the amount of noise present is specified by
SD. Thus, the sensory input equals s + n. When the target stimulus is
absent, the sensory input is just a random number from the noise distri-
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Figure 1. Top, lllustration of the stimulus sequence for experiment 1, in which a 5 msec

target stimulus was presented to one finger and was followed, after a variable SOA, by a 50 Hz
vibrotactile mask to all four fingers. A, B, Results of experiment 1. A, Average percentage correct
for detection and localization of the target across different SOAs between the target and mask.
For detection, this corresponds to the proportion of hits (positive responses on trials with the
target present); for localization, this is the proportion correct in a four-alternative forced choice
(chance performance, 25% correct). The false alarm rate is the proportion of catch trials (with no
target) on which the subject reported detecting the target. B, Detection and localization accu-
racy converted into bias-free d” scores. Error bars represent within-subject SEMs (Loftus and
Masson, 1994).

bution (= n). For detection, a positive response is given on any trial when
the sensory input is greater than a threshold value, ¢ (the decision crite-
rion for detection). Clearly, the probability of correct detection (a “hit”)
depends on where ¢ is set, making detection vulnerable to response bias.
However, because the probability of a false alarm (a positive detection
response on a trial with no target) is also affected by the decision crite-
rion, a bias-free measure of detection sensitivity can be calculated as the
difference in the normalized probabilities (as z-scores) of a hit and a false
alarm. This value, d’, equals the distance (in SD units) between the means
of the s + n distribution and the n distribution (i.e., d’ = s/SD).

Our computational models involve four separate sensory channels
(representing four fingers). On trials with the target present, one channel
contains the stimulus signal (i.e., the sensory input = s + n), and the
other three contain only noise (three independently generated values of
n). On trials without the target, all four channels contain only noise. To
model detection performance, on trials when the target is present (i.e.,
one of the four channels contains the signal), a hit is computed whenever
input on any of the four channels is >¢; a false alarm is computed on
catch trials (without the target) when any channel is >c. Thus, d’ is
approximately equal to the distance between the s + n distribution and
the maximum-of-four noise distribution (i.e., the distribution of the
maxima of four randomly generated values).

In some models that we tested, the detection procedure (comparing
the sensory input to a decision criterion) has also been used to model
localization performance. In these cases, separate detection decisions are
made on each of the four channels, and correct localization occurs when
only the channel with the signal is above threshold (i.e., s + n > ¢, and all
three n values <c). Localization accuracy is reduced to 50, 33, or 25%,
when one, two, or all three of the noise channels, respectively, are also >¢
(the localization response being thus determined by a two-, three-, or
four-way guess). Localization accuracy is also 25% when no channel has
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a value >c and equals 0% when s + n < ¢, whereas one or more noise
channels is >c. In other models, rather than making binary detection
decisions on each channel, localization is determined by ranking the four
different sensory inputs and locating the target on the channel with the
largest input. This localization is correct when the maximum input is on
the s + n channel and is incorrect when it was one of the three other
channels. Here, d’ equals the distance between the s + n distribution and
the maximume-of-three noise distributions.

Results

Experiment 1

Subjects (n = 10) made detection and localization judgments on
160 trials each (32 trials at each SOA plus 32 catch trials). The
mean accuracy (as percentage correct) for both detection and
localization judgments across each of the four SOAs is shown in
Figure 1 A. Clearly, accuracy for the two judgments is similar and
increases as the SOA increases. Indeed, these data could be taken
as showing that subjects are more accurate at locating than de-
tecting targets at the shortest SOA but more accurate at detecting
than locating targets at longer SOAs. However, direct compari-
son between the two judgments would be seriously confounded
because of the very different decision processes underlying each.
Specifically, the fact that the subjects must adopt an implicit de-
cision criterion to give yes—no judgments for detection makes this
task very sensitive to response bias, whereas the 4AFC task used
for the location judgment requires no decision criterion and thus
is not sensitive to such bias.

To equate the two measures, both were converted to d” scores
(a bias-free measure of sensitivity) using the tables of Elliott
(1964). For the detection task, d’ was calculated using the false
alarm rate. In this experiment, the mean false alarm rate was 14%,
measured as the proportion of positive detection responses on
catch trials. The mean d’ scores for both detection and localiza-
tion are shown in Figure 1 B. On inspection of the figure, clearly,
sensitivity in the detection task was higher overall than in the
localization task. Also, clearly, accuracy on both judgments in-
creased as the SOA increased. Finally, it appears that the increase
in accuracy across SOAs was steeper for detection than localiza-
tion. A repeated measures ANOVA confirmed these observa-
tions: there was a significant difference between the detection and
localization tasks (F(; o) = 6.91; p = 0.027), there was a significant
linear trend overall across SOA (F, ) = 32.41; p < 0.001), and
there was a significant interaction between linear trend and task
(F0) = 7.25; p = 0.025).

This experiment has identified two differences between detec-
tion and localization of tactile stimuli. First, subjects were more
accurate at reporting the presence (vs absence) of a target stimu-
lus than at reporting the location of the stimulus. Thus, detection
of a tactile stimulus does not necessarily imply the ability to lo-
calize that stimulus. Second, although both detection and local-
ization accuracy improved as the SOA between the target and
mask increased, they improved at different rates. At the shortest
SOA (40 msec), sensitivity for detection and localization was
equivalent, but, as the SOA increased, the subjects became in-
creasingly more sensitive at detecting than localizing the stimu-
lus. These two differences argue against a model of tactile pro-
cessing in which a single mechanism is responsible for detecting
when a stimulus occurs and locating where it occurs. Such a
model would, in its simplest form, predict equal sensitivity for
detection and localization judgments, which the present experi-
ment shows to be false.
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Figure 2.  Accuracy in detection and localization in experiment 2. Both judgments were
made as two-alternative forced-choice decisions (subjects reported which of 2 temporal inter-
vals contained the target or on which of 2 fingers the target was presented). A, Percentage
correct for detection and localization responses across different SOAs between the target and
mask. Error bars represent within-subject SEMs (Loftus and Masson, 1994). B, The same data as
in A but with Weibull functions fitted to each set of data.

Experiment 2

Rather than dealing with the difference between yes—no detection
decisions and 4AFC localization judgments by converting both
into a common d’ score, experiment 2 used the same response
measure (2AFC) for both judgments. On each trial, subjects felt
two consecutive masks, both of which were presented to two
fingers simultaneously. One of the two masks was preceded by
the target stimulus presented to one of the two fingers. For the
detection judgment, the subjects had to report when the target
occurred (before the first or second mask); for the localization
judgment, they had to report which finger received the target
(index or middle). Subjects (n = 12) made these judgments on 32
trials at each of the six target-mask SOAs.

The mean accuracy (as percentage correct) for both when
(detection) and where (location) judgments across each of the six
SOAs is shown in Figure 2 A. As in experiment 1, the subjects were
more accurate in judging when the target occurred than where it
occurred. This was confirmed by a repeated measures ANOVA,
which revealed a significant main effect of judgment type (when
vs where; F(; ;) = 11.44; p = 0.006). Furthermore, although
accuracy for both when and where judgments increased as the
SOA between target and mask increased, the rate at which accu-
racy improved across SOAs was greater for judgments about
when the target occurred than where it occurred. Because of ceil-
ing effects on performance, it was not appropriate to use linear
trends to analyze the functions relating SOA to accuracy in either
judgment. To compare the two sets of data, Weibull functions
were fitted to each (Fig. 2 B). A lapse rate of 0.18 was incorporated
into the curve fit because the raw scores indicated that accuracy
flattened off at ~91%. The values of the parameters « and f3,
which correspond to the position and slope of the function, re-
spectively, were calculated for both functions, and SDs of these
values were estimated. The value of the position parameter o =
SD for each function was 48.08 = 1.52 for when judgments and
77.15 = 2.67 for where judgments, confirming the difference in
accuracy for the two judgments. The values of the slope parame-
ter B = SD are 2.268 = 0.20 for when and 1.22 = 0.08 for where,
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Figure 3.  Results of experiment 3. A, Detection and localization accuracy (as d’) across

different SOAs between the target and mask. B, Localization accuracy (percentage correct) of
targets that had been detected versus targets that were not detected (missed). Error bars
represent within-subject SEMs (Loftus and Masson, 1994).

confirming the steeper improvement in accuracy across SOA for
detection versus localization. The two functions differ signifi-
cantly on both parameters (4, = 9.47, p < 0.001 for the differ-
ence in o; and t4, = 4.92, p < 0.001 for B).

Experiment 2 has confirmed the dissociation between detec-
tion and localization of tactile stimuli. This experiment used a
2AFC task to record detection sensitivity so that these responses
were formally equivalent to the 2AFC decision used for the local-
ization judgment. Under these conditions, subjects continued to
show greater accuracy for detection (judging when the stimulus
occurred) than localization (judging where it occurred). More-
over, the shape of the psychometric function was different for the
two judgments: as the SOA between target and mask increased,
the improvement in accuracy was steeper for detection than
localization.

Experiment 3

Experiments 1 and 2 demonstrated that detection and localiza-
tion of tactile stimuli are dissociable and, more specifically, that
localization must involve some additional (or separate) process-
ing from detection. Experiment 3 sought to investigate whether
localization was nonetheless contingent on detection or whether
the two could be mediated by mutually independent processes.
This was done by requiring subjects (n = 10) to make both de-
tection (yes—no) and localization (4AFC) judgments on every
trial so that we could examine their localization accuracy condi-
tional on their detection response. Only three SOAs were used
(40, 60, and 80 msec), and the number of trials at each SOA was
increased to 100, so that there would be a sufficient number of
trials on which the target was not detected (“misses”) so that we
could make a reliable measure of localization accuracy in the
absence of detection. Forty catch trials were included.

The false alarm rate for detection was low (mean *+ SD, 8 *+
7.3%). The mean sensitivity (as d") for both detection and local-
ization judgments across each of the three SOAs is shown in
Figure 3A. As in experiment 1, subjects were more sensitive for
detection than localization, and accuracy for the two judgments
showed different rates of improvement across the SOAs. A re-
peated measures ANOVA confirmed that there was a significant
difference between the detection and location accuracy (F, o) =
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13.92; p = 0.005), a significant linear trend overall across SOA
(F1,9) = 20.91; p = 0.001), and a significant interaction between
linear trend and task (F(, o) = 14.42; p = 0.004).

Accuracy for the location judgment was then split, separating
those trials on which the subjects had detected the target from the
trials when the target was not detected. The results are shown in
Figure 3B. Clearly, the detected targets were much more accu-
rately located than the undetected targets. An ANOVA confirmed
that this difference was significant (F, o) = 74.35; p < 0.001).
There was no significant overall linear trend for location accuracy
across SOA (F(; gy = 2.79; p = .129), nor was there an interaction
between linear trend across SOA and target type (detected vs
undetected; F < 1). Despite the difference in location accuracy
between detected and undetected targets, location accuracy for
the undetected targets was high (mean = SD, 48.5 = 13.8%) and
was significantly above chance (25%; ) = 5.40; p < 0.001).

This experiment confirmed the findings of experiments 1 and
2, that subjects are better at detecting a masked tactile stimulus
than locating it and that their detection sensitivity shows a steeper
improvement across SOA than does their localization perfor-
mance. By requiring the subjects to make both detection and
localization judgments on each trial, this experiment was able to
examine the relationship between the two. The results showed
that the judgments are correlated, because subjects were much
more accurate at locating targets they had detected than targets
they had missed. This correlation could imply that the location
judgment is contingent on detection: that subjects must first de-
tect the tactile stimulus to locate it. However, the correlation
could equally reflect a common source of variance in the pro-
cesses underlying the two judgments. For example, the final pro-
cesses responsible for detection and location may be mutually
distinct, but, because each depends on a common source of input
(through somatosensory channels), variations in detection and
localization should be correlated to the extent that their common
input is itself a source of variation in signal strength and noise.

The correlation between the two judgments was not perfect:
not all detected targets were accurately located (accuracy was
~80%), and undetected targets were located with above chance
accuracy (48%, with chance being 25% for the 4AFC task). The
fact that some detected targets were not correctly located indi-
cates that detection is not sufficient for correct localization. The
above-chance accuracy in locating missed targets is potentially
more interesting, because it suggests that detection is not neces-
sary for localization. Indeed, this observation could be inter-
preted as akin to the tactile analog of blindsight reported in neu-
rological patients by Paillard et al. (1983) and Rossetti et al.
(1995). However, one must be cautious when drawing such com-
parisons between responses made in a yes—no task with responses
in a forced-choice task because the former, but not the latter, is
sensitive to response bias. It is possible, for example, that the
subjects set a conservative decision criterion for the yes—no de-
tection judgment and consequently responded “no” on trials in
which there was sensory information available to make the
forced-choice location judgment. Therefore, the observed accu-
racy in locating undetected targets is consistent with the sugges-
tion that explicit detection is not necessary for localization, but it
remains possible that localization is dependent on the processes
that permit detection.

An unexpected feature of this data is the remarkably flat func-
tion relating localization accuracy conditional on detection to
SOA. This is at first surprising given the consistent increase in
localization accuracy across SOA in general (i.e., not separating
detected and undetected trials). The fact that localization accu-
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racy conditional on detection is so flat represents additional evi-
dence for the correlation between detection and localization.
That is, the increase in localization accuracy normally seen across
SOA must be attributable to an increase in the number of targets
being detected: once the differential effect of detection is parti-
tioned out (by separating detected from undetected targets), ac-
curacy in locating targets changes little across SOA.

Experiment 4

Up to this point, we varied the salience of the target solely by
manipulating the SOA between the target and mask. Experiment
4 introduced a second manipulation. In addition to varying the
target—mask SOA, the experiment examined the effect of chang-
ing the frequency of the vibrotactile stimulus used as the mask.
We anticipated that differences in mask frequency would affect
the task by altering the amount of integration and/or interrup-
tion masking. Interruption masking refers to the notion that a
stimulus presented after a target masks the perception of the
target by prematurely terminating its sensory processing. Inte-
gration masking, on the other hand, attributes the failure to per-
ceive the target to a failure in separating the two stimuli percep-
tually: that is, the target is perceived as part of the mask rather
than being distinguishable from it (Kahneman, 1968). Because
the rate of firing in somatosensory neurons in response to a vi-
bration varies as a function of its frequency (Mountcastle et al.,
1990; Romo et al., 1998), we hypothesized that vibrations of dif-
ferent frequency would produce different amounts of interrup-
tion masking. Second, because the vibration is essentially a se-
quence of mechanical deflections, each very similar to the target
itself, integration of the target into the percept of the mask should
vary as a function of the mask frequency. For example, a 50 Hz
mask (as used in the previous experiments) would produce max-
imal integration masking at an SOA of 20 msec (because this
matches the cycle time of the vibration) and less masking at
longer SOAs; whereas a 25 Hz mask would produce maximal
integration masking at an SOA of 40 msec (which matches the
cycle time of this vibration). Thus, the 50 Hz mask should pro-
duce more masking than the 25 Hz mask at an SOA of 20 msec,
but the reverse relationship should hold at SOAs of 40 msec or
longer. Experiment 4 examined this very issue by asking subjects
(n =9) to detect and locate a tactile stimulus when followed by a
25 or 50 Hz vibration mask with an SOA of 20, 40, 60, 80, or 100
msec. There were 32 trials for each of the 10 experimental condi-
tions plus 64 catch trials: 32 with the 50 Hz mask and 32 with the
25 Hz mask.

The mean sensitivity (as d") for both detection and location
judgments across each of the five SOAs is shown in Figure 4, A
and B. For clarity of exposition, we separated detection scores (A)
and localization scores (B) in the figure. Nonetheless, clearly,
subjects were more sensitive at detection than location judg-
ments, as in the previous experiments. Of particular interest for
this experiment, it appears that detection accuracy was affected
by the mask frequency. Specifically, the subjects were generally
more sensitive in detecting targets followed by the 50 Hz mask
than targets followed by the 25 Hz mask. However, this was re-
versed for trials with an SOA of 20 msec: on these trials, detection
sensitivity was lower with the 50 Hz mask than the 25 Hz mask.
This result is in line with our predictions regarding the effect of
integration masking. According to these predictions, the 25 Hz mask
would produce greater integration masking than the 50 Hz mask
across the longer SOAs because the cycle time of the 25 Hz mask is
longer and thus closer to the target—-mask SOA. Moreover, we pre-
dicted that the 50 Hz mask would produce greater integration
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masking than would the 25 Hz mask at the
shortest SOA (20 msec) because this SOA

Detection
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In contrast to its effect on detection, 29
mask frequency had no discernable effect
on localization accuracy. This is important
because it shows that variations in detec-
tion accuracy do not necessarily carry over
into localization accuracy and thus could 18 -
be taken as evidence for a further dissoci-
ation between detection and localization.
An ANOVA confirmed the observa-
tions made above. There was a significant
difference overall between detection and 14
localization accuracy (F, 5y = 5.60; p =
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20.24; p = 0.002). There were no signifi- 1
cant two-way interactions between any of
the three factors (F values =1.01), but
there was a significant three-way interac-
tion (F(, g) = 6.824; p = 0.031). This three-
way interaction confirms that the two
masks differed in their effects on accuracy
across SOA for the detection judgment
(i.e., that detection was flatter with the 25
Hz mask than the 50 Hz mask) but had equivalent effects for the
localization judgment. This interpretation of the three-way inter-
action was confirmed by separate ANOVAs run on the detection
scores and localization scores. For detection, there was no main
effect of mask frequency (F, 5y = 1.09; p = 0.327), but there
was a significant main effect of SOA (F(, 3y = 13.45; p = 0.006)
and a significant interaction between mask frequency and SOA
(F18) = 6.10; p = 0.039). For localization, there was no main
effect of mask frequency (F < 1), there was a significant main
effect of SOA (F, 5, = 24.30; p = 0.001), but there was no inter-
action between mask frequency and SOA (F(, 4 = 1.04; p =
0.337).

As in experiment 3, accuracy for the location judgment was
split, separating those trials on which the subjects had detected
the target from the trials when the target was not detected. The
results are shown in Figure 4C. As in experiment 3, the detected
targets were much more accurately located than the undetected
targets. An ANOVA confirmed that this difference was significant
(F(1,8) = 106.96; p < 0.001). There was a significant effect of SOA
(F18) = 6.74; p = 0.032) but no main effect of mask frequency
(F < 1) or any significant interactions between these three factors
(all Fvalues <1). These results constitute evidence for the strong
correlation between detection and location judgments.

Again, like experiment 3, subjects performed better than
chance (25%) in locating targets that they had failed to detect. A
single-sample t test was conducted on the overall score across the
five SOAs. This confirmed that subjects were significantly above
chance in locating undetected targets, both when followed by the
25 Hz mask (mean * SD, 41.66 = 15%, t) = 3.34; p = 0.01) and
the 50 Hz mask (mean * SD, 43.95 = 11%; t4) = 5.17; p =
0.001). There was, however, no difference in accuracy between
these sets of scores (t < 1). Interpretation of this above-chance
performance is confounded by the fact that the detection judg-
ment required subjects to adopt a decision threshold, whereas the
forced-choice localization judgment did not. Thus, the forced-

Figure 4.

20 40 60 80 10
SOA (ms)

20 40 60 80 100 20
SOA (ms)

40 60 80 100
SOA (ms)

Results of experiment 4. In addition to varying the SOA between the target and mask, this experiment varied the
frequency of the vibrotactile mask (25 vs 50 Hz). For clarity, detection ( A) and localization ( B) are shown separately. C, Accuracy (as
percentage correct) in locating targets that had been detected versus targets that were not detected (missed). Error bars represent
within-subject SEMs (Loftus and Masson, 1994).

choice decision should be sensitive to the signal carried by the
missed targets (although their signal was below decision thresh-
old for detection).

An additional interesting result was obtained in this experi-
ment. As in experiments 1 and 3, the false alarm rate on trials with
the 50 Hz mask was relatively low (15%). However, the false
alarm rate on trials with the 25 Hz mask was higher (26%). This
difference is statistically significant (¢, = 3.04; p = 0.016), and
we observed the same effect in other unpublished experiments.
The higher false alarm rate might indicate that the 25 Hz mask
created more noise in the sensory processes that lead to detection.
Such an increase in noise would also explain why detection sen-
sitivity was lower on these trials and, in particular, why the func-
tion relating detection to SOA was flatter than for trials with the
50 Hz mask.

Computer simulations

The present experiments have documented several dissociations
between detection and localization of tactile stimuli. This may
mean that a tactile stimulus undergoes two different sensory pro-
cesses, one leading to detection and the other to localization.
Alternatively, differences in detection sensitivity and localization
accuracy may occur if the two judgments are based on different
decision procedures even when they are applied to the same sen-
sory information (i.e., the output of a common sensory process).
To examine these possibilities, we created computational models
of the different processes and compared the simulated data they
produce with the experimental data reported above. We consid-
ered three different ways that the sensory processes might be
organized (for illustration, see Fig. 5). In the first type of model,
detection and localization are based on the same sensory pro-
cesses, and any dissociation is attributable to differences in the
decision procedures used to detect versus localize the stimulus. In
the second type of model, detection and localization are based on
different processes that are arranged in series (i.e., output of the
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Figure 5. lllustrations of three different models of the relationship between the sensory
processes leading to detection and those leading to localization of a tactile stimulus. A, Single-
process model. The tactile stimulus undergoes sensory processing, the output of which is used
for both detection and localization of the stimulus. Noise, inherent in the sensory processing,
reduces accuracy for both detection and localization. B, Serial-processing model. The tactile
stimulus undergoes “early” processing, which is used directly for detection, and then is sub-
jected to additional processing required for stimulus localization. This additional processing
adds more noise and thus reduces localization accuracy. G, Parallel-processing model. The tac-
tile stimulus undergoes early sensory processing, after which separate processing mechanisms
are engaged to generate detection and localization of the stimulus.

first process is fed into the second process). Here, the initial pro-
cess leads to detection, and the subsequent process leads to local-
ization. The third type of model has detection and localization
based on different processes arranged in parallel (i.e., they are
mutually independent). In each case, we made plots of the data
generated by the models and have selected that range of values
corresponding to the accuracy (d' or the proportion correct)
typically observed in the above experiments.

Detection and localization using a single source of

sensory information

The simplest model of the sensory processes leading to detection
and localization is one in which both judgments are made on the
output of a single sensory process (or acommon set of processes).
We will first consider the case in which localization involves four
separate detection judgments. This model incorrectly predicts
that detection and localization accuracy are very similar (Fig.
6A). With some parameters (certain values of noise and decision
criterion), detection and localization performance appear to dis-
sociate in a similar manner to that observed in the present exper-
iments. This occurs when localization accuracy plateaus (al-
though detection sensitivity continues to increase) because the
probability of a false alarm on one of the nontarget channels
remains constant across increases in signal strength, thus pre-
venting localization accuracy ever reaching 100% correct. How-
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Figure 6.  Simulated data generated using single-process models (see Fig. 5A). In one ver-

sion of this model (A, B), detection involves comparing the sensory input on each channel
(finger) with a decision threshold and giving a positive response if one or more channels are
greater than the threshold. Localization involves locating the target on the suprathreshold
channel. If no channels, or multiple channels, are above threshold, the localization response is
reduced to a two-, three-, or four-way guess. In a different version of this model (C, D), detection
involves the same process as described above, but localization is based on the channel with the
strongest signal.

ever, this dissociation is only obtained with large amounts of
noise that produce an unrealistically high false alarm rate
(>50%). Furthermore, regardless of parameters, this model in-
correctly predicts that localization accuracy should be at chance
for undetected targets (Fig. 6 B). This is because, for a target to be
undetected, it must have been below detection threshold on each
individual channel, in which case the localization response re-
duces to a four-way guess. This is obviously discrepant with the
results of experiments 3 and 4 in which subjects could localize
targets even when they reported that they did not detect them.
Clearly, then, this simple model cannot accommodate the exper-
imental findings.

As an alternative to the above model, subjects may make four
separate signal detection decisions to locate the target but make a
single “omnibus” decision (using sensory information combined
across channels) for detection. However, such an omnibus detec-
tion judgment would have much lower sensitivity than that per-
formed on each channel separately because the noise (variance)
between channels would be additive (i.e., SD would double across
the four channels). Therefore, detection would always be worse
than localization (in fact, d’ for detection would be exactly half of
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that for localization), a prediction that is not supported by the
experimental findings.

Rather than conducting detection judgments concurrently on
four fingers to locate the target stimulus, subjects may compare
the signal strength between fingers and locate the stimulus on the
finger with the strongest sensory signal. When this process is
modeled computationally, it incorrectly predicts that localization
is more accurate than detection (Fig. 6C). This is because the d’ for
detection approximately equals the distance between the s + n
distribution and the maximum-of-four noise distribution, whereas
the d’ for localization equals the distance between the s + 1 and the
maximum-of-three noise distributions. Because the maximum-of-
four distribution is higher than the maximum-of-three distribution,
the associated d’ smaller. It also predicts unrealistically high localiza-
tion accuracy for missed targets (Fig. 6 D).

This completes our survey of models in which a single source
of sensory information is used for detection and localization
judgments. Clearly, none accommodates the experimental data,
confirming that, whatever combination of decision procedures is
used, detection and localization judgments cannot be based on
output from the same sensory process. Below we consider two
possible ways in which different sensory processes for detection
and localization might be organized. In one, the processes leading
to detection and localization are arranged serially, and, in the
other, these judgments arise from mutually independent (paral-
lel) sensory processes.

Detection and localization using two serially arranged sources of
sensory information

If detection and localization are not based on a single source of
sensory information, they may be mediated by two sensory pro-
cesses that are arranged in series. That is, the output of the sensory
process leading to one judgment is fed into a second process that
gives rise to the other judgment (Fig. 5B). Because detection sen-
sitivity is consistently better than localization accuracy, we will
only consider the case in which the early process leads to detec-
tion and the later process leads to localization. The logic of these
models is that each sensory process adds its own noise, and there-
fore the additional processing for localization means that it is
based on noisier data than that used for detection. As for the
single process models, we considered two decision operations for
localization, one in which the signal strengths are rank-ordered
across fingers and the other involving separate detection judg-
ments that are made on each finger. However, in the models we
tested (described below), the outcome for localization was essen-
tially identical regardless of the decision procedure used. There-
fore, we will only present the simulated data from the more plau-
sible model in which the target is located on the finger with the
strongest signal.

For each model tested, the localization operation was per-
formed on data with a greater amount of noise than the data on
which the overall detection decision is made (for detection, SD =
1; for localization, an additional 2X SD of noise was added).
Given this, it is not surprising that the serial models correctly
predict that detection sensitivity is greater than localization accu-
racy and that localization accuracy improves at a slower rate than
detection sensitivity as the signal strength increases (Fig. 7A).
This conforms to the experimental findings that detection and
localization show different rates of improvement across increases
in SOA. If the amount of noise present in the detection process is
increased, detection sensitivity is decreased and the function re-
lating d' to signal strength (SOA) is flattened (Fig. 7C). The false
alarm rate is also increased. All of these are simple and unsurpris-
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Figure 7.  Simulated data generated using a serial-process model (see Fig. 5B). If noise is
presentin the localization process, in addition to the noise presentin the detection process, then
localization accuracy will be lower than detection accuracy, and detection will improve more
rapidly than localization across increases in signal strength (A). Localization accuracy is better
for detected than missed targets and, for missed targets, is almost flat across increases in signal
strength (B). If the amount of noise in the early process is increased, this reduces detection
sensitivity but has little effect on localization accuracy (C) and has no impact on localization
accuracy for detected versus missed targets (D).

ing products of the model, but, importantly, they resemble the
impact of lowering the mask frequency in experiment 4. Of per-
haps greater importance, adding extra noise to the detection pro-
cess has much less effect on localization accuracy, which is again
consistent with the impact of changing mask frequency in exper-
iment 4. This is presumably because the noise added at the detec-
tion stage is diluted by the amount of noise already present at the
localization stage.

These models also make a number of correct predictions
about localization performance conditional on detection (Fig.
7B,D). First, they correctly predict much better localization ac-
curacy for detected targets than undetected targets. This is be-
cause the localization process is dependent on the output of the
detection process, even when that process did not lead to explicit
detection. The models also correctly predict that localization ac-
curacy is greater than chance for undetected targets. This is an
inevitable consequence of making performance on a forced-
choice task conditional on the outcome of a yes—no decision. On
missed trials, the signal strength on all four channels must be less
than the decision threshold. Nonetheless, the average signal
strength on the channel with the target (s + n) will still be greater
than the average signal strength on each of the other three chan-
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nels. Finally, the models accurately predict that localization accu-
racy conditional on detection has a very shallow gradient across
SOA. This is because the increase in localization accuracy with
increasing signal strength is accompanied by an increase in detec-
tion. Thus, localization accuracy changes little, especially for un-
detected targets.

Detection and localization using two independent sources of
sensory information

Thus far, we explored the predictions generated by models in
which detection and localization are based on the same sensory
process or different serially organized sensory processes. The final
type of model is one in which detection and localization are based
on the outputs of mutually independent (parallel) sensory pro-
cesses. Because these processes are mutually independent, it is a
trivial matter for such a model to predict different levels of per-
formance for detection and localization, as well as different rates
of improvement across increases in signal strength (correspond-
ing to increases in SOA in the experiments). Such a model is also
untroubled in predicting a change in detection sensitivity with-
outaconcurrent change in localization accuracy (as was observed
in experiment 4 as the result of a change in mask frequency).
However, if localization and detection were based on entirely
independent sensory information, one would expect the two sets
of responses to be completely uncorrelated. Therefore, localiza-
tion accuracy should be equal for detected and undetected stim-
uli. The strong correlation we found between detection and lo-
calization (i.e., subjects were much better at localizing detected
targets than undetected ones) identifies a dependency between
these judgments. A solution to this is to assume that the sensory
information used in each judgment has a common source at
some level. Such an assumption is very reasonable because it is
highly likely that the early sensory processes are common to both
judgments. Thus, the parallel model that we examined in detail
divides sensory processes into three parts: a common early pro-
cess and two subsequent processes, independent of each other,
that separately lead to detection and localization (Fig. 5C).

As before, the model predicts better detection sensitivity than
localization accuracy, as well as different slopes for the two judg-
ments, as long as the amount of noise present in the localization
process is sufficiently greater than that in the detection process. It
predicts accurate localization of undetected targets because noise
added in the detection process would reduce detection sensitivity
without affecting localization accuracy. It also readily allows for a
change in detection sensitivity, without any change in localiza-
tion accuracy, by increasing the noise present in the detection
process. Finally, the model can predict a large separation of local-
ization accuracy between detected and undetected targets and
can even predict that localization accuracy for detected and un-
detected targets will be mostly flat across increases in signal
strength. However, the model is seriously challenged when trying
to account for all of these results simultaneously. In particular, it
can account for the differences between detection sensitivity and
localization accuracy and it can account for the pattern of local-
ization accuracy for detected versus undetected targets, but it
cannot adequately account for both using the same set of param-
eters (levels of noise). This is because the addition of independent
noise to the detection and localization processes is necessary to
produce differences in the levels of accuracy but dramatically
reduces the correlation between those processes. Thus, adding
enough noise to localization to separate it from detection brings
localization of detected and undetected targets together (Fig. 8).
One can obtain simulated results that approximate the full set of
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Figure8. Simulated data generated using a parallel-process model (see Fig. 5¢). More noise

must be present in the localization process than the detection process so that localization
accuracy is lower than detection accuracy and detection improves more rapidly than localization
across increases in signal strength (A). Localization accuracy is marginally better for detected
than missed targets, and localization of both types of target improves across increases in signal
strength (B).

experimental data but only by adding very little noise to the de-
tection process. Of course, this diminishes the very premise on
which the parallel model was distinguished from the serial one.
Furthermore, as soon as one adds more noise to the detection
process (to simulate the change in detection, but not localization,
when the mask frequency is changed), the localization accuracy
for detected and undetected targets converge, something that was
not observed in the results of experiment 4.

Discussion

The present series of experiments has sought to investigate the
relationship between the processes underlying the simple detec-
tion of tactile stimulation and the ability to locate that stimula-
tion. This was done by asking subjects to detect and locate a brief
mechanical stimulus, applied to one of four fingers, followed by a
vibrotactile mask applied to all four fingers. In all experiments,
the subjects were consistently more sensitive at detecting than
locating the target. This dissociation was evidenced by two addi-
tional findings: (1) increments in the interval between the target
and mask led to greater improvements in detection accuracy than
localization accuracy; and (2) a change in the frequency of the
mask significantly affected detection accuracy but had no effect
on localization accuracy.

The greater sensitivity in detecting versus locating a tactile
stimulus indicates that detection is not sufficient for accurate
localization and that localization is not necessary for detection.
The fact that a drop in detection sensitivity (produced by a de-
crease in mask frequency) was not accompanied by a decline in
localization accuracy suggests that detection is not necessary for
localization, and localization is not sufficient for detection. Ad-
ditional evidence that localization is not contingent on detection
came from experiments 3 and 4, which revealed that subjects
performed significantly better than chance at locating stimuli
that they failed to detect. However, as noted previously, this find-
ing on its own cannot be taken as evidence of a dissociation
between detection and localization because the yes—no decision
used to report detection requires that subjects adopt a decision
threshold, whereas the forced-choice decision used to index lo-
calization does not. Therefore, the forced-choice judgment will
still be sensitive to the signal carried by missed target stimuli,
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although the signal strength was below the decision threshold for
detection. Nonetheless, the observation of better-than-chance
accuracy in locating undetected stimuli is a necessary (if not suf-
ficient) result to support the conclusion that localization is not
contingent on detection. Altogether, the present findings could
be taken as demonstrating a double dissociation between tactile
detection and localization and are therefore consistent with neu-
ropsychological reports of a double dissociation between these
same processes (Paillard et al., 1983; Halligan et al., 1995; Rossetti
et al., 1995; Rapp et al., 2002).

A double dissociation between detection and localization im-
plies that these judgments are based on mutually distinct pro-
cesses (presumably identifiable with different neural mecha-
nisms). To test this interpretation, we constructed computational
models in which detection and localization decisions were based
on the same sensory process or different sensory processes ar-
ranged either in series or in parallel. When the simulated data
generated by the different models was compared with the exper-
imental data reported here, only the serial-process model cor-
rectly reproduced all of the present results. Both of the dual-
process models correctly predicted the dissociations between
detection and localization: (1) that detection accuracy was higher
and improved more rapidly with increased signal strength (SOA)
than localization accuracy; (2) that detection accuracy could be
reduced with little or no change in localization accuracy (as seen
in experiment 4 when mask frequency was changed); and (3) that
localization accuracy could be greater than chance for undetected
targets. However, the serial-processes model, but not the parallel-
processes model, correctly predicted the large difference in local-
ization accuracy between detected versus undetected targets, as
well as the fact that localization accuracy of detected and unde-
tected targets changed little across increased signal strength.
These particular experimental findings identify a strong correla-
tion between the detection and localization responses, a feature
that is captured by the serial model (because the localization
process is dependent on the output of the detection process) but
not the parallel model (because localization and detection are
independent).

The present evidence for a dissociation between detection and
localization derives from the differential effect of the vibrotactile
mask in disrupting performance. The mask had a more disruptive
effect on localization than on detection, especially at longer
SOAs, whereas the frequency of the mask affected detection but
not localization. What might these findings tell us about the pro-
cesses involved? Typically, backward masking is thought to arise
from one (or both) of two mechanisms: the mask may interrupt
ongoing sensory processing of the target stimulus, or the target
may be integrated into the percept of the mask (Kahneman, 1968)
(for recent discussions about the mechanisms underlying mask-
ing, see Enns and Di Lollo, 2000; Keysers and Perrett, 2002). We
attempted to dissect the contributions of these processes by ex-
amining the interaction between mask frequency and target—
mask SOA. We hypothesized that the extent to which the target
would be integrated into the mask would be a function of how
similar the SOA is to the cycle duration (1/frequency) of the
mask. For example, a 50 Hz mask, with a cycle duration of 20
msec, would produce maximal integration masking at an SOA of
20 msec. In contrast, a 25 Hz mask, having a cycle duration of 40
msec, would produce maximal integration masking at an SOA of
40 msec. Although both masks would produce progressively less
masking at longer SOAs, the 25 Hz mask should always produce
greater integration masking than the 50 Hz mask, except at an
SOA of 20 msec. These predictions were born out by the data of
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experiment 4: the 25 Hz mask disrupted detection more than did
the 50 Hz mask at SOAs of 40, 60, 80, and 100 msec, but the
reverse was true when the SOA was 20 msec. Although this result
concurs with our predictions based on integration masking, there
is no reason to predict this interaction between frequency and
SOA as a result of interruption masking. Interruption masking
will decrease with increasing SOA and may be affected by the
frequency of the mask (although it is not clear in which direc-
tion), but SOA and mask frequency should have independent,
and thus additive, effects on interruption masking.

In experiment 4, a change in mask frequency did not produce
an observable effect on localization accuracy, although it affected
detection. We already noted that this apparent dissociation is
nonetheless consistent with localization being contingent on the
processes leading to detection. If this is the case, however, it im-
plies that changes in mask frequency have no additional impact
on localization (beyond their primary effect on detection). That
is, integration masking affects the early sensory processes leading
to detection but not the subsequent processes leading to localiza-
tion. This differential susceptibility to integration masking may
reveal something about the content of the processes leading to
detection versus localization. For example, conscious detection
of a target relies on the ability to individuate it as a temporally
discrete event (separate from the mask) and is thus vulnerable to
temporal integration of the target and mask. Localization, on the
other hand, may arise from a spatial analysis, such as a compari-
son of the strength or duration of tactile stimulation across fin-
gers, or may require attention to be focused on spatially restricted
locations. In either case, the spatial nature of the task would make
it immune to temporal integration masking. Nonetheless, if lo-
calization is subsequent to detection in a sensory processing hi-
erarchy, then the spatial analysis for localization must depend on
previous temporal analysis. For example, it might be necessary to
identify the precise moment at which the target occurred (result-
ing in detection) and then restrict the spatial analysis to sensory
input at that time point.

Conclusions

The present experiments have documented dissociations be-
tween detection and localization of tactile stimuli in normal sub-
jects. By comparing the experimental findings with simulated
data generated by different computational models, we conclude
that detection and localization are subserved by different sensory
processes arranged in series. Specifically, we argue that the pro-
cesses that underlie localization of a tactile stimulus are subse-
quent to, and dependent on, the processes responsible for detec-
tion. In this regard, our findings are not consistent with previous
reports of a blindsight-like syndrome in neurological patients
who could accurately report the location of tactile stimuli that
they failed to detect (Paillard et al., 1983; Rossetti et al., 1995). We
suggest that the evidence provided by these neurological cases
may be subject to the same confound that affects most reports of
true (visual) blindsight (Campion et al., 1983), namely that the
patient’s ability to correctly identify the location of a stimulus
that they reported not detecting may be an artifact of the differ-
ence in the psychometric properties of the yes—no and forced-
choice decisions used to index detection and localization, respec-
tively (for the exception to this in a study of visual blindsight, see
Azzopardi and Cowey, 1997).
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