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Mitochondrial a-Ketoglutarate Dehydrogenase Complex
Generates Reactive Oxygen Species
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Mitochondria-produced reactive oxygen species (ROS) are thought to contribute to cell death caused by a multitude of pathological
conditions. The molecular sites of mitochondrial ROS production are not well established but are generally thought to be located in
complex I and complex III of the electron transport chain. We measured H,0, production, respiration, and NADPH reduction level in rat
brain mitochondria oxidizing a variety of respiratory substrates. Under conditions of maximum respiration induced with either ADP or
carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a-ketoglutarate supported the highest rate of H,0, production. In the absence of
ADP or in the presence of rotenone, H,0, production rates correlated with the reduction level of mitochondrial NADPH with various
substrates, with the exception of a-ketoglutarate. Isolated mitochondrial a-ketoglutarate dehydrogenase (KGDHC) and pyruvate dehy-
drogenase (PDHC) complexes produced superoxide and H,0,. NAD * inhibited ROS production by the isolated enzymes and by perme-
abilized mitochondria. We also measured H,0, production by brain mitochondria isolated from heterozygous knock-out mice deficient
in dihydrolipoyl dehydrogenase (DId). Although this enzyme is a part of both KGDHC and PDHC, there was greater impairment of
KGDHC activity in Dld-deficient mitochondria. These mitochondria also produced significantly less H,0, than mitochondria isolated
from their littermate wild-type mice. The data strongly indicate that KGDHC is a primary site of ROS production in normally functioning

mitochondria.
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Introduction

Reactive oxygen species (ROS) are thought to contribute to neu-
ronal cell death caused by ischemia, excitotoxicity, and various
acute and chronic neurological disorders (Dykens, 1994; Fiskum
et al., 1999; Murphy et al., 1999; Fiskum, 2000; Nicholls and
Budd, 2000). A compelling body of evidence indicates that mito-
chondria are the major source of ROS in normal tissues and
under a variety of neurodegenerative conditions (Murphy et al.,
1999). However, the mechanism and the sites of ROS production
in mitochondria require additional research. The vast majority of
studies on mitochondrial ROS generation have used heart mito-
chondria and respiratory chain inhibitors as tools to maximize
ROS production and to identify potential sites of ROS genera-
tion. These studies revealed that inhibiting complexes I and III of
the mitochondrial respiratory chain with specific mitochondrial
toxins, such as rotenone and antimycin A, resulted in high rates
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of ROS production (Turrens, 1997; Murphy et al., 1999; Lenaz,
2001). Similar approaches have been used successfully to study
ROS production by isolated (Kwong and Sohal, 1998) and in situ
(Sipos et al., 2003) brain mitochondria, but no information is yet
available regarding the specific sites or mechanisms of ROS gen-
eration in the absence of respiratory chain inhibitors (Sorgato et
al., 1974; Patole et al., 1986; Cino and Del Maestro, 1989; Ramsay
and Singer, 1992; Hensley et al., 1998; Kwong and Sohal, 1998;
Sims et al., 1998; Tretter and Adam-Vizi, 2000; Sipos et al., 2003).

Previously, we suggested that mitochondrial matrix dehydro-
genases other than complex I [e.g., a-ketoglutarate dehydroge-
nase enzyme complex (KGDHC)] can contribute to the observed
ROS production in the absence of inhibitors of the mitochondrial
respiratory chain (Starkov and Fiskum, 2002). It is known that
reduced flavins (Massey, 1994) and flavoproteins (Chan and Biel-
ski, 1974, 1980; Zhang et al., 1998; Bunik and Sievers, 2002) can
generate superoxide in aqueous oxygenated solutions. Isolated
lactate dehydrogenase (Chan and Bielski, 1974) and glyceral-
dehyde-3-phosphate dehydrogenase (Chan and Bielski, 1980)
were shown to catalyze NADH-dependent superoxide produc-
tion, whereas malate and isocitrate dehydrogenase did not pro-
duce superoxide (Chan and Bielski, 1974). The isolated dehydro-
genase component of mitochondrial succinate dehydrogenase
(SDH) complex was also capable of flavin-dependent superoxide
production in the absence of an electron acceptor (Zhang et al.,
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1998). It has also been recently demonstrated that the flavin of the
dihydrolipoamide dehydrogenase (Dld) component (EC 1.8.1.4)
of isolated KGDHC can generate superoxide (Bunik and Sievers,
2002). The latter is of particular interest with regard to the mech-
anisms and sites of ROS production in mitochondria because the
flavin of the DId subunit is abundant in mitochondria (Kunz and
Gellerich, 1993) and has a sufficiently negative redox potential
(E, 7.4 = —283 mV) (Kunz and Kunz, 1985) to allow for super-
oxide production.

The data presented here demonstrate that KGDHC represents
a significant source of ROS in brain mitochondria. The reduced
DId subunit of KGDHC is the most likely source of ROS in the
mitochondrial matrix under conditions of an elevated NADPH/
NADP ™ ratio in the matrix of mitochondria. Preliminary results
have been reported previously (Starkov and Fiskum, 2002).

Materials and Methods

Reagents. Oligomycin, antimycin A3, and rotenone (Sigma, St. Louis,
MO) were dissolved in ethanol, and Amplex Red (10-acetyl-3,7-dihy-
droxyphenoxazine; Molecular Probes, Eugene, OR) was dissolved in di-
methylsulfoxide. All other reagents were purchased from Sigma. All re-
agents and ethanol were tested and exhibited no interference with the
H,0, assay at the concentrations used in our experiments.

Mouse and rat forebrain mitochondria were isolated as described pre-
viously (Rosenthal et al., 1987; Starkov and Fiskum, 2001, 2003), with
modifications as follows. Sprague Dawley rats and knock-out Dld-
deficient mice (Johnson et al., 1997) and their littermate controls were
used. Animals were decapitated, and the brain was excised and placed
into ice-cold isolation buffer containing 225 mm mannitol, 75 mM su-
crose, 5mm HEPES-KOH, pH 7.4, 1 mm EGTA, and 1 gm/l bovine serum
albumin. Two mouse brains or a single rat brain were used per isolation.
The cerebellum was removed, and the rest of the brain tissue was placed
in a 15 ml Dounce homogenizer and homogenized manually with eight
strokes of pestle A, followed by eight strokes of pestle B. The homogenate
was diluted with 15 ml of isolation buffer, distributed into four centrifuge
tubes, and centrifuged at 3000 X g for 4 min. The supernatant was sep-
arated and centrifuged again at 14,000 X g for 10 min. The pellet was
resuspended in 15 ml of the ice-cold isolation buffer without BSA and
kept on ice, and 30 ul of digitonin (10% stock solution in DMSO) was
added. After a 4 min incubation with occasional stirring by slow inver-
sion of tubes, the suspension was diluted with 15 ml of ice-cold isolation
buffer containing BSA and centrifuged at 14,000 X g for 10 min. The
pellet was resuspended in 8 ml of ice-cold isolation buffer containing
neither BSA nor EGTA and centrifuged again at 14,000 X g for 10 min.
The final pellet containing mitochondria of both synaptosomal and non-
synaptosomal origin was resuspended in isolation buffer without EGTA
and BSA to a concentration of 25-30 mg of protein/ml, stored on ice, and
used within 5 hr.

Alternatively, nonsynaptosomal rat and mouse forebrain mitochon-
dria were isolated by the Percoll gradient separation method as described
(Sims, 1990), and measurements of H,O, production and respiration
were performed. The Percoll gradient-isolated mitochondria generally
exhibited higher H,0, and respiration rates than digitonin-isolated mi-
tochondria when expressed per milligram of mitochondrial protein,
however the difference was not qualitative and would not justify repeat-
ing all the experiments reported here with mitochondria isolated by both
methods. Therefore, only the data obtained with mitochondria isolated
by the digitonin procedure are presented here, unless indicated
otherwise.

Respiration of isolated mitochondria was measured at 37°C with a
commercial Clark-type oxygen electrode (Hansatech, Norfolk, UK). The
incubation medium composition and respiratory substrates are indi-
cated in the legends to the figures.

The quality of the mitochondrial preparation was estimated by mea-
suring the acceptor control ratio (ACR) defined as ADP-stimulated (state
3) respiration divided by resting (state 4) respiration. For these experi-
ments, the incubation medium consisted of (in mm) 125 KCI, 20 HEPES,
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pH 7.0, 2 KH,PO,, 1 MgCL, 5 glutamate, 5 malate, and 0.8 ADP. State 3
respiration was initiated by the addition of 0.5 mg/ml brain mitochon-
dria to the incubation medium. State 3 respiration was terminated, and
state 4 was initiated by the addition of 1 um carboxyatractylate, an inhib-
itor of the ADP/ATP transporter. Only mitochondrial preparations that
exhibited an ACR of >8 were used in this study.

Membrane potentials of isolated mitochondria were estimated using
the fluorescence of safranine O (3 um) with excitation and emission
wavelengths of 495 and 586 nm, respectively (Votyakova and Reynolds,
2001; Starkov et al., 2002).

KGDHC activity in mouse mitochondria was measured fluorimetri-
cally. The reaction medium was composed of 50 mm KCl, 10 mm HEPES,
pH 7.4, 20 pg/ml alamethicin, 0.3 mu thiamine pyrophosphate (TPP),
10 pum CaCl,, 0.2 mm MgCl,, 5 mm a-ketoglutarate, 1 uMm rotenone, and
0.2 mm NAD ™. The reaction was started by adding 0.14 mm CoASH to
permeabilized mitochondria (0.1-0.25 mg/ml). Reduction of NAD *
was followed at 460 nm emission after excitation at 346 nm. The scale was
calibrated by adding known amounts of freshly prepared NADPH.
KGDHC and pyruvate dehydrogenase complex (PDHC) activity in
rat brain mitochondria were measured in the same way, except that
reduction of NAD * was followed by absorbance changes at 340 nm
using the extinction coefficient, E**mmMm = 6.22 cm L.

Succinate dehydrogenase activity was measured spectrophotometri-
cally as described previously (Arrigoni and Singer, 1962). The reaction
medium was composed of 50 mm KCl, 10 mm HEPES, pH 7.4, 20 pug/ml
alamethicin, 10 mm succinate, 2 mm KCN, 1 uM rotenone, 50 um
2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone, 50 um 2,6-di-
chlorophenol indophenol, and 20 um EDTA; reaction was monitored at
600 nm, and the activity was calculated using E®*’mm = 21 cm " for
2,6-dichlorophenol indophenol.

Measurement of hydrogen peroxide was performed as follows. The
incubation medium contained 125 mm KCI, 20 mm HEPES, pH 7.0, 2 mm
KH,PO,,4mm ATP, 5mm MgCl,, 1 um Amplex Red, 5 U/ml horseradish
peroxidase (HRP), and 20 U/ml Cu,ZnSOD and was maintained at 37°C.
A change in the concentration of H,O, in the medium was detected as an
increase in Amplex Red fluorescence using excitation and emission
wavelengths of 585 and 550 nm, respectively. The response of Amplex
Red to H,O, was calibrated either by sequential additions of known
amounts of H,O, or by continuous infusion of H,0, at 100—-1000 pmol/
min. The concentration of commercial 30% H,O, solution was calcu-
lated from light absorbance at 240 nm using E***mm = 43.6 cm ~'; the
stock solution was diluted to 100 um with water and used for calibration
immediately.

Itis to be noted that HRP catalyzes the oxidation of NADH that might
result in an underestimation of H,O, in an HRP-dependent assay, such
as a classical scopoletin—-HRP assay or Amplex Red—HRP assay used in
our study. However, it was found that although NADH can react with the
oxidized form of HRP, it cannot effectively compete with scopoletin in an
HRP-scopoletin H,0, assay (Marquez and Dunford, 1995). Further-
more, rat brain mitochondria contain ~5 nmol of total NAD/mg protein
(C. Chinopoulos, unpublished observations) similar to the amount
found in mitochondria from other tissues (3—7 nmol of total NAD/mg
mitochondrial protein) (Tischler et al., 1977; Di Lisa et al., 2001). We
have previously demonstrated that under the experimental conditions
used in this study, rat brain mitochondria did not release more than
~15% of their total NAD content (Chinopoulos et al., 2003). Similar
amounts of NADH added exogenously did not affect the H,O, rates
detected by the Amplex Red—HRP assay (data not shown).

Superoxide production was followed spectrophotometrically with
partially acetylated cytochrome ¢ (Azzi et al., 1975) and calculated from
cytochrome ¢ absorbance at 550-540 nm using extinction coefficient
E>*mM = 19.2cm L

The mitochondrial NADPH reduction state was measured fluori-
metrically using an excitation wavelength of 346 nm and an emission
wavelength of 460 nm. Maximal NADPH reduction was defined as the
absorbance observed after the addition of the electron transport chain
complex I inhibitor rotenone (1 uMm), and maximal oxidation was de-
fined as the absorbance obtained in the presence of the saturating
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amounts of respiratory uncoupler carbonyl cyanide p-trifluoro-
methoxyphenylhydrazone (FCCP) (120—160 pmol/mg mitochondria).

Ubiquinones were extracted from frozen—thawed and sonicated mito-
chondrial samples into hexane using coenzyme Q6 as an internal stan-
dard. Samples were analyzed by HPLC using an MDA-50 (ESA, Chelms-
ford, MA) column and gradient separation. The detector was an eight-
channel electrochemical array detector (CoulArray 5600; ESA)
consisting of a series of five increasing oxidation potentials (ending with
+800 mV) before a reducing channel of —800 mV and two additional
oxidizing channels at +5 and +200 mV. Measurements were made on
the final +200 mV channel (Gamache, 1999).

Mitochondrial protein was estimated by the Biuret method.

Statistical analysis. Data are expressed as mean + SEM. Statistical anal-
ysis was performed using Student’s ¢ test.

Results

Previous attempts to understand the mechanisms of ROS pro-
duction by mitochondria have been hampered by the low sensi-
tivity of ROS detection methods and have therefore used inhibi-
tors of either complex I or I1I of the respiratory chain to maximize
ROS production. Recently, a novel fluorescent probe for H,0,,
Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) (Zhou et al.,
1997), has become available that is suitable for measurements
with isolated mitochondria (Votyakova and Reynolds, 2001;
Kushnareva et al., 2002). We have determined that it is suffi-
ciently sensitive and its fluorescent response is linearly related to
H,0, even at levels that are generated by mitochondria in the
absence of respiratory chain inhibitors (data not shown). With
Amplex Red, it was possible to perform reliable measurements of
H,0, emission rates with the NAD *-dependent respiratory sub-
strates malate, pyruvate, citrate, glutamate, and a-ketoglutarate
and with succinate and compare them with rates of O, consump-
tion and the level of NADPH reduction of isolated rat and mouse
brain mitochondria.

Figure 1 shows typical fluorescent recordings of H,O, produc-
tion by isolated rat brain mitochondria oxidizing NAD *-
dependent substrates or succinate. H,0O, generation was depen-
dent on the addition of a respiratory substrate (succinate) (Fig. 1,
curve a) or a-ketoglutarate (Fig. 1, curves b, ¢) and was sup-
pressed by mitochondrial uncoupler FCCP (Fig. 1, curves a, b).

With NAD *-dependent substrates, H,0, production was
stimulated by rotenone, which inhibits NADH oxidation at com-
plex I (Fig. 1, curves b, c¢). However, rotenone inhibited
succinate-supported H,O, production, indicating that it was fu-
eled by reverse electron transfer from succinate to a site in com-
plex I (Turrens, 1997). With both types of substrates, H,O, pro-
duction was stimulated by an inhibitor of complex III (antimycin
A) that increases the coenzyme Q semiquinone level (Turrens,
1997). With both types of substrates, H,O, production was un-
affected by the addition of NAD' (only the data with
a-ketoglutarate is presented) (Fig. 1, curve ¢). It is well known that
the inner mitochondrial membrane is impermeable to NAD *.

It is important to note that H,O, production in the presence
of a complex I inhibitor (rotenone) was two to three times higher
with a-ketoglutarate than that with succinate (Fig. 1). Previously,
we (Korshunov et al., 1997; Starkov et al., 2002; Starkov and
Fiskum, 2003) and others (Hansford et al., 1997; Votyakova and
Reynolds, 2001) demonstrated that regardless of the nature of the
respiratory substrate, rates of H,O, production were directly re-
lated to the magnitude of the membrane potential of mitochon-
dria. However, the difference in H,O, production demonstrated
in Figure 1 cannot be explained by the difference in the mem-
brane potential because the concentration of FCCP (120
pmol/mg mitochondria) used in these experiments was selected
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Figure 1. H,0, production by rat brain mitochondria oxidizing c-ketoglutarate or succi-
nate. Medium (37°C) contained 125 mm KCl, 2 mm MgCl,, 0.2 mm EGTA, 2 mm KH,PO,, 10 mm
HEPES, pH 7.2, 5 U/mI HRP, 20 U/ml superoxide dismutase, and 1 v Amplex Red. Curve a, Rat
brain mitochondria oxidizing succinate (10 mm); curves band ¢, rat brain mitochondria oxidizing
a-ketoglutarate. Additions included 0.25 mg/ml rat brain mitochondria (Mito), 5 mm
a-ketoglutarate (c-Keto), 0.5 pm rotenone (Rot), 1 mm NAD *, 120 pmol/mg FCCP, and 1 um
antimycin (Ant.A). Numbers near the tracings indicate the rates of H,0, production in picomoles
per minute per milligram of mitochondrial protein. Typical tracings are shown.

to completely uncouple mitochondria so that no membrane po-
tential could be detected under these conditions by either the
TPP * electrode or safranine fluorescence method, and no addi-
tional increase in FCCP concentration would stimulate the res-
piration of brain mitochondria (data not presented). Previously,
we demonstrated that at such low values the membrane potential
no longer affects the H,O, production supported by either suc-
cinate (Korshunov et al., 1997) or a NAD-dependent substrate
(Starkov and Fiskum, 2003).

We (Starkov and Fiskum, 2003) and others (Kushnareva et al.,
2002) also observed that with a NAD *-dependent substrate, the
rate of H,O, production was apparently modulated by the level of
NADPH reduction in mitochondria. However, it is obvious that
such a modulation could not explain the finding that rotenone
inhibition of complex I induced much higher H,O, production
when a-ketoglutarate was the substrate (Fig. 1, traces b, ¢) com-
pared with succinate-supported H,O, production (Fig. 1, trace
a). In these experiments, a sufficiently high concentration of ro-
tenone was used (0.5 um) that completely inhibited NADH oxi-
dation (judging by the complete inhibition of respiration with
pyruvate plus malate or glutamate plus malate; data not shown).
Intuitively, one would expect essentially similar levels of the in-
tramitochondrial NADPH reduction state when the oxidation of
NADH is completely inhibited with rotenone, as in our experi-
ments. If mitochondrial complex I is a sole source of H,O, under
such conditions, it seems difficult to understand why rotenone-
inhibited complex I produces less H,O, when its substrate
NADH was reduced by succinate rather than by a-ketoglutarate.
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version of tricarboxylic acid (TCA) cycle
metabolic intermediates. To test whether
the rate of H,0, production is substrate
selective in the absence of this inter-
conversion, we made mitochondria freely
permeable to metabolites and other small
molecules by the addition of the pore-
forming peptide alamethicin (Gostim-
skaya et al., 2003). This treatment did not
result in loss of malate dehydrogenase,
pyruvate dehydrogenase, or KGDHC ac-
tivities from the mitochondria (data not shown). Figure 3 shows
that adding a-ketoglutarate stimulated H,O, production in both
alamethicin-permeabilized (Fig. 3, curves a, ¢) and intact (Fig. 3,
curve b) rat brain mitochondria. Coenzyme A (CoA), a cofactor
of KGDHC, stimulated H,O, production only in alamethicin-
treated mitochondria (Fig. 3, curves a, ¢) because it is imperme-
able to the inner membrane of intact mitochondria (Fig. 3, curve
b); the addition of alamethicin stimulated H,O, production in
intact mitochondria by rendering their inner membrane perme-
able to CoA (Fig. 3, curve b). Catalase almost completely sup-
presses H,0O, production (Fig. 3, curve ¢). Under these condi-
tions, the now-permeant NAD ¥ inhibited H,0, production
(Fig. 3, curves a—c), whereas rotenone (Fig. 3, curves a, b) stim-
ulated production because its ability to inhibit complex I of the
mitochondrial electron transport chain does not require an intact
inner membrane. It causes net reduction of NAD * to NADH and
thereby overreduction of complex I and complex I-mediated
ROS production in both intact and permeabilized mitochondria.

Results shown in Figure 4 indicate that both PDHC and
KGDHC produce superoxide. The maximum superoxide pro-
duction rate was obtained in the presence of all the same enzyme
cofactors and substrates as needed for a normal enzymatic reac-
tion catalyzed by these enzyme complexes. However, KGDHC
produced approximately twice as much superoxide as PDHC
(Fig. 4). As with permeabilized mitochondria (Fig. 3), NAD *
inhibited superoxide production (Fig. 4). Malate dehydrogenase
in the presence of either malate or oxaloacetate did not produce
detectable amounts of superoxide (data not shown).

Both PDHC and KGDHC also produced H,O,. We explored

corresponding levels of reduction mitochondrial pyridine nucleotides and the rates of respiration. A, AH,0, production by rat brain
mitochondria in state 4. ANADPH was obtained by measuring the difference in NADPH fluorescence both in the absence and in the
presence of 160 pmol/mg FCCP. ANADPH in the presence of succinate was taken as 100%. H,0, production in the presence of
succinate was 1123 == 71 pmol/min/mg (data not shown). The H,0, production rate in the presence of FCCP was subtracted from
thatin the absence of the uncoupler and presented as AH,0,. B, AH,0, production rate plotted against ANADPH in the presence
of 1 umrotenone. C, H,0, production rate plotted against the rate of respiration by mitochondria in state 4. D, H,0, production rate
plotted against the rate of respiration by mitochondria in state 3. Incubation medium (see Fig. 1) was maintained at 37°C. For D
only, state 3 respiration was initiated by adding 0.4 mm ADP to mitochondrial suspension. Substrates were present at the following
concentrations: malate and glutamate, 5 mm plus 5 mm; c-ketoglutarate, 7 mw; succinate, 5 mw; citrate, 5 mu; pyruvate, 10 mu;
glutamate, 5 mm; malate, 5 mm. Mitochondria were added at 0.5 mg/ml.
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Figure 3. H,0, production by permeabilized rat brain mitochondria. Incubation medium

was composed of 225 mm mannitol,

75 musucrose, 10 mm HEPES-KOH, pH 7.4, 2 mmKH,PO,, 1

mu MgCl,, 0.25 mm EGTA, 48 um thiamine, 5 U/ml HRP, 20 U/ml superoxide dismutase, and 1
fum Amplex Red (t = 37°C). Curve a, Mitochondria (Mito; 1 mg) were incubated for 5 min with
20 wwg/mg alamethicin, then centrifuged at 20,000 X g for 10 min and resuspended at 0.5
mg/ml for H,0, measurement; curve b, intact rat brain mitochondria; curve c, mitochondria

were pretreated as in curve a; 0.25

mg/ml catalase was included into the incubation medium.

Additions included 10 mm cr-ketoglutarate (ce-Ktg), 0.2 mmNAD *,0.12 mu CoASH (CoA), T um
rotenone (Rot), and 20 g/mg alamethicin (Ala).
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and PDHC. Superoxide production was measured as described in Materials and Methods. Incu-
bation medium contained 50 mum KH,PO, buffer, pH7.8, 50 wum acetylated cytochrome ¢, 10 m
(adl,, and 0.2 mm MgCl,, maintained at t = 37°C. Where indicated, 0.12 mum CoASH, 0.3 mm
TPP, 40 U/ml superoxide dismutase (SOD), 2 mm NAD ", and either 10 mw ketoglutarate (for
KGDHC) or 7 mm pyruvate (for PDHC) were included into the incubation medium (substrate).
Reaction was started by adding 0.9-3.6 U/ml PDHC or 0.6 —2.4 U/ml KGDHC.
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Figure5.  CoA-SH dependence of H,0, production by isolated KGDHC. H,0, production was

measured as described in Materials and Methods. Incubation medium contained 50 mm KH,PO,
buffer, pH 7.8, 10 m CaCl,, 0.2 mm MgCl,, 0.3 mm TPP, 40 U/ml superoxide dismutase (SOD),
5U/mIHRP, and 1 um Amplex Red, maintained at ¢ = 37°C. Medium was supplemented with
10 mm ketoglutarate.

the substrate and cofactor dependence for H,O, production and
for NAD ™ reduction catalyzed by KGDHC. The H,0, produc-
tion rate by isolated KGDHC exhibited hyperbolic dose depen-
dence to concentrations of CoA-SH (Fig. 5) and a-ketoglutarate
(data not shown; more details can be found in an accompanying
report by Tretter and Adam-Vizi, 2004). However, CoA-SH re-
quirements for maximum H,O, production appeared to be
much lower than that for maximum NAD ™ reduction; the ap-
parent K, for CoOASH was ~0.03 um for H,O, production (Fig.
5), whereas the K, for NAD * reduction was ~30 uMm (data not
shown).

We also measured enzymatic activities of PDHC and KGDHC
in alamethicin-permeabilized rat brain mitochondria (see Mate-
rials and Methods). We found that PDHC activity was 0.245
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Figure 6.  Activity of selected mitochondrial enzymes in brain mitochondria isolated from

DId-deficient mice compared with their littermate controls. A, Activity of KGDHC and PDHC. B,
Activity of complex | (NADH:Q1 reductase) and SDH. KGDHC, PDHC, and SDH activities were
measured as described in Materials and Methods. Mitochondrial complex | was measured with
frozen—thawed mitochondrial samples fluorimetrically by following coenzyme Q1-induced
rotenone-sensitive NADH oxidation at 346 nm excitation and 460 nm emission. Incubation
medium was composed of 125 mmKCl, 2 mmMgCl,, 2mmKH,P0,, 0.2 mg/ml BSA, 10 wm Cadl,,
2mmKCN, 50 v NADH, 20 peg/ml alamethicin, and 0.08 —0.09 mg/ml mitochondria, at t =
37°C. Reaction was started by adding 40 m coenzyme Q1 and terminated by adding 1 um
rotenone. Complex | activity was calculated as the difference between the NADH oxidation rate
inthe presence and in the absence of rotenone and presented in nanomole of NADH per minute
per milligram. The scale was calibrated by adding known amounts of freshly prepared NADH.

U/mg mitochondria and that of KGDHC was 0.215 U/mg. As-
suming that PDHC and KGDHC produce superoxide (Fig. 4) as
their primary ROS, and that two superoxide molecules dismutate
to produce one H,0, molecule, we calculated that mitochondria
produce a maximum of ~560 pmol of H,0,/mg protein with
a-ketoglutarate as substrate and ~330 pmol of H,0,/mg protein
with pyruvate, whereas minimum rates (in the presence of
NAD ") are ~70 and ~90 pmol of H,0,/mg protein, respec-
tively. These values are remarkably similar to the actual rates of
H,O, production observed with rat brain mitochondria, partic-
ularly for a-ketoglutarate (Figs. 1-3). Altogether, these results
indicate that the DId component of KGDHC, and to a lesser
degree of PDHC, may be an important constitutive source of
ROS in mitochondria.

Additional experiments used brain mitochondria isolated
from knock-out heterozygous mice deficient in DId (DId */7).
Although DId is shared between PDHC and KGDHC, a defi-
ciency in DId affected primarily mitochondrial KGDHC enzyme
activity (Fig. 6A). As expected, maximum respiration rates were
reduced only when a-ketoglutarate was oxidized; there was no
significant difference in maximum respiration rates or respira-

Table 1. Respiration of mouse brain mitochondria with different substrates

Substrate State 3 State 4 AR
Pyruvate plus malate
Dld+/+ 95.6 £9.7 6.2+ 1.1 16.1£13
Dld+/— 96.7 £ 5.7 6.7 = 0.4 145+ 1.0
Glutamate plus malate
Dld+/+ 98.4 =118 74 %09 134 £1.1
Dld—/+ 874 £83 6.6 = 0.8 135+10
a-Ketoglutarate
Dld+/+ 40.2 £ 6.7 84+14 49+ 04
Dld—/+ 268 £ 1.6 6.7 = 0.7 41+0.2
Succinate
Dld+/+ 38.7 £32 23.0 £ 26 1.7 £0.1
Dld—/+ 36.2 £ 4.7 218 =14 1.6 £0.1

Mitochondria were isolated from brains of DId-deficient mice and their littermate wild-type mice. Incubation me-
dium was as in Figure 7. Substrates were added at the following concentrations: pyruvate plus malate, 7 plus T mm;
glutamate plus malate, 5 plus 5 mm; a-ketoglutarate, 5 mw; succinate (in the absence of rotenone), 5 mw. State 4
was induced by carboxyatractylate. Respiration was measured as described in Materials and Methods. The numbers
represent respiration rates expressed in nanomoles of 0, per minute per milligram of mitochondria. ACR, Acceptor
control index.
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permeabilized mitochondria supported this
conclusion (Fig. 6 B). However, H,O, pro-  Figure7. Hydrogen peroxide production by brain mitochondria isolated from Did-deficient mice compared with their litter-

duction ratesby DId "/~ mitochondria were
significantly reduced with either succinate
or a-ketoglutarate during state 4 respiration
(Fig. 7A) and were similarly reduced in the
presence of the respiratory chain inhibi-
tors rotenone (Fig. 7B) and antimycin A
(Fig. 7C).

Generally, the rate of H,O, generation
depends on the magnitude of the mito-
chondrial membrane potential (Hansford
et al., 1997; Korshunov et al., 1997; Votyakova and Reynolds,
2001; Starkov et al., 2002; Starkov and Fiskum, 2003), which in
turn depends on the metabolic state and the quality (“coupling”)
of mitochondria. DId ™/~ mitochondria are deficient in KGDHC
and therefore may possess lower membrane potential than
DId /" mitochondria. The Percoll isolation procedure yields
very tightly coupled, mostly nonsynaptic mitochondria possess-
ing high membrane potential. Therefore, we used Percoll-
isolated (see Materials and Methods) mitochondria to measure
the membrane potential and H,O, production by mouse brain
mitochondria. It appeared that the amplitude of the membrane
potential was virtually identical in both DId /" and DId*/~
mitochondria oxidizing either succinate (Fig. 8A) or
a-ketoglutarate (Fig. 8 B) either in the presence of ADP or in
the resting state. Nevertheless, DId "/~ mitochondria pro-
duced significantly less H,O, (Fig. 9) than DId */" mitochon-
dria under all metabolic conditions, except state 3 (Fig. 9A).

We also measured the content and composition of coenzymes
Q in mitochondrial membrane because there are several reports
that the Q9/Q10 ratio and the total amount of coenzyme Q can
affect ROS production (Boveris and Chance, 1973; Lass et al.,
1997; Lass and Sohal, 1999, 2000). There was no difference in the
Q9/Q10 ratio or coenzymes Q content in mitochondria from
DId ™/~ mice compared with their littermate controls (Fig. 10).

antimycin A ().

Discussion

Our data suggest that complex I of the mitochondrial electron
transport chain is not the exclusive source of H,0O, and that the
DId components of KGDHC and PDHC are substantial consti-
tutive sources of free radicals in rat and mouse brain mitochon-
dria under conditions of the elevated mitochondrial NADPH/
NADP ™ ratio.

Complex I of the mitochondrial electron transport chain has
been viewed as a major site of mitochondrial ROS production
(Barja, 1999; Herrero and Barja, 2000; Lenaz, 2001; Sipos et al.,
2003). However, there are no data yet that demonstrate that com-
plex Iis the major site of ROS production in intact mitochondria,
in the absence of respiratory chain inhibitors. There are three
principal types of experiments that contributed to the concept
that complex I is a major ROS-producing site: (1) experiments
demonstrating that isolated complex I preparations generate
ROS in the presence of NADH; (2) experiments with rotenone-
inhibited mitochondria oxidizing NAD-dependent substrates;

mate wild-type mice. Incubation medium was as in Figure 1, except that EGTA was omitted and 0.4 mm ADP and 0.2 mg/ml BSA
were included. Where indicated, 5 mu succinate or 5 mu ac-ketoglutarate A were included into the medium. The sequence of
additions was as follows: mitochondria (0.125 mg/ml) were added into the incubation medium and incubated for 2 min, then
phosphorylation was inhibited with 1.2 um carboxyatractylate and H,0, production was measured as described in Materials and
Methods (state 4); then T um rotenone and, finally, T v antimycin A were added into the incubation medium. A, H,0, production
in state 4. B, H,0, production induced by rotenone. C, H,0, production induced by antimycin A. In B for c-ketoglutarate only and
in Cfor both cc-ketoglutarate and succinate, the presented rate of H,0, production was obtained by subtracting the rate of H,0,
production in state 4 from the rate induced by rotenone (B) and the rate in the presence of rotenone from that was induced by

IS N @ 3
=3

Membrane potential, %

N

0

Figure 8.  The membrane potential of mouse brain mitochondria oxidizing succinate or
a-ketoglutarate. Mouse brain mitochondria were isolated by the Percoll gradient procedure
(see Materials and Methods). Incubation medium contained 125 mm KCl, 2 mm MgCl,, 2 mm
KH,PO,, 10 mum HEPES, pH 7.2, 0.2 mg/ml BSA, 0.2 mm ADP, 5 mm succinate (A) or 5 mm
a-ketoglurate (B), and 1 wum safranin 0. Additions included 0.25 mg/ml mouse brain mito-
chondria (Mito), 1 um rotenone (Rot), 1 um carboxyatractylate (cAtr), and 1 um antimycin A
(Ant A). Typical tracings are shown. Solid lines, DId ™/ mitochondria; dotted lines, Did ™/~
mitochondria.

and (3) experiments with isolated mitochondria under condi-
tions favoring reverse electron transfer from succinate to com-
plex I. The latter reaction generates large amounts of ROS (Fig. 1,
curve a) (Turrens, 1997; Lenaz, 2001; Votyakova and Reynolds,
2001). However, the possibility of reverse electron transfer under
physiological conditions is not yet established. The interpretation
of such experiments may be complicated because the source of
ROS could be anything that is in a redox equilibrium with intra-
mitochondrial NADPH. This difficulty also applies to experi-
ments demonstrating the dependence of mitochondrial ROS
production on the amplitude of the membrane potential (Hans-
ford etal., 1997; Korshunov et al., 1997; Votyakova and Reynolds,
2001; Starkov and Fiskum, 2003) or intramitochondrial
NADPH/NADP * ratio (Kushnareva et al., 2002; Starkov and
Fiskum, 2003).

Several research groups have demonstrated that isolated com-
plex I preparations can generate ROS when reduced with NADH,
although there is no consensus about the site of ROS production
in complex I (Lenaz, 2001; Kushnareva et al., 2002; Liu et al.,
2002).

However, some evidence argues against the concept that com-
plex I in mitochondria, or in submitochondrial particles, can
generate ROS in the absence or even in the presence of its inhib-
itors. The absence of a correlation between the inhibition of com-
plex I activity by rotenone and other inhibitors and the produc-
tion of ROS by submitochondrial particles was interpreted as an
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D 1999; Liu et al., 2002) is intriguing because

the intramitochondrial NADPH/NADP *
ratio under such conditions is high. Stim-
ulatory effects of ADP (Barja, 1999) and
Ca** (Dykens, 1994; Kowaltowski et al.,
1995, 1996, 1998a,b) on mitochondrial
ROS production are also puzzling because
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Figure 10.  Coenzyme Q9 and coenzyme Q10 content in brain mitochondria isolated from

DId-deficient mice compared with their littermate wild-type mice. Coenzymes Q9 and Q10 were
measured by HPLC as described in Materials and Methods. Data are presented in picomole of
quinone per milligram of mitochondria.

indication of the presence of a superoxide-producing rotenone-
bindingsite other than complex I (Ramsay and Singer, 1992). The
finding that H,O, production is frequently reported as being
almost absent in the presence of succinate and rotenone (Barja,

Hydrogen peroxide production by brain mitochondria isolated by the Percoll procedure from DId-deficient mice
compared with their littermate wild-type mice. Mouse brain mitochondria were isolated by the Percoll gradient procedure (see
Materials and Methods). Incubation medium was as in Figure 8, except that safranin O was omitted and 5 U/ml HRP, 20 U/ml
superoxide dismutase, and 1 wm Amplex Red were included. Where indicated, 5 mu succinate or 5 mm c-ketoglutarate A were
included into the medium. The sequence of additions was as follows: mitochondria (0.1-0.125 mg/ml) were added into the
incubation medium and incubated for 2 min, then phosphorylation was inhibited with 1.2 um carboxyatractylate, then 1 m
rotenone and, finally, 1 i antimycin A were added into the incubation medium. 4, H,0, production in state 3. 8, H,0, production
instate 4. C, H,0, production induced by rotenone. D, H,0, production induced by antimycin A. In C for c-ketoglutarate only and
in D for both a-ketoglutarate and succinate, the presented rate of H,0, production was obtained by subtracting the rate of H,0,
production in state 4 from the rate induced by rotenone (() and the rate in the presence of rotenone from that induced by

ceKetoglularate0

both Ca®" uptake/retention and ADP-
induced oxidative phosphorylation dissi-
pate energy and would be expected to de-
crease the level of reduction of complex I
and hence the ROS production. It also ap-
pears that the stimulatory effect of the
complex I inhibitor rotenone on ROS pro-
duction that possibly originates from a site
within complex [ is species and tissue de-
pendent; ROS stimulation by rotenone
varies from ~300% in guinea pig to 0% in
horse heart submitochondrial particles
(Herrero and Barja, 2000) and in whole
intact rat heart mitochondria (Chen et al., 2003) to inhibition of
ROS production in mouse kidney mitochondria (Kwong and
Sohal, 1998).

Our data indicate that KGDHC may be a major ROS-
producing site in mitochondria. Mammalian KGDHC is com-
posed of multiple copies of three enzymes: a-ketoglutarate
dehydrogenase (El; EC 1.2.4.2), dihydrolipoamide succinyl-
transferase (E2; EC 2.3.1.12), and D1d (E3 or DId; EC 1.6.4.3).
El and E3 are noncovalently bound to a core formed by E2
(Wagenknecht et al., 1983; Sheu and Blass, 1999). Dld is also a
part of other multienzyme complexes such as PDHC,
branched chain ketoacid dehydrogenase complex, and glycine
cleavage complex (Koike et al., 1974; Patel and Roche, 1990;
Reed and Hackert, 1990). DId is a flavoenzyme, the redox center
of which is formed by a disulfide bridge coupled with a flavin ring.
The catalyzed reaction proceeds via the formation of a charge
transfer complex between those two groups (Matthews et al., 1977;
Templeton et al., 1980). The catalytic mechanism of a-ketoacid
dehydrogenase complexes was reviewed by Bunik (2003).

In the context of the enzymatic mechanism, results of exper-
iments with isolated PDHC and KGDHC point to the flavin or
the neighboring disulfide bridge in the catalytic center of the D1d
component as an electron donor for superoxide formation. This
explanation is in agreement with another recently published
study (Bunik and Sievers, 2002) indicating that the flavin of the
DId component of KGDHC is involved in superoxide generation.

It is not clear yet why a-ketoglutarate-supported (and pre-
sumably, KGDHC-mediated) ROS production is much higher
than pyruvate-supported production (Fig. 2) because both
KGDHC and PDHC share the DId component that generates
ROS (Zhang et al., 1998). The reason for this discrepancy may be
related to differing composition and molecular organization of
these large enzyme complexes.

KGDHC activity is regulated by multiple mechanisms. The
enzyme is inhibited by its own product, succinyl-CoA, by a high
NADH/NAD * ratio as well as by a high dihydrolipoate/lipoate
ratio, thereby playing an important role in cellular redox regula-
tion (Bunik, 2003). KGDHC is activated by low concentrations of
Ca’" and matrix ADP (Hamada et al., 1975; McMinn and
Ottaway, 1977; LaNoue et al., 1983; Wan et al., 1989; Kiselevsky et
al,, 1990). Considering that KGDHC-mediated ROS production
requires a fully active complex with all the cofactors and sub-
strates (except NAD ™) (Figs. 4, 5), the fact that the enzyme
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activity is stimulated by Ca®" and ADP may perhaps account for
previous findings that mitochondrial ROS production was in-
creased by Ca?* (Dykens, 1994; Kowaltowski et al., 1995, 1996,
1998a,b), Ca*" in the presence of rotenone and succinate
(Starkov et al., 2002), and by ADP (Barja, 1999). The results
presented in the accompanying report by Tretter and Adam-Vizi
(2004) demonstrate that Ca** activated ROS production by iso-
lated KGDHC both in the presence and in the absence of pyridine
nucleotides.

It is well known that the activity of KGDHC is severely re-
duced in a variety of neurodegenerative diseases associated with
impaired mitochondrial functions, including Alzheimer’s and
Parkinson’s diseases. However, the relationship between
KGDHC activity and mitochondrial damage per se is much less
clear. KGDHC s an integral mitochondrial enzyme tightly bound
to the inner mitochondrial membrane on the matrix side (Maas
and Bisswanger, 1990). It binds (specifically) to complex I of the
mitochondrial respiratory chain (Sumegi and Srere, 1984) and
may form a part of the TCA cycle enzyme supercomplex
(Lyubarev and Kurganov, 1989). The mitochondrial TCA cycle
enzymes aconitase, succinate dehydrogenase (SDH), and KGDHC
itself are sensitive to oxidative inactivation both in vitro and in
vivo (Tretter and Adam-Vizi, 2000; Gibson et al., 2002; Sadek et
al., 2002). The close spatial and functional relationship of
KGDHC to sensitive TCA cycle enzymes may result in specific
targeting and damage to these enzymes by KGDHC-originated
ROS. Mitochondria from different brain regions possess different
amounts of KGDHC (Calingasan et al., 1994; Park et al., 2000),
which may account for regional vulnerability. For instance, the
cholinergic neurons of the nucleus basalis of Meynert have high
levels of KGDHC, and these neurons are particularly vulnerable
in Alzheimer’s disease (Gibson et al., 1988). The conditions pro-
moting KGDHC-mediated ROS production may be any that
increase the intramitochondrial NADH/NAD * ratio (e.g., inhi-
bition of oxidative phosphorylation or inhibition of any segment
of the mitochondrial electron transport chain). This hypothesis is
strongly supported by the results presented in the accompanying
report by Tretter and Adam-Vizi (2004) that demonstrated that
ROS production by isolated KGDHC is strongly dependent on
the NADH/NAD  ratio. It also agrees well with the recent dem-
onstration of a selective loss of KGDHC-enriched neurons in
human brains with Alzheimer’s disease (Ko et al., 2001). [Alter-
natively, as Dr. John Blass pointed out (personal communica-
tion), a regulatory mechanism might be in place decreasing the
expression and/or assembly of a functional KGDH complex in
response to the oxidative stress induced by either damage to
mitochondria leading to an increase in their overall reduction
potential, or by an oxidants external to mitochondria.]

In this respect, it is very interesting that the DLST gene encod-
ing the E2 component of KGDHC also encodes truncated mRNA
for another protein designated MIRTD that localizes to mito-
chondria, where it regulates the biogenesis of the mitochondrial
respiratory chain (Kanamori et al., 2003).

In conclusion, we emphasize that although results presented
here, and particularly those with Dld-deficient mice (Fig. 7), in-
dicate that the DId component of KGDHC may be a significant
source of ROS in mitochondria, they do not rule out complex I
(or other potential sites) as important sources of ROS. In fact,
results of substrate-dependent ROS production experiments
(Fig. 2 B) indicate that some other dehydrogenases might also be
involved in ROS production. The results presented here chal-
lenge the idea of a single “major” site of ROS production in
mitochondria, whether it be complexes I, II, and III or the DId

Starkov et al. « KGDHC Generates ROS

component, and emphasize the necessity of additional systematic
research on the mechanisms and regulation of mitochondrial
ROS production.
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