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Understanding how an animal’s ability to learn relates to neural activity or is altered by lesions, different attentional states, pharmaco-
logical interventions, or genetic manipulations are central questions in neuroscience. Although learning is a dynamic process, current
analyses do not use dynamic estimation methods, require many trials across many animals to establish the occurrence of learning, and
provide no consensus as how best to identify when learning has occurred. We develop a state–space model paradigm to characterize
learning as the probability of a correct response as a function of trial number (learning curve). We compute the learning curve and its
confidence intervals using a state–space smoothing algorithm and define the learning trial as the first trial on which there is reasonable
certainty (�0.95) that a subject performs better than chance for the balance of the experiment. For a range of simulated learning
experiments, the smoothing algorithm estimated learning curves with smaller mean integrated squared error and identified the learning
trials with greater reliability than commonly used methods. The smoothing algorithm tracked easily the rapid learning of a monkey
during a single session of an association learning experiment and identified learning 2 to 4 d earlier than accepted criteria for a rat in a 47 d
procedural learning experiment. Our state–space paradigm estimates learning curves for single animals, gives a precise definition of
learning, and suggests a coherent statistical framework for the design and analysis of learning experiments that could reduce the number
of animals and trials per animal that these studies require.
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Learning is a dynamic process that generally can be defined as a
change in behavior as a result of experience. Learning is usually
investigated by showing that an animal can perform a previously
unfamiliar task with reliability greater than what would be ex-
pected by chance. The ability of an animal to learn a new task is
commonly tested to study how brain lesions (Whishaw and To-
mie, 1991; Roman et al., 1993; Dias et al., 1997; Dusek and
Eichenbaum, 1997; Wise and Murray, 1999; Fox et al., 2003),
attentional modulation (Cook and Maunsell, 2002), genetic ma-
nipulations (Rondi-Reig et al., 2001), or pharmacological inter-
ventions (Stefani et al., 2003) alter learning. Characterizations of
the learning process are also important to relate an animal’s be-
havioral changes to changes in neural activity in target brain re-
gions (Jog et al., 1999; Wirth et al., 2003).

In a learning experiment, behavioral performance can be an-
alyzed by estimating a learning curve that defines the probability

of a correct response as a function of trial number and/or by
identifying the learning trial, i.e., the trial on which the change in
behavior suggesting learning can be documented using a statisti-
cal criterion (Siegel and Castellan, 1988; Jog et al., 1999; Wirth et
al., 2003). Methods for estimating the learning curve typically
require multiple trials measured in multiple animals (Wise and
Murray, 1999; Stefani et al., 2003), whereas learning curve esti-
mates do not provide confidence intervals. Among the currently
used methods, there is no consensus as to which identifies the
learning trial most accurately and reliably. In many, if not most,
experiments, the subject’s trial responses are binary, i.e., correct
or incorrect. Although dynamic modeling has been used to study
learning with continuous-valued responses, such as reaction
times (Gallistel et al., 2001; Kakade and Dayan, 2002; Yu and
Dayan, 2003), they have not been applied to learning studies with
binary responses.

To develop a dynamic approach to analyzing learning exper-
iments with binary responses, we introduce a state–space model
of learning in which a Bernoulli probability model describes be-
havioral task responses and a Gaussian state equation describes
the unobservable learning state process (Kitagawa and Gersh,
1996; Kakade and Dayan, 2002). The model defines the learning
curve as the probability of a correct response as a function of the
state process. We estimate the model by maximum likelihood
using the expectation maximization (EM) algorithm (Dempster
et al., 1977), compute both filter algorithm and smoothing algo-
rithm estimates of the learning curve, and give a precise statistical
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definition of the learning trial of the experiment. We compare
our methods with learning defined by a moving average method,
the change-point test, and a specified number of consecutive cor-
rect responses method in a simulation study designed to reflect a
range of realistic experimental learning scenarios. We illustrate
our methods in the analysis of a rapid learning experiment in
which a monkey learns new associations during a single session
and in a slow learning experiment in which a rat learns a T-maze
task over many days.

Materials and Methods
A state–space model of learning
We assume that learning is a dynamic process that can be studied with the
state–space framework used in engineering, statistics, and computer sci-
ence (Kitagawa and Gersh, 1996; Smith and Brown, 2003). The state–
space model consists of two equations: a state equation and an observa-
tion equation. The state equation defines an unobservable learning
process whose evolution is tracked across the trials in the experiments.
Such state models with unobservable processes are often referred to as
hidden Markov or latent process models (Roweis and Gharamani, 1999;
Fahrmeir and Tutz, 2001; Smith and Brown, 2003). We formulated the
learning state process so that it increases as learning occurs and decreases
when it does not occur. From the learning state process, we compute a
curve that defines the probability of a correct response as a function of
trial number. We define the learning curve as a function of the learning
state process so that an increase in the learning process increases the
probability of a correct response, and a decrease in the learning process
decreases the probability of a correct response. The observation equation
completes the state–space model setup and defines how the observed
data relate to the unobservable learning state process. The data we ob-
serve in the learning experiment are the series of correct and incorrect
responses as a function of trial number. Therefore, the objective of the
analysis is to estimate the learning state process and, hence, the learning
curve from the observed data.

We conduct our analysis of the experiment from the perspective of an
ideal observer. That is, we estimate the learning state process at each trial
after seeing the outcomes of all of the trials in the experiment. This
approach is different from estimating learning from the perspective of
the subject executing the task, in which case, the inference about when
learning occurs is based on the data up to the current trial (Kakade and
Dayan, 2002; Yu and Dayan, 2003). Identifying when learning occurs is
therefore a two-step process. In the first step, we estimate from the ob-
served data the learning state process and, hence, the learning curve. In
the second step, we estimate when learning occurs by computing the
confidence intervals for the learning curve or, equivalently, by comput-
ing for each trial the ideal observer’s assessment of the probability that
the subject performs better than chance.

To define the state–space model, we assume that there are K trials in a
behavioral experiment, and we index the trials by k for k � 1, . . ., K. To
define the observation equation, we let nk denote the response on trial k,
where nk � 1 is a correct response, and nk � 0 is an incorrect response.
We let pk denote the probability of a correct response k. We assume that
the probability of a correct response on trial k is governed by an unob-
servable learning state process xk , which characterizes the dynamics of
learning as a function of trial number. At trial k, the observation model
defines the probability of observing nk , i.e., either a correct or incorrect
response, given the value of the state process xk. The observation model
can be expressed as the Bernoulli probability mass function:

Pr�nk�pk , xk� � pk
nk�1 � pk�

1�nk, (2.1)

where pk is defined by the logistic equation:

pk �
exp�� � xk�

1 � exp�� � xk�
, (2.2)

and � is determined by the probability of a correct response by chance in
the absence of learning or experience. We define the unobservable learn-
ing state process as a random walk:

xk � xk�1 � �k , (2.3)

where the �k are independent Gaussian random variables with mean 0
and variance ��

2.
Formulation of the probability of a correct response on each trial as a

logistic function of the learning state variable (Eq. 2.3) ensures that, at
each trial, the probability is constrained between 0 and 1. The state model
(Eq. 2.3) provides a continuity constraint (Kitagawa and Gersh, 1996) so
that the current state of learning and, hence, the probability of a correct
response in the current trial depend on the previous state of learning or
experience. Under the random walk model, the expected value of xk

given xk�1 is xk�1. Therefore, in the absence of learning, the expected
probability of a correct response at trial k is pk�1. In other words, the
Gaussian random walk model enforces the plausible assumption that
immediately before trial k, the probability of a correct response on trial k
is simply the probability from the previous trial k � 1. We compute the
parameter � before each experiment from p0 , the probability of a correct
response occurring by chance at the outset of the experiment. To do so,
we note that the parameter x0 describes the subject’s learning state before
the first trial in the experiment. We set x0 � 0, and then by Equation 2.2,
� � log[ p0(1 � p0 )�1]. For example, given a particular visual cue, if a
subject has five possible response choices, then there is 0.2 probability of
a correct response by chance at the start of the experiment. In this case, we
have � � log(0.2(0.8)�1) � �1.3863. Choosing � this way ensures that
x0 � 0 means that the subject uses a random strategy at the outset of the
experiment. In each analysis, we estimate x0 because the subject may have
a response bias or may be using a specific nonrandom strategy. The
parameter ��

2 governs how rapidly changes can occur from trial to trial in
the unobservable learning state process and in the probability of a correct
response. As we describe next, the value of ��

2 is estimated from the set of
trial responses in an experiment.

In the learning experiment, we set the number of trials K, and we
observe N1:K � {n1 , . . ., nK}, the responses for each of the K trials. The
objective of our analysis is to estimate x � { x0 , x1 , . . ., xK} and ��

2 from
these data to estimate pk for k � 1, . . ., K. That is, if we can estimate x
and ��

2, then by Equation 2.2, we can compute the probability of a correct
response as a function of trial number given the data. Because x is unob-
servable and ��

2 is a parameter, we use the EM algorithm to estimate them
by maximum likelihood (Dempster et al., 1977). The EM algorithm is a
well known procedure for performing maximum likelihood estimation
when there is an unobservable process or missing observations. We used
the EM algorithm to estimate state–space models from point process
observations with linear Gaussian state processes (Smith and Brown,
2003). Our EM algorithm is a special case of the one by Smith and Brown
(2003), and its derivation is given in Appendix A.

Estimation of the learning curves
Because of how we compute the maximum likelihood estimate of ��

2

using the EM algorithm, we derive two estimates of each xk for k � 1, . . .,
K. The first is xk�k and comes from the filter algorithm in Appendix A
(Eqs. A.6 –A.9). The second, xk�K, comes from the fixed-interval smooth-
ing algorithm (Eqs. A.10 –A.12) and is both the maximum likelihood and
empirical Bayes estimate (Fahrmeir and Tutz, 2001). The notation xk�j
means the learning state process estimate at trial k given the data up
through trial j. The filter algorithm estimate is the estimate of xk at trial k,
given N1:k , the data up through trial k with the true parameter ��

2 re-
placed by its maximum likelihood estimate. The smoothing algorithm
estimate at trial k is the estimate of xk given N1:K , all of the data in the
experiment with the true parameter ��

2 replaced by its maximum likeli-
hood estimate. Hence, the filter algorithm (Kakade and Dayan, 2002)
gives the state estimate of the subject, whereas the smoothing algorithm
gives the estimate of the ideal observer.

The filter algorithm estimates the learning state at time k as the Gauss-
ian random variable with mean xk�k (Eq. A.8) and variance �k�k

2 (Eq. A.9),
whereas the smoothing algorithm estimates the state as the Gaussian
random variable with mean xk�K (Eq. A.10) and variance, �k�K

2 (Eq. A.12).
Because our analysis gives two estimates of xk , by using Equation 2.2, we
can obtain two estimates of pk , namely, the filter algorithm estimate pk�k
and the smoothing algorithm estimate pk�K. Similarly, pk�k defines the
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probability of a correct response at trial k given the data N1:k � {n1 , . . .,
nk} up through trial k, and pk�K defines the probability of a correct
response at trial k given all of the data N1:K � {n1 , . . ., nK} in the
experiment. We can therefore compute the probability density of any pk�j
using Equation 2.2 and the standard change of variables formula from
elementary probability theory, where j � k denotes the filter algorithm
estimate, and j � K is the smoothing algorithm estimate. Applying the
change of variable formula to the Gaussian probability density with mean
xk�j and variance �k�j

2 yields the following:

f� p��, xk�j , �k�j
2 � � ��2��k�j

2 �
1

2 p�1 � p���1

exp��
1

2�k�j
2 �log�p��1 � p�exp�����1� � xk�j�

2�. (2.4)

Equation 2.4 is the probability density for the correct response probabil-
ity at trial k using either the filter algorithm ( j � k) or the smoothing
algorithm ( j � K) and is derived in Appendix B. Therefore, we define the
learning curve on the basis of the filter (smoothing) algorithm as the
sequence of trial estimates pk�k ( pk�K), where pk�j is the mode (most likely
value) of the probability density in Equation 2.4 for k � 1, . . ., K and j �
k or j � K.

Identification of the learning trial
Having completed the first step of estimating the learning curve, we
identify the learning trial by computing for each trial the ideal observer’s
assessment of the probability that the subject performs better than
chance or, equivalently, by computing the confidence intervals for the
learning curve. We define the trial on which learning occurs as the first
trial for which the ideal observer can state with reasonable certainty that
the subject performs better than chance from that trial to the end of the
experiment. For our analyses, we define a level of reasonable certainty as
0.95 and term this trial the ideal observer learning trial with level of
certainty 0.95 [IO (0.95)].

To identify the ideal observer learning trial, we first construct confi-
dence intervals for pk. The ideal observer learning trial is the first trial on
which the lower 95% confidence bound for the probability of a correct
response is greater than chance p0 and remains above p0 for the balance
of the experiment. This definition takes account of the fact that the
probability of a correct response on a trial is estimated and that there is
uncertainty in that estimation. That is, the ideal observer (or the smooth-
ing algorithm) estimates the probability of a correct response on each
trial k with error. Therefore, we ask, what is the smallest the true proba-
bility of a correct response can be on trial k? If the smallest value the ideal
observer is 95% sure of (the lower 95% confidence bound) is greater than
p0 , then we conclude that the performance on that trial is better than
chance. Because the ideal observer can observe the outcomes of the entire
experiment, he/she can make certain that the lower 95% confidence bound
exceeds p0 from a given trial through the balance of the experiment. If the
smallest value we are 95% sure of is less than p0 , then the ideal observer
cannot distinguish the subject’s performance from what can be expected by
chance, and he/she cannot conclude that the subject has learned.

Because our analysis also provides pk�k, the filter algorithm estimate of
pk , we can construct a definition of the learning trial using this estimate
and its associated confidence intervals as well.

The Matlab software (MathWorks, Natick, MA) used to implement
the methods presented here is available at our website (http://neurostat.
mgh.harvard.edu/BehavioralLearning/Matlabcode).

An illustration of learning curve estimation and learning trial
identification
Figure 1 illustrates use of the filter algorithm (Fig. 1 A) and the smoothing
algorithm (Fig. 1 B) to estimate the learning curve in a simulated learning
experiment consisting of 40 trials, in which the probability of a correct
response occurring by chance is 0.25 (Fig. 1 A, B, horizontal dashed
lines). The trial responses are shown above the figures as gray and black
marks, corresponding, respectively, to incorrect and correct responses.
In the first 10 trials, there are two correct responses, followed by a se-
quence of four correct responses beginning at trial 11. Beginning at trial

15, there are two correct responses until trial 23, after which all of the
responses are correct. The smoothing algorithm learning curve estimate
(Fig. 1 B, dashed black line) is smoother than that of the filter algorithm
learning curve (Fig. 1 A, solid black line), and its 90% confidence inter-
vals (Fig. 1 B, gray lines) are narrower than those of the filter algorithm
(Fig. 1 A, gray lines) because the smoothing algorithm intervals are based
on all of the data in the experiment.

The learning trials for the filter algorithm and IO (0.95) (Fig. 1 A, B,
arrows) are trials 27 and 23, respectively. The lower confidence bounds of
the filter and smoothing algorithms first exceed the probability of a cor-
rect response by chance at trials 14 and 12, respectively. However, be-
cause the lower confidence bounds for the two estimates do not remain

Figure 1. Example of the filter algorithm (A) and the smoothing algorithm (B) applied in the
analysis of a simulated learning experiment. The correct and incorrect responses are shown,
respectively, by black and gray marks above the panels. The probability of a correct response
occurring by chance is 0.25 (dashed horizontal line). Black lines are the learning curve estimates,
and the gray lines are the associated 90% confidence intervals. The 90% confidence intervals
are defined by the upper and lower 95% confidence bounds. The learning trial is defined as the
trial on which the lower 95% confidence bound exceeds 0.25 and remains above 0.25 for the
balance of the experiment. The filter algorithm identified trial 27 as the learning trial (arrow in
A), whereas the smoothing algorithm, which used all of the data, identified trial 23 as the ideal
observer learning trial with level of certainty 0.95 (arrow in B). The confidence limits at a given
trial were constructed from the probability density of a correct response at that trial using
Equations 2.4 and B.4. The probability densities of the probability of a correct response at the
learning trial and the trial immediately preceding the learning trial are shown in C for both the
filter (solid lines) and smoothing (dashed lines) algorithms. For the filter algorithm, the learning
trial was 27 (C, solid black line) and the preceding trial was 26 (solid gray line), whereas for the
smoothing algorithm, the IO (0.95) learning trial was trial 23 (C, dashed black line) and the
preceding trial was 22 (dashed gray line). D shows the level of certainty the ideal observer has
that the animal’s performance is better than chance at each trial. From trial 23 on, the ideal
observer is 0.95 certain that the performance is better chance, whereas this observer can be 0.90
certain of performance better than chance from trial 12 on.
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above 0.25 until trials 23 and 27, these latter trials are, respectively, the
filter algorithm and IO (0.95) learning trial estimates. Given either the
known or estimated value of ��

2, the filter algorithm estimates the learn-
ing trial as later in the experiment than the IO (0.95) because the filter
algorithm estimate at trial k uses only the data collected from the start of
the experiment up through trial k. The learning curve estimate at the last
trial K and the associated confidence intervals are the same for both
algorithms because, by design (Eqs. A.10 –A.12), the smoothing algo-
rithm performs its state estimation in reverse from trial K � 1 to 1
starting with the filter estimate at trial K.

To illustrate how the confidence bounds and the learning trial are
computed in Figure 1, A and B, Figure 1C shows the probability density
of the probability of a correct response at the learning trial and the trial
immediately preceding the learning trial for both the filter (solid lines)
and the smoothing (dashed lines) algorithms. For the filter algorithm, the
learning trial is 27 (Fig. 1C, solid black line) and the preceding trial is 26
(solid gray line), whereas for the IO (0.95), learning trial is 23 (Fig. 1C,
dashed black line) and the preceding trial is 22 (dashed gray line). That is,
the areas under both gray curves from 0 to 0.25 are �0.05, whereas the
areas under the corresponding black curves are �0.05. The learning state
process estimates are Gaussian densities by Equations A.6 and A.9 and
Equations A.10 and A.12. The probability density of the probability of a
correct response is non-Gaussian by Equation 2.4. The closer the mode of
Equation 2.4 is to either 0 or 1, the more non-Gaussian this probability
density is. This is why the probability density for trial 27 is more skewed
than the probability density for trial 23.

Just as the learning curve is a measure of the probability of a correct
response as a function of trial number, we compute from the probability
density in Equation 2.4 the probability that the ideal observer views the
animal’s performance as better than chance as a function of trial number
(Eq. B.4) (Fig. 1 D). This curve can be displayed in each analysis or it can
be inferred by the distance at each trial between the lower confidence
bound of the learning curve and the constant line denoting the probabil-
ity of a correct response by chance (Fig. 1 B). We have chosen the trial on
which this probability first crosses 0.95 and remains above this probabil-
ity for the balance of the experiment as the IO (0.95) learning trial. At trial
12, the probability that the animal is performing better than chance first
crosses 0.95. Immediately after this trial, it dips below 0.95 until trial 23,
at which point it passes and remains greater than 0.95 for the balance of
the experiment. This is why, in this experiment, we define trial 23 as the
learning trial. Between trials 12 and 22, the ideal observer has a high level
of confidence (�0.90) that the animal’s performance is better than
chance but not greater than 0.95 for this entire interval. To apply our
definition, the investigator must specify the desired level of certainty. In
all of our analyses, we use 0.95. Choosing a higher level of certainty,
such as 0.99 when we wish to ensure overlearning of a task, will tend
to move the learning trial to a later trial in the experiment. For this
experiment, a 0.99 level of certainty would identify the learning trial
at trial 24. Choosing a lower level of certainty, such as 0.90, will tend
to move the learning trial to an earlier trial. In this experiment, that
would be trial 12.

Alternative methods for estimating learning
We compared our algorithm with three methods commonly used to
estimate learning: the moving average method, the change-point test for
binary observations, and the fixed number of consecutive correct re-
sponses method. Although all three methods estimate learning by con-
ducting a hypothesis test, only the moving average method can be used to
estimate a learning curve.

Moving average method. This technique, based on using the binomial
test in a sliding window, has been used frequently to identify a learning
trial (Eichenbaum et al., 1986). The moving average method estimates
the learning curve by computing in a series of overlapping windows of
length 2w 	 1 the probability of a correct response at trial k as follows:

pk � �2w � 1��1 �
i�k�w

k	w

ni . (2.5)

Because the response at trial k is an average of the responses in the trials
on both sides, the resulting learning curve can only be estimated from
trial w 	 1 to trial K � w. To estimate the learning trial, this method uses
the binomial probability distribution to compute in each window the
probability of seeing the observed number of correct responses in the
window under the null hypothesis of no learning with the probability of
a correct response being p0. Using the moving average estimation for-
mula in Equation 2.5, the learning trials are identified as the middle trial
in the windows for which the probability of seeing the observed number
of correct responses is 0.05 or less. To illustrate, we chose w � 4, giving
a window length of nine trials. Hence, for p0 � 0.125, 0.25, and 0.5, we
require four, five, and eight correct responses within a nine-trial window
to identify the middle trial of that window as the learning trial.

The simplicity of the moving average method makes it highly appeal-
ing. However, it uses multiple statistical tests that do not take account of
the number of trials in the experiment. This method is therefore likely to
yield an unacceptable proportion of false-positive results. To reduce the
likelihood of false positives and to maintain consistency in the compar-
ison with our ideal observer definition of learning, we compute the prob-
ability of a correct response for trials w 	 1 to K � w and define the
learning trial as the first trial such that all subsequent trials have p � 0.05
for the number of observed correct trial responses in the window.

The change-point test for binary observations. The change-point test is
based on a null hypothesis that, during the K trials, there is a constant
probability of a correct response (Siegel and Castellan, 1988). This con-
stant probability is not p0 , but rather, it is estimated at the end of the
experiment as the proportion of correct responses across all of the trials.
If the null hypothesis is rejected, the change-point statistic is used to
identify the trial on which learning occurred. If we let

Sk � �
j�1

k

nj, k � 1, . . . , K

be the total number of correct responses up through trial k, then the
change-point statistic computes as follows:

D�k� � � K

�K � SK�SK
�Sk �

kSK

K �� , (2.6)

for k � 1, . . ., K � 1. We compare the maximum value of D(k) with the
tabulated distribution of the Kolmogorov–Smirnov statistic (Siegel and
Castellan, 1988) to decide whether there has been a change in the prob-
ability of a correct response. If the null hypothesis is rejected, then the
trial on which learning occurred is the one with the maximum value of
the statistic D(k).

Fixed-number of consecutive correct responses method. For a learning
experiment with K trials, a standard criterion for establishing learning is
to require that a fixed number of consecutive correct responses be ob-
served (Fox et al., 2003; Stefani et al., 2003). We let j denote this observed
number of consecutive responses. Like the change-point test, the fixed
number of consecutive correct responses method is based on a null hy-
pothesis that, during the K trials, there is a constant probability of a
correct response. Unlike the change-point test, the probability of a cor-
rect response is p0. If K is large relative to j, then j consecutive correct
responses are more likely to occur by chance. Hence, this approach is
predicated on showing that, for j appropriately chosen relative to K, the
probability of j consecutive correct responses occurring by chance is
small.

The probability of observing a sequence of j consecutive correct re-
sponses for several combinations of K and j and two levels of significance
are tabulated in Table 1. The number of consecutive correct responses
required to establish learning increases with increases in the probability
of a correct response, increases in the number of trials per experiment
and decreases in the desired significance level. For example, from column
1 in Table 1, if there are K � 20 trials in an experiment, and the proba-
bility of a correct response by chance is p0 � 0.125, then only j � 3
consecutive correct responses are required to reject a null hypothesis of
no learning with p � 0.05. On the other hand, if p0 � 0.5, then j � 8
consecutive responses are required to reject a null hypothesis of no learn-
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ing with p � 0.05. In Appendix C, we give an algorithm to compute the
significance of observing j correct responses in K trials.

For the simulated learning experiment in Figure 1, the learning trial
identified by the moving average method was trial 25, the change-point
test estimate was trial 23, and the one identified using the criterion of five
consecutive correct responses in 40 trials (Table 1) was trial 28.

Experimental protocols for learning
A location–scene association task. To illustrate the performance of our
methods in the analysis of an actual learning experiment, we analyzed the
responses of a macaque monkey in a location–scene association task,
described in detail by Wirth et al. (2003). In this task, the monkey fixated
on a point on a computer screen for a specified period and then was
presented with a novel scene. A delay period followed, and, to receive a
reward, the monkey had to associate the scene with the correct one of
four target locations: north, south, east, and west. Once the delay period
ended, the monkey indicated its choice by making a saccadic eye move-
ment to the chosen location. Typically, between two and four novel
scenes were learned simultaneously, and trials of novel scenes were inter-
spersed with trials in which four well learned scenes were presented.
Because there were four locations the monkey could choose as a re-
sponse, the probability of a correct response occurring by chance was
0.25. The objective of the study was to track learning as a function of trial
number and relate the learning curve to the activity of simultaneously
recorded hippocampal neurons (Wirth et al., 2003).

A T-maze task. As a second illustration of our methods applied to an
actual learning experiment, we analyzed the responses of a rat perform-
ing a T-maze task, described in detail by Jog et al. (1999) and Hu et al.
(2001). In this task, the rat used auditory cues to learn which one of two
arms of a T-maze to enter to receive a reward. On each day of this 47 d
experiment, the rat performed 40 trials, except on days 1 and 46, on
which it performed 20 and 15 trials, respectively. The total number of
trials was 1835. For this experiment, the probability of making a correct
response by chance was 0.5. The objective of this study was to relate
changes in learning across days to concurrent changes in neural activity
in the striatum (Jog et al., 1999; Hu et al., 2001).

Experimental procedures used for both tasks were in accordance with the
National Institutes of Health guidelines for the use of laboratory animals.

Results
Simulation study of learning curve estimation
We designed two simulation studies to investigate the perfor-
mance of our algorithms. In the first, we tested the accuracy of the
algorithms in estimating a broad family of learning curves. In the
second, we tested their performance in estimating three specific
learning curves seen in actual experiments.

In the first study, we compared the performance of the filter
algorithm, the smoothing algorithm, and the moving average
method with a window width of nine (w � 4) in the analysis of
simulated learning experiments from a family of sigmoid curves
(Fig. 2A). Each learning curve was defined by pk , the probability
of a correct response at trial k, and was defined using the follow-
ing logistic equation:

pk � p0 �
� pf � p0�

1 � exp����k � 	��
, (3.1)

where for k � 1, . . ., K, p0 , the initial
probability, is the probability of a correct
response by chance, pf is the final proba-
bility of a correct response, � is a constant
governing the rate of rise of the learning
curve, i.e., the learning rate, and 	 � 25 is
the inflection point of the curve.

In these simulated learning experi-
ments, we chose three values of the initial
probability p0 (0.125, 0.25, and 0.5), five
values of the final probability pf (0.6, 0.7,
0.8, 0.9, and 1), and three values of � (0.2,

0.3, and 0.4) (Fig. 2A). With this family of curves, we tested
systematically how the three methods performed as a function of
the probability of a correct response by chance, the learning rate,
and the final probability of a correct response the animal
achieved. For each of the 3 
 5 
 3 � 45 learning curves, we
simulated 100 50-trial experiments. For example, for a given trip-
let of the parameters p0 , pf , and �, we simulated 50 trials of
experimental data by using Equation 3.1 to draw Bernoulli ran-
dom variables with probability pk of a correct response for k � 1,
. . ., K. That is, on trial k a coin is flipped with the probability of
heads, a correct response, being pk and the probability of tails, an
incorrect response being 1 � pk. The result recorded from each
trial was a one if there was a correct response and a zero if the
response was incorrect. This procedure was repeated 100 times
for each of the 45-parameter triplets for Equation 3.1. We com-
pared the filter algorithm, smoothing algorithm, and the moving
average estimates of the true learning curves using mean inte-
grated squared error (MISE) (Rustagi, 1994).

We compared the MISE across the three estimation methods
for each of the 45 triplets of parameters p0 , pf and �. The MISE
for the smoothing algorithm was smaller than the MISE for the
moving average method for each of the 45 triplet combinations
(Fig. 2B). The MISE for the smoothing algorithm was smaller
than the filter algorithm in 44 of the 45 triplet combinations. For
the one exception, the difference in the two MISEs was �10�3

and occurred with the difficult to estimate learning curve with
p0 � 0.5, pf � 0.6, and � � 0.3. To examine learning as a
function of the difference between the initial and final probabil-
ities of a correct response, we plotted MISE against pf � p0 (Fig.
2B). The MISEs for the smoothing algorithm estimates were sim-
ilar across all values of pf � p0 (Fig. 2B, black dots). The moving
average method performed poorly in estimating the learning
curve for all values of pf � p0 (Fig. 2B, squares). The filter algo-
rithm MISE estimates increased (Fig 2B, gray dots) with pf � p0

because these estimates lag behind the smoothing algorithm es-
timates (Fig. 1) and the true learning curve (Fig. 3A,D,G). As a
consequence, the MISE between the filter estimate and the true
learning curve paradoxically increases as pf � p0 becomes larger.

Having established that the smoothing algorithm outper-
formed the other techniques for a broad family of sigmoidal
learning curves, we next analyzed the performance of this algo-
rithm in estimating three types of learning curves: delayed rapid
learning (Fig. 3A, black line), immediate rapid learning (Fig. 3D,
black line), and learning after initially declining performance
(Fig. 3G, black line). The first learning curve (Fig. 3, top row) was
from the sigmoid family in Equation 3.1 with � � 0.8, p0 � 0.5,
and pf � 1. This learning curve simulates rapid learning because
� � 0.8 is twice the largest learning rate of � � 0.4 used in the first
simulation study (Fig. 2A). The second curve (Fig. 3, middle row)
had the same parameters as the first learning curve, except with
	 � 7 instead of 	 � 25 to simulate rapid learning at the outset of

Table 1. Tabulation of the probability of j consecutive correct responses in K trials

p0

Total number of trials, K

20 30 40 50 60 70 80 90 100

0.500 8 (10) 8 (11) 9 (11) 9 (11) 10 (12) 10 (12) 10 (12) 10 (12) 10 (13)
0.250 5 (6) 5 (6) 5 (6) 5 (6) 5 (7) 5 (7) 6 (7) 6 (7) 6 (7)
0.125 3 (4) 3 (4) 4 (4) 4 (5) 4 (5) 4 (5) 4 (5) 4 (5) 4 (5)

For a given number of trials K (top row) and given probability of a correct response by chance p0 (first column), the table entries are the smallest number of
consecutive correct responses required to reject a null hypothesis of no learning with significance level 0.05 (or 0.01, in parentheses). The observed number
of consecutive correct responses required to establish learning increases with increases in the probability of a correct response, increases in the number of trials
per experiment, and decreases in the desired significance level. The table entries were computed using the algorithm in Appendix C.
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the experiment. The third learning curve (Fig. 3, bottom row)
was a cubic equation that like the first two curves had p0 � 0.5
and pf � 1. However, for this learning curve the probability of a
correct response decreased and then increased. This type of learn-
ing profile is seen when an animal has a response bias and per-
forms poorly at the outset of an experiment (Stefani et al., 2003).
The simulated experiments based on the first two learning curves
had 50 trials each, whereas those based on the third curve had 120
trials each.

For each curve, we simulated 100 learning experiments, esti-
mated learning curves with each of the three methods, and com-
pared them with true learning curves. The moving average
method performed the least well of the three methods, because it
was unable to estimate the learning curves reliably for any of the
three curves (Fig. 3C,F, I). Because the moving average method is
a two-sided filter, it could not estimate learning for the initial four
and final four trials. As in Figure 1, the filter algorithm estimated
the learning curves with a noticeable delay for each of these three
learning curves (Fig. 3A,D,G). For each of the three learning

curves, the smoothing algorithm followed the true learning curve
most closely (Fig. 3B,E,H) and tracked especially well the trials in
which the performance was worse than chance (Fig. 3H). The
MISE for the smoothing algorithm was 0.5025 for the delayed
rapid learning, 0.1445 for the immediate rapid learning curve,
and 0.6240 for the learning after a decline in performance. The
MISEs for the smoothing algorithm were smaller than those for
the filter algorithm and moving average method by a factor of 1.5
to 4 (Table 2), suggesting again that the smoothing algorithm
provided the best estimate of the true learning curve.

Simulation study of learning trial identification
We used the two simulation studies of learning curve estimation
to compare the smoothing algorithm with the change-point test,
the consecutive correct responses method, and the moving aver-
age method in identifying the learning trial. In the analysis of the
simulated data and in the actual data analyses, we only compare
the smoothing algorithm with the alternative methods because
the smoothing algorithm is the maximum likelihood (most prob-
able) estimate of the learning curve given the data and because its

Figure 2. A, Family of sigmoidal curves (Eq. 3.1) used to simulate the learning experiments.
Learning curves were constructed using three values of the initial probability of a correct re-
sponse p0 (0.125, 0.25, and 0.5), five values of the final probability of correct response pf (0.6,
0.7, 0.8, 0.9, and 1), and three values of � (0.2, 0.3, and 0.4), which governs the rate of rise or
learning rate of the curves. For each of the 3 
 5 
 3 � 45 learning curves, we simulated 100
learning experiments for a total of 4500. All of the curves increase monotonically from p0 ,
indicating that performance is better than chance on all trials, i.e., learning starts immediately.
B, MISE for the filter algorithm (gray dots), the smoothing algorithm (black dots), and the
moving average method (squares) for each of the 45 learning curves in A plotted as a function of
pf � p0. The smoothing algorithm MISE is smaller than those of the filter algorithm and the
moving average method for all values of pf � p0 above 0.1.

Figure 3. Analysis of three simulated learning experiments by the filter algorithm, the
smoothing algorithm, and the moving average method. A–C, Delayed rapid learning. D–F,
Immediate rapid learning. G–I, Learning after initially declining performance. We compared
the 100 estimated learning curves (green), the true learning curve (black), and the 90% confi-
dence intervals (red) using the filter algorithm (first column, A, D, and G), the smoothing algo-
rithm (second column, B, E, and H), and the moving average method (third column, C, F, and I).
The moving average method estimates fluctuate more, do not provide confidence intervals, and
do not track well the true learning curves. The filter algorithm learning curve estimates consis-
tently lag behind the true learning curves. The smoothing algorithm gives the best overall
estimates of the learning curves with the narrowest confidence intervals.

Table 2. MISE for the filter algorithm, smoothing algorithm, and moving average
method in estimating the three learning curves in Figure 3

MISE

Delayed rapid
learning

Early rapid
learning

Delayed
learning

Filter 1.2262 0.5789 2.3894
Smoothing 0.5025 0.1445 0.6240
Moving average 0.7963 0.2213 1.6276

For each of the three learning curves, the MISE was computed for each method using 100 simulated learning
experiments. The number of trials per experiment was 50 for the two rapid learning experiments and 120 for the
delayed learning experiment.
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performance was superior to the filter algorithm in the two pre-
vious simulation studies. For the smoothing algorithm, we esti-
mated learning from Equation B.4 using the IO (0.95) criterion.
For the change-point, consecutive correct responses method, and
moving average method, we set the significance level at 0.05.

For the first simulation study, there were 50 trials in each
simulated experiment and three different probabilities, p0 �
0.125, 0.25, and 0.5, so the minimal numbers of consecutive
responses required to identify learning by the consecutive re-
sponses method were, respectively, four, five, and nine (Table 1,
column 4) for a significance level of 0.05. For each of these curves,
the true performance increased monotonically following the lo-
gistic model (Fig. 2) in Equation 3.1 so that the probability of a
correct response was greater than chance from the outset of the
experiment. Therefore, the method that performed best was the
one that identified the earliest learning trial.

In the 4500 simulated experiments of the first simulation
study, the smoothing algorithm identified a learning trial in 3752
(83%) simulated experiments, the change-point test in 3225
(72%) experiments, the consecutive correct responses method in
3439 (76%) experiments, and the moving average method in
3579 (80%) experiments. Estimating a learning trial for some of
the learning curves was more challenging than for others (Fig.
4A). The shorter the distance between the initial and final prob-
ability, the more difficulty each procedure had in identifying the
learning trial. On the other hand, as the distance between the
initial and final probability increased, it was easier for each pro-
cedure to identify the learning trial. The IO (0.95) criterion iden-
tified a learning trial in a higher proportion of experiments than
the other techniques for any difference between the initial and
final probability of a correct response. The only exception was
when the difference between the initial and final probabilities was
0.1, in which case, all three methods performed poorly (Fig. 4A).

We compared the estimates of learning trial in 2892 of the
4500 (64%) experiments in the first simulation study in which all
four methods identified a learning trial. The IO (0.95) identified
learning in advance of the change-point test in 2237 of these 2892
(77%), at the same trial as the change-point test in 233 (8%), and
after the change-point test in 422 (15%) of the simulated exper-
iments (Fig. 4B). The IO (0.95) identified learning in advance of
the consecutive correct responses method in 2875 of these 2892
(�99%), at the same trial as the consecutive correct responses
method in 0, and after the consecutive correct responses method
in 17 (�1%) of the simulated experiments (Fig. 4C). Similarly,
the IO (0.95) identified learning in advance of the moving aver-
age method in 2810 (97%), at the same trial as
the moving average in 70 (�3%), and after in 12 (�1%) of the
simulated experiments (Fig. 4 D). For the simulated experi-
ments in which the IO (0.95) identified the learning trial be-
fore the change-point test (consecutive correct responses
method/moving average method), the median difference in
the learning trial estimates was 5 (10/5) trials with a range
from 1 to 27 (1 to 35/1 to 32) trials.

To investigate further the performance of the IO (0.95) rela-
tive to the change-point test, the consecutive correct responses
method, and the moving average method, we used these three
methods to identify the learning trials from the second set of
simulated learning experiments in Fig. 3 (black lines). Each
method identified a learning trial in at least 94 of the 100 simu-
lated experiments for each of the three learning curves, except for
the change-point test, which identified a learning trial in only 81
of the 100 experiments for the second rapid learning curve (Fig.
3D). The IO (0.95) and moving average method identified

alearning trial in more of the simulated experiments (299/300)
than either the change-point test (279/300) or the consecutive
correct responses method (295/300).

For the two rapid learning curves (Fig. 3A–F), the probability
of a correct response exceeded chance from the outset, so that, as
in the previous analysis, the method that identified the earliest
learning trial was the best. For the early rapid learning experi-
ments (Figs. 3D, black curve, 5, black dots), the change-point test
identified more of the learning trials earlier than the IO (0.95)
(Fig. 5A, black dots), whereas the consecutive correct responses
method identified all of them later than the IO (0.95) (Fig. 5B,
black dots). For the delayed rapid learning experiments (Figs. 3A,
black curve, 5, gray dots), the IO (0.95) identified the majority of
the learning trials earlier than the change-point test (Fig. 5A, gray
dots), the consecutive correct responses method (Fig. 5B, gray
dots), and the moving average method (Fig. 5C, gray dots). For
the experiments from both the early and delayed rapid learning
curves in which the change-point test identified the learning trial
earlier than the IO (0.95), the median differences were one and
two trials, respectively, and the maximum difference for both was
five trials. The slightly better performance of the change-point
test is attributable to the fact that its null hypothesis is that there
is no change in the overall proportion of correct responses. In
these experiments, there were many correct responses in the lat-
ter trials, making the null hypothesis probability close to one. As
a result, the change-point test detected learning near the start of
the experiments where the probability of a correct response was
0.5, the farthest value from its null hypothesis probability.

For the analysis of the simulated experiments based on the
learning curve that involved learning after declining perfor-
mance, the true learning trial was trial 72. This was the trial on
which the true learning curve first exceeded the line p0 � 0.5,
defining the probability of a correct response by chance (Fig.
3G–I). Therefore, the best method for identifying the learning
trials in these experiments is the one which identified them at the
earliest trials on or after trial 72. The IO (0.95) identified 98 of its
99 learning trials for this experiment on or after trial 72 (Fig. 5A,
open squares and vertical dashed line). The change-point test
identified only 38 of its 99 learning trials on or after trial 72 (Fig.
5A, open squares and horizontal dashed line). Of the 38 identified
after trial 72, all were earlier than the corresponding trials iden-
tified by the IO (0.95) (Fig. 5B, diagonal line). The consecutive
correct responses method identified all 94 of its learning trials
after trial 72; however, 93 of those 94 were later than the learning
trials identified by the IO (0.95) (Fig. 5B, open squares). Simi-
larly, the moving average method identified all of its 99 learning
trials after trial 72, but each was later than the corresponding one
estimated by the IO (0.95) (Fig. 5C, open squares).

The bias of the change-point test toward identifying early
learning trials can be explained by the way its null hypothesis was
formulated. The change-point test null hypothesis probability is
the total proportion of correct responses observed in an experi-
ment (see Material and Methods). For this learning curve, the
null hypothesis probability for the change-point test was on av-
erage 0.47. This was the average proportion of correct responses
over the 100 simulated experiments for this learning curve (Fig.
3G). Because the change-point test identified the earliest trial in
which the observed proportion of correct responses up to that
trial differed from that predicted by 0.47, it detected consistently
the increase from the nadir in the probability of a correct re-
sponse of 0.10 near trial 30 as significant. This increase was ap-
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parent but, before trial 72, it did not indicate performance that
was better than chance.

The results of these two simulation studies demonstrate that,
when learning is defined as performance better than predicted

Figure 4. Analysis of learning trial estimation for the family of sigmoidal learning curves in
Figure 2. A shows the number of learning trials identified by the smoothing algorithm [IO (0.95);
black dots], the change-point test (CPT; crosses), the consecutive correct response method (CR;
squares), and the moving average method (MA; plus signs) as a function of pf � p0 , the
difference between the final and the initial probabilities of a correct response. Each point is the
number of learning trials identified by a given method for one of the 15 combinations of pf � p0

summed over the three values of � (Fig. 2). The maximum value of each point would be 3 

100 � 300, if the method identified a learning trial for each simulated experiment. The IO
(0.95) identified a learning trial in more experiments than the other three methods, for all
values of pf �p0 except when pf �p0 was 0.1. Scatterplots of the learning trial estimates of the
change-point test versus the IO (0.95) (B), the consecutive correct responses method versus the
IO (0.95) (C), and the moving average method versus the IO (0.95) (D), for the 2892 of the 4500
simulated learning experiments (Fig. 2) in which all three methods identified a learning trial.
Because in all of the simulated experiments true performance was greater than chance from the
outset, the method that identified the earliest learning trial performed the best. The 45° line
indicates that the two methods being compared identified the same learning trial. The change-
point learning trial estimate was later than the IO (0.95) estimate in 2237 of 2892 experiments
(77%), at the same trial in 233 of 2892 (8%), and earlier in 422 of 2892 (15%). The consecutive
correct response method estimate of the learning trial was later than the IO (0.95) estimate in
2875 of 2892 experiments (�99%), at the same trial as in 0 of 2970, and earlier in 17 of 2970
(�1%). The moving average method estimated the learning trial after the IO (0.95) criterion in
2810 of 2892 experiments (97%), at the same trial as the moving average in 70 of 2892 (�3%),
and earlier in 12 of 2892 (�1%) of the simulated experiments.

Figure 5. Comparison of learning trials estimated by the IO (0.95), change-point test, the consec-
utive correct response method, and the moving average method for the three simulated learning
experiments in Figure 3. A compares learning trial estimates from the change-point test (CPT) and the
IO (0.95) for delayed rapid learning (gray dots), immediate rapid learning (black dots), and learning
after declining performance (squares). The number of learning trial estimates above and below the
45° line are marked in the panel. Trial 72 (dashed lines) is the trial on which the learning curve in the
learning after declining performance simulations crossed p0 � 0.5, the line for the probability of a
correct response by chance. For the delayed rapid learning curve (gray dots, A), there were 50 simu-
lated experiments in which the change-point test estimated learning later than the IO (0.95), 40
experiments in which it estimated learning earlier, and eight experiments in which the change-point
test and IO (0.95) estimated identical learning trials. For the immediate rapid learning (black dots, A),
the change-point test estimated learning earlier than the IO (0.95) for the majority of simulated
experiments (59 of 81) because of the observation-dependent null hypothesis in the change-point
test (see Results). For the learning after declining performance (squares, A), the change-point test
estimated learning earlier than the IO (0.95) in all of the simulated experiments. However, the major-
ity of the estimates (61 of 99) occurred before trial 72, indicating that the change-point test incorrectly
identified learning before the true learning curve was above chance. B compares the learning trial
estimated from the consecutive correct responses method (CR) and the IO (0.95) for the same three
simulated learning curves using the same symbol definition as in A. The IO (0.95) estimated learning
earlier than the consecutive responses method in nearly all (292 of 294) simulated experiments. For
thelearningafterdecliningperformancecurve(opensquares,B),theIO(0.95)onlyestimatedlearning
in advance of trial 72 in one experiment as trial 69. The consecutive correct responses method never
detected learning before trial 72. C compares learning trials estimated with the moving average
method (MA) and the IO (0.95) criterion. In most cases, the moving average estimates of the learning
trial were later (295 of 299) than the IO (0.95) learning trial estimates and were identical to the IO
(0.95) estimates in 4 of 299.
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bychance, the IO (0.95) identifies the learning trial more reliably
and more accurately than the change-point test, the consecutive
correct responses method, or the moving average method across
a broad range of learning curves.

Analysis of learning in an association task
To illustrate the performance of our methods in the analysis of an
actual learning experiment, we used the IO (0.95) to characterize
the behavioral performance of a macaque monkey in a location–
scene association task (Wirth et al., 2003) described in Materials
and Methods. We analyzed the monkey’s responses in two differ-
ent learning experiments: one with 55 trials and the second with
67 trials. The monkey’s observed correct (black) and incorrect
(gray) responses are shown in Fig. 6.

In the 55-trial experiment, the monkey responded incorrectly
in all of the first 24 trials, except in trials 7 and 20 (Figs. 6A,B).
The smoothing algorithm (Fig. 6A) and the moving average
method (Fig. 6B) produced learning curve estimates with similar
shapes. Because the smoothing algorithm estimates the probabil-

ity of a correct response at each trial, it estimated the IO (0.95)
learning trial as trial 24 (Fig. 6A, arrow). The moving average
method identified the learning trial as occurring within the nine-
trial window centered at trial 24 (Fig. 6B, arrow), containing at
least five correct responses. The change-point test identified the
learning trial as trial 24, and the consecutive responses method
identified it as trial 29 (Fig. 6E). The smoothing algorithm, how-
ever, had the advantage of providing an easily interpretable esti-
mate of the probability of a correct response as a function of trial
number. For example, we can use the confidence limits to analyze
performance worse than or better than chance. That is, the mon-
key appears to perform below chance at the outset of the experi-
ment because it has only two correct responses in 24 trials. Its
performance, however, was not worse than what could be ex-
pected by chance, because the upper confidence bounds were
never below 0.25 (Fig. 6A).

An additional analysis of the 55-trial experiment comparing
the current state–space model with a state–space model with
state-dependent variance based on Kakade and Dayan (2002)
is presented in the supplemental data to this article (www.
jneurosci.org). Although the results did not differ from those pre-
sented here, it illustrates how our paradigm may be extended to
analyze whether the learning rate declines as learning progresses.

For the 67-trial location–scene association task, the IO (0.95)
showed that the animal learned the correct association at trial 16
(Fig. 6C, arrow). The moving average method identified the learning
trial at trial 60 (Fig. 6D). The trials at the center of a nine-trial win-
dow with at least five correct responses are marked by an asterisk. On
the basis of the results in Appendix C, the consecutive correct re-
sponses method required a minimum of five consecutive correct
responses in 67 trials to identify the learning trial, and identified it as
trial 51 (Fig. 6E). The change-point test could not identify a learning
trial in this experiment (Fig. 6E).

On the basis of the proportion of correct responses for the
entire experiment, 30/67, it is apparent that the monkey has
learned. The likelihood of observing this proportion of correct
responses if the monkey were performing with a probability of
a correct response by chance on each trial of 0.25 would be
�10 �3. The moving average method first identified learning
at trial 16, but, because there were windows in which no learn-
ing was detected after trial 16, an ideal observer would not be
able to conclude learning had definitely occurred until trial 60.
The change-point test failed to reject the null hypothesis of no
learning because its null hypothesis is that the probability of a
correct response by chance is p0 � 30/67 and not 0.25. The
monkey performed consistently from the start of the experi-
ment so that the proportion of correct responses up to any trial
was well predicted by the proportion of correct responses for
the entire experiment. When the proportion of correct re-
sponses for the entire experiment predicts well the perfor-
mance up to any trial, then by Equation 2.6, the change-point
test does not reject the null hypothesis and, hence, does not
identify a learning trial. Again, the advantage of the smoothing
algorithm is that, in addition to identifying the ideal observer
learning trial, it provides a learning curve estimate for the
entire experiment.

Analysis of learning in a T-maze task
We also analyzed the performance of a rat in a procedural learn-
ing task requiring the animal to use auditory cues to learn which
of two arms in a T-maze to enter to receive a reward (see Mate-
rials and Methods). The observed proportions of correct re-
sponses on each day are shown in Figure 7B (dotted line).

Figure 6. Performance of the smoothing algorithm compared with the moving average
method in analyzing association learning by a macaque monkey. The monkey performed a
55-trial location–scene association task (A, B) and a 67-trial location–scene association task (C,
D). The incorrect and correct responses of the monkey in each experiment are shown, respec-
tively, as gray and black tick marks above A–D. The solid black curves are the learning curve
estimates for the smoothing algorithm, and the gray curves are the associated 90% confidence
intervals in A and C. In B and D, the gray line shows the moving average estimate of the
probability of a correct response. The asterisks denote the nine-trial windows in which the
number of correct responses is significantly more than would be predicted by chance if there were no
learning based on a local binomial probability distribution function. In both experiments, the proba-
bility of a correct response occurring by chance was 0.25 (horizontal dashed line). In the 55-trial
experiment, the monkey gave only two correct responses in the first 24 trials (A, B). The IO (0.95)
criterion identified learning at trial 24 (arrow in A). The moving average method (B) identified the
learning trial as occurring in the window centered at trial 24 (arrow in B). In the 67-trial experiment,
the monkey gave its first correct response at trial 13 and subsequently performed better than chance
but with a smaller total proportion of correct responses compared with the 55-trial experiment. The IO
(0.95) identified the learning trial as trial 16 (arrow in C), whereas the moving average method iden-
tified the learning trial as occurring near trial 60 (arrow in D). E summarizes learning trial estimates for
the two experiments using the IO (0.95) criterion, the moving average method (MA), the consecutive
correct responses method (CR), and change-point test (CPT).
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We analyzed this experiment using our state–space model
paradigm in three ways. First, we concatenated all of the re-
sponses across all the days and analyzed learning as a function of
trial number across the 1835 trials (Fig. 7A). The smoothing al-
gorithm showed a near monotonic increase in the learning curve
beginning almost at the outset of the experiment. The IO (0.95)
criterion identified the learning trial as trial 341, which occurred
on day 9 [Fig. 7A, IO (0.95)]. The change-point test identified
trial 953 on day 24 as the learning trial (Fig. 7A, CPT). Given K �
1835, the consecutive response method required a minimum of
15 consecutive correct responses to establish learning. This oc-
curred at trial 567 on day 14 (Fig. 7A, CR). In a similar experiment,
Jog et al. (1999) defined learning as the point at which there were at

least 72.5% correct responses on 2 consecutive days. This corre-
sponds to 29 correct responses or more of 40 per day. By this crite-
rion, learning occurred in this experiment on day 13 (Fig. 7B, EC).

In the second analysis, we assumed that only the number of trials
per day and the number of correct responses per day were recorded
instead of all of the sequences of individual trial outcomes within
each day. Therefore, we replaced the Bernoulli model in Equation
2.1 with the following binomial observation model:

Pr�nk�pk , xk� � �mk

nk
�pk

nk�1 � pk�
mk�nk, (3.2)

where k indexes the day, mk is the number of trials on day k, and
nk is now the number of correct responses on day k. Following
the arguments in Appendix A, we derived a smoothing algorithm
using the same Gaussian state model with the observation model
in Equation 3.2. We used the reformulated state–space model to
analyze this coarser data series. The day-by-day learning curve for
this analysis (Fig. 7B) resembles closely that of the trial-by-trial
learning curve (Fig. 7A), with the exception that the latter had
narrower confidence limits. The day-by-day learning curve was
smoother than the plot of the proportion of correct responses in
each day because the latter does not relate performance on one
day to that on any other day (Fig. 7B). This analysis shows only a
minimal loss of information relative to the trial-by-trial analysis
as the IO (0.95) criterion identified the learning day as day 11 of
the experiment instead of on day 9. In either case, the IO (0.95)
identified the learning day 2 to 4 d before the day estimated by the
criterion of Jog et al. (1999).

In the third analysis of this experiment, we estimated learning
as the experiment progressed. That is, we used the day-by-day
algorithm starting at day 1 and progressively computed the learn-
ing curve as the end point of the data series was moved back from
day 3 to day 47 (Fig. 7C). Once the data series length reached 12 d,
the learning day was identified as day 11, and this estimate re-
mained unaltered for all series lengths from days 13 to 47 (Fig.
7C). Thus, the day-by-day smoothing algorithm and the IO
(0.95) criterion predicted on day 12 that learning occurred on day
11, suggesting that the smoothing algorithm and learning trial
definition could be used in real time as data accrue to identify the
learning trial and, possibly, to shorten the length of experiments
or to study “overlearning” on-line.

In the trial-by-trial and the day-by-day analyses (Fig. 7A,B),
the smoothing algorithm learning curve estimates are less than
p0 � 0.5 until trial 255 and day 8, respectively. In the day-by-day
analyses (Fig. 7B,C), the smoothing algorithm estimated that the
upper 95% confidence bound of the probability of a correct re-
sponse as below p0 � 0.5 at trial 4, suggesting that the animal
might have had a response bias at the start of the experiment.

Discussion
At present, there is no consensus as to the most reliable and
accurate way to analyze sequences of trial responses in learning
experiments. To address this question, we developed a state–
space model that characterizes learning as a dynamic process. The
smoothing algorithm derived from the model estimates a learn-
ing curve from the trial responses of a single animal in a learning
experiment. The algorithm provides at each trial the ideal observ-
er’s assessment of the probability that a subject is performing
better than chance and, as a consequence, the first trial on which an
ideal observer is 0.95 certain that the subject is performing better
than chance for the balance of the experiment. We tested the state–
space model on a representative set of simulated learning experi-

Figure 7. Performance of a rat during a 47 d T-maze procedural learning task. The rat per-
formed 40 trials per day, except on day 1 (20 trials) and day 46 (15 trials), for a total of 1835
trials. The data were analyzed using the smoothing algorithm and the IO (0.95) criterion in a
trial-by-trial analysis (A) and in a day-by-day analysis using the smoothing algorithm with the
binomial observation model (Eq. 3.2) and the IO (0.95) criterion and the number of correct
responses on each day as the observed data (B, C). The learning curve estimates for each analysis
(solid black lines) and the associated 90% confidence intervals (gray lines) are shown. In B, the
black dots connected by the gray lines are the proportions of correct responses on each day. The
probability that correct response occurred by chance was 0.5 in this experiment (dashed hori-
zontal lines in all panels). The learning trial estimates for the trial-by-trial analysis in A were as
follows: IO (0.95), trial 341 on day 9; the change-point test (CPT), trial 953 on day 24; and the
fixed criterion of 15 consecutive correct responses (CR), trial 567 on day 14. The estimates of the
learning day for the day-by-day analysis in B were as follows: IO (0.95), day 11; and the empirical
criterion (EC) of Jog et al. (1999), day 13. C, The data were also analyzed on a day-by-day basis
as the experiment progressed by computing the learning curve from the start to the end of the
data series as the end was moved from day 3 to day 47. The 45 learning curves (black lines) and
their associated 90% confidence bounds (gray lines) are plotted in C with the proportion of
correct responses on each day (black dots). The “whispy” appearance of the plot is attributable
to the fact that each learning curve and its associated confidence intervals were estimated with
a different number of days of data, and, hence, each has different end points. In each analysis
from day 12 to 47, the IO (0.95) criterion identified the learning day as day 11. The fact that the
upper 95% confidence bound fell below 0.5 at trial 4 (B, C) suggests that the animal might have
had a response bias at the start of the experiment.
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ments and applied it in the analysis actual learning experiments. The
superior performance of both the smoothing algorithm and ideal
observer learning trial definition in the analysis of the simulated and
actual learning experiments relative to current methods suggests that
the state–space model paradigm offers a coherent statistical frame-
work for analyzing learning experiments.

State–space modeling of learning versus testing hypotheses
The superior performance of our state–space model paradigm
relative to the hypothesis testing methods was expected because
building a statistical model of a process, in general, gives a more
informative analysis than simply designing a procedure to test a
hypothesis (Box, 1980; Casella and Berger, 1990). Whereas the
hypothesis testing methods test a yes–no hypothesis, the state–
space model characterizes the relationship between the hidden
learning process and the animal’s responses across trials. From a
properly constructed statistical model, the hypothesis of interest
can be tested, confidence intervals can be constructed, and model
goodness-of-fit assessments can be made (Box, 1980). The state–
space model represents the trials as dependent, whereas the hy-
pothesis testing methods assume them to be independent.

The change-point test, the consecutive response method, the
moving average method, and the learning criterion by Jog et al.
(1999) test the null hypothesis of no learning defined by a con-
stant probability of a correct response. The probability of a cor-
rect response under the null hypothesis should be defined by how
likely the animal is to respond correctly to the task by chance
before attempting it. For the association task with four choices on
any trial, this probability was 0.25, whereas for the T-maze task
with two choices on any trial, this probability was 0.50. In con-
trast, the null hypothesis probability of a correct response for the
change-point test is independent of the task and is defined after
the experiment has been conducted as the proportion of correct
responses recorded during the experiment. The change-point test
(Eq. 2.6) compares by trial the difference between the observed
cumulative number of correct responses and the cumulative
number of correct responses predicted by the total proportion of
correct responses. This test identifies any large difference as evi-
dence to reject the null hypothesis. Our analysis demonstrates
that the null hypothesis of the change-point test is not relevant for
a learning experiment and that, with this method, every experi-
ment has a different null hypothesis formulated after the experi-
mental observations have been recorded.

In previous applications of the consecutive correct responses
method, no specific justification has been given for the number of
consecutive correct responses needed to reject the null hypothesis
(Fox et al., 2003; Stefani et al., 2003). Table 1 provides what we
believe is the first demonstration of how the number of correct re-
sponses depends on the number of trials in the experiment, the
probability of a correct response by chance, and the desired signifi-
cance level. This method tests a null hypothesis of no learning in
which p0 is chosen correctly as the preexperiment probability of a
correct response. However, the analysis of the simulated learning
experiments showed that learning could occur, and this procedure
could fail to detect it or would detect it consistently later than the IO
(0.95). This is because the animal’s performance can be better than
chance, and the required number of consecutive correct responses
may not occur. If they do occur, they may not occur early in the
experiment.

The moving average method identifies the learning trial by
testing a null hypothesis of no learning using a number of trials
equal to the window width of the local estimation filter (Eq. 2.5).
We required that the criterion for this method for rejecting the

null hypothesis hold from an identified trial to the end of the
experiment for that trial to be the learning trial. Otherwise, the
moving average p value is not correct because it does not consider
the total number of trials in the experiment.

The smoothing and filter algorithms
Under the state–space model, the smoothing algorithm uses all of
the experimental data and gives the maximum likelihood (opti-
mal) estimate of the learning curve (Fahrmeir and Tutz, 2001).
Given either the known or estimated value of the model param-
eter ��

2, the smoothing algorithm represents the ideal observer of
the experiment. The filter algorithm estimate at trial k is causal
(Kakade and Dayan, 2002) because it does not depend on the
animal’s responses beyond that trial, and, therefore, its learning
curves (Figs. 1, 3) lag behind those of the smoothing algorithm.
This lag contributed to the paradoxical increase in the MISE of
this procedure as the difference between the initial and final
probabilities of a correct response increased (Fig. 2B). The filter
algorithm remains important because, as shown in Appendix A,
the smoothing algorithm is computed from the filter algorithm.
Our simulation studies along with those by Smith and Brown
(2003) show that the Gaussian approximations applied in the filter
and smoothing algorithms are sufficiently accurate to allow reliable
learning curve estimation across a broad range of shapes. The filter
and smoothing algorithms are, respectively, the analogs for the cur-
rent problem of the Bayes’ filter and the Bayes’ smoother neural
spike train decoding algorithms developed by Brown et al. (1998).

State–space models of learning: advantages and
future directions
The state–space model paradigm offers important advantages
over current techniques. First, individual learning curve esti-
mates provide a direct characterization of between animal differ-
ences in learning propensity for the same task. Second, our anal-
ysis can estimate the probability that the subject has learned
(performs better than chance) on each trial and allows the inves-
tigator to choose a minimal level of certainty he/she wishes to
accept to identify the learning trial. Our IO (0.95) learning trial
definition identified the learning trial more reliably and accu-
rately than all of the methods we tested in the analyses of both
simulated and actual learning experiments. In this regard, the
smoothing algorithm analysis of the T-maze task was especially
instructive because the IO (0.95) criterion identified learning 2 to
4 d earlier than the criterion used by Jog et al. (1999) and Hu et al.
(2001) (Fig. 7A) in similar experiments. Third, because the
smoothing algorithm can estimate learning on a trial-by-trial ba-
sis for a single animal, our analyses can be used to correlate be-
havioral changes associated with learning with changes in neural
activity (Jog et al., 1999; Wirth et al., 2003).

Finally, sequential use of the smoothing algorithm to analyze the
T-maze experiment showed that, by day 12 of this 47 d experiment,
the IO (0.95) criterion estimated that learning had occurred by day
11. This finding suggests that the smoothing algorithm can be used
to track learning in real time. This is analogous to a sequential anal-
ysis of a medical clinical trial in which the outcomes of study partic-
ipants are continuously monitored to determine as early as possible
whether a new therapy is effective (Everitt and Pickles, 2000). For
learning studies, obtaining reliable real-time estimates of the learn-
ing trial opens the possibility of changing a protocol in real time to
test an animal’s performance under new conditions. These advan-
tages of our approach over current methods can therefore reduce the
number of animals and the number of trials per animal required to
execute a learning study.
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Our state–space model expands easily to take account of other
features of learning experiments. These include a forgetting time
constant or autoregressive coefficient for the state model (Smith
and Brown, 2003) to capture the decline in performance that can
be seen when an animal executes multiple trials over many days
(Hu et al., 2001) and use of covariates (Smith and Brown, 2003)
to help disambiguate learning from response biases and nonran-
dom strategies. Likewise, the decreasing learning rate frequently
seen during learning may be represented by using a state-
dependent model for the noise variance in Equation 2.3 (Kakade
and Dayan, 2002) (see supplemental data at www.jneurosci.org).
The model can also be extended to estimate dependence among
simultaneously learned tasks such as in our first example in which
the monkey learned two to four novel location–scene associations
per session (Wirth et al., 2003). Finally, our state–space framework
can be combined with hierarchical Bayesian (Gilks et al., 1996) and
longitudinal data (Jones, 1993; Fahrmeir and Tutz, 2001) methods
to pool information properly across multiple animals executing the
same task to estimate simultaneously a population learning curve
and a learning curve for each individual animal.

Appendix
A: derivation of the EM algorithm
Use of the EM algorithm to compute the maximum likelihood esti-
mates of ��

2 and x0 requires us to maximize the expectation of the
complete data log likelihood. We treat x0 as a parameter like ��

2. The
complete data likelihood is the joint probability density of N1:K and
x, which for our model is as follows:

p�N1:K , x���
2 , x0� � �

k�1

K

pk
nk�1 � pk�

1�nkp� x���
2 , x0�

� p�N1:K�x� p� x���
2 , x0�, (A.1)

where the first term on the right of Equation A.1 is defined by the
Bernoulli probability mass function in Equation 2.1, and second
term is the joint probability density of the learning state process
defined by the Gaussian model in Equation 2.3. At iteration (� 	
1) of the algorithm, we compute in the E-step the expectation of
the complete data log likelihood given the responses N1:K across
the K trials and ��

2(�) and x0
(�), the parameter estimates from

iteration �, which is defined as follows:

Q���
2,x0���

2���,x0
���� � E�log�p�N1:K , x���

2���N1:K , ��
2��� , x0

����

� E��
k�1

K

nk�� � xk�

� log�1 � exp�� � xk���N1:K , ��
2��� , x0

���	
� E��

k�1

K

�
1

2

�xk � xk�1�
2

��
2 �

K � 1

2
log 2�

�
K � 1

2
log ��

2 �
x0

2

2��
2 �N1:K , ��

2��� , x0
���	.

(A.2)

On expanding the right side of Equation A.2, we see that calcu-
lating the expected value of the complete data log likelihood re-

quires computing the expected value of the state variable
E[ xk�N1:K , ��

2(�), x0
(�)] and the covariances E[ xk

2�N1:K , ��
2(�),

x0
(�)] and E[ xkxk�1�N1:K , ��

2(�), x0
(�)]. We denote them as

follows:

xk�K 
 E� xk�N1:K , ��
2��� , x0

���� (A.3)

Wk�K 
 E� xk
2�N1:K , ��

2��� , x0
���� (A.4)

Wk,k�1�K 
 E� xkxk�1�N1:K , ��
2��� , x0

���� (A.5)

for k � 1, . . ., K, where the notation k�j denotes the expectation
of the state variable at k given the responses up to time j. To
compute these quantities efficiently, we decompose the E-step
into three parts: a nonlinear recursive filter algorithm to compute
xk�k, a fixed-interval smoothing algorithm to estimate xk�K, and a
state–space covariance algorithm to estimate Wk�K and Wk,k�1�K.
These algorithms for our model are as follows.

Filter algorithm
Given ��

2(�) and x0
(�), we can first compute recursively the state

variable, xk�k, and its variance, �k�k
2 . We accomplish this using the

following nonlinear filter algorithm (Brown et al., 1998; Smith
and Brown, 2003):

(One-step prediction)

xk�k�1 � xk�1�k�1 (A.6)

(One-step prediction variance)

�k�k�1
2 � �k�1�k�1

2 � ��
2��� (A.7)

(Posterior mode)

xk�k � xk�k�1 � �k�k�1
2 �nk � pk�k� (A.8)

(Posterior variance)

�k�k
2 � ���k�k�1

2 ��1 � pk�k�1 � pk�k��
�1, (A.9)

where pk�k is the mode of Equation 2.4 for k � 1, . . ., K and j �
k. The initial condition is x0 � x0

(�) and �0�0
2 � ��

2(�). The algo-
rithm is nonlinear because xk�k appears on the left and right of
Equation A.8. The derivation of this algorithm for arbitrary point
process observation model and linear state–space model is given
by Smith and Brown (2003).

Fixed-interval smoothing algorithm
Given the sequence of posterior mode estimates xk�k (Eq. A.8)
and the variance estimates �k�k

2 (Eq. A.9), we use the fixed-
interval smoothing algorithm (Shumway and Stoffer, 1982; Men-
del, 1995; Brown et al., 1998; Smith and Brown, 2003) to compute
xk�K and �k�K

2 . This smoothing algorithm is as follows:

xk�K � xk�k � Ak� xk	1�K � xk	1�k� (A.10)

Ak � �k�k
2 ��k	1�k

2 ��1 (A.11)

�k�K
2 � �k�k

2 � Ak
2��k	1�K

2 � �k	1�k
2 �, (A.12)

for k � K � 1, . . ., 1 and initial conditions xK�K and �K�K
2 .
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State–space covariance algorithm
The covariance estimate, �k,u�K, can be computed from the state–
space covariance algorithm (De Jong and Mackinnon, 1988) and
is given as follows:

�k,u�K � Ak �k	1,u�K , (A.13)

for 1 
 k 
 u 
 K.
It follows that the expectations required in Equation A.3 is

given by Equation A.10 and that the covariance terms required
for Equations A.4 and A.5 of the E-step in the EM algorithm are as
follows:

Wk,k�1�K � �k�1,k�K � xk�Kxk�1�K (A.14)

and

Wk�K � �k�K
2 � xk�K

2 . (A.15)

In the M-step, we maximize the expected value of the com-
plete data log likelihood in Equation A.2 with respect to ��

2(�	1)

and x0
(�	1) giving:

��
2��	1� � �K � 1��1�2��

k�2

K

Wk�K � �
k�2

K

Wk�1,k�K�	3

2
W1�K � WK�K�

(A.16)

and

x0
��	1� �

1

2
x1�K . (A.17)

The algorithm iterates between the E-step (Eq. A.2) and the
M-step (Eqs. A.16, A.17) using the filter algorithm, the fixed-
interval smoothing algorithm, and the state-space covariance al-
gorithm to evaluate the E-step. The maximum likelihood esti-
mates of ��

2 and x0 are ��
2(�) and x0

(�). The convergence criteria for
the algorithm are those used by Smith and Brown (2003). The
filter algorithm (Eqs. A.6 –A.9) evaluated at the maximum likeli-
hood estimates of ��

2 and x0 together with Equation 2.4 give the
filter algorithm estimate of the learning curve, whereas the fixed-
interval smoothing algorithm (Eqs. A.10 –A.12) evaluated at
maximum likelihood estimates of ��

2 and x0 together with Equa-
tion 2.4 give the smoothing algorithm estimate of the learning
curve.

B: derivation of the probability density of the probability of a
correct response at trial k
The filter (smoothing) algorithm produces at trial k the estimate
of the state process described as a Gaussian probability density
with mean xk�j and variance �k�j

2 with j � k ( j � K). We use the
standard change of variable formula from elementary probability
theory (Ross, 1993) and Equation 2.2 to derive the probability
density of pk�j as follows:

f� p��, xk�j , �k�j
2 � � f� x�xk�j , �k�j

2 ��dx

dp
� (B.1)

� �2��k�j
2 ��

1

2 exp��
1

2�k�j
2 �x � xk�j�

2��p�1 � p���1

(B.2)

� ��2��k�j
2 �

1

2p�1 � p���1 �

exp��
1

2�k�j
2 �log�p��1 � p�exp�����1��xk�j�

2�, (B.3)

where Equation B.2 follows from Equation B.1 by the definition
of a Gaussian probability density and because by Equation 2.2
dx/dp � [ p(1 � p)]�1. Equation B.3 follows from Equation B.2
because by Equation 2.2 x � log(p[(1 � p)exp(�)]�1). The esti-
mate of pk�j is the mode of Equation B.3.

The 95% lower confidence bound for pk�j is used to define the
trial on which learning occurs. This lower confidence bound
z(0.05) is defined as follows:

0.95 � 
z�0.05�

1

f� p��, xk�j , �k�j
2 �dp. (B.4)

The lower confidence bound is computed by evaluating Equation
B.4 numerically using Equation B.3.

C: probability of a fixed number of consecutive correct
responses

We derive the probability of j consecutive correct responses (CR)
in K independent trials in which the probability of a correct re-
sponse on each trial is p0. If we assume 2 � j � K and let m
denote the trial on which the j CR start, then we have that m �
1, . . ., K � j 	 1. If E denotes the event

E � � j consecutive responses in K independent trials

and Em denotes the K � j 	 1 disjoint events defined by

E1 � �a length j CR sequence beginning at trial 1 �

any outcomes in trials j � 1 to K

E2 � �an incorrect response at trial 1

� a length j CR sequence from trial 2 to j � 1 �

any outcomes in trials j � 2 to K

m � 3, . . ., j 	 1

Em � �any outcomes in trials 1 to m � 2

� an incorrect response at trial m � 1

� a length j CR from trial m to m � j � 1

� any outcomes in trials m � j to K

m � j 	 2, . . ., K � j 	 1

Em � �no j length CR beginning in trials 1 to m � 2

� an incorrect response at trial m � 1

� a length j CR from trial m to m � j � 1

� any outcomes in trials m � j to K.
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By construction, we have that

E �

K � j � 1

�
m � 1

Em .

From the definition of the Ems and the independence of the trials,
we have

Pr�E1� � p0
j �

��1

K�j�K � j
� �p0

j�1 � p0�
K�j�� � p0

j

(C.1)

Pr�E2� � �1 � p0�p0
j�

��1

K�j�1�K � j � 1
� �p0

j�1 � p0�
K�j��

� �1 � p0�p0
j (C.2)

and for m � 3, . . ., j 	 1

Pr�Em� � �
��1

m�2�m � 2
� �p0

��1�p0�m�2��

� �1 � p0�p0
j �

��1

K�j�m�K � j � m
� �p0

��1 � p0�
K�j�m��

� �1 � p0�p0
j. (C.3)

We now compute Pr(Em ) for m � j 	 2 to K � j 	 1, and, in
so doing, we consider only those events not previously counted.
In particular, because m � j 	 2, there can be CR sequences of
length j or greater beginning in trials Em for m � 1, . . ., j 	 1.
These are the events whose probabilities have been computed in
Equations C.1–C.3. For each of the current Em , we must consider
only those events in which there is no CR sequence of length j or
greater beginning in trials 1 to m � 2. Using the independence of
the trials and the definition of Pr(Em ), we have

Pr�Em� �

�1 � Pr�a CR response sequence of j or greater in trials

1 to m � 2�� Pr�of an incorrect response at trial m � 1�

Pr�a length j CR from trial m to trial m � j � 1�

Pr�any outcomes in trials m � j to K�

� �1 � �
��1

m�j�1

Pr�E���
�1 � p0�p0

j � �
��1

K�j�m�N � j � m
� �p0

��1 � p0�
K�j�m��

� �1 � �
��1

m�j�1

Pr�E��� �1 � p0�p0
j. (C.4)

The Em are disjoint events so that

Pr�E� � Pr� �
m�1

K�j	1

Em� � �
m�1

K�j	1

Pr�Em�. (C.5)

For a given p value and given K, we pick j to be the smallest
CRsequence such that Pr(E) 
 p value. The values in Table 1
were computed for p values of 0.05 and 0.01.
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