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Modulation Power and Phase Spectrum of Natural Sounds
Enhance Neural Encoding Performed by Single Auditory
Neurons
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We examined the neural encoding of synthetic and natural sounds by single neurons in the auditory system of male zebra finches by
estimating the mutual information in the time-varying mean firing rate of the neuronal response. Using a novel parametric method for
estimating mutual information with limited data, we tested the hypothesis that song and song-like synthetic sounds would be preferen-
tially encoded relative to other complex, but non-song-like synthetic sounds. To test this hypothesis, we designed two synthetic stimuli:
synthetic songs that matched the power of spectral–temporal modulations but lacked the modulation phase structure of zebra finch song
and noise with uniform band-limited spectral–temporal modulations. By defining neural selectivity as relative mutual information, we
found that the auditory system of songbirds showed selectivity for song-like sounds. This selectivity increased in a hierarchical manner
along ascending processing stages in the auditory system. Midbrain neurons responded with highest information rates and efficiency to
synthetic songs and thus were selective for the spectral–temporal modulations of song. Primary forebrain neurons showed increased
information to zebra finch song and synthetic song equally over noise stimuli. Secondary forebrain neurons responded with the highest
information to zebra finch song relative to other stimuli and thus were selective for its specific modulation phase relationships. We also
assessed the relative contribution of three response properties to this selectivity: (1) spiking reliability, (2) rate distribution entropy, and
(3) bandwidth. We found that rate distribution and bandwidth but not reliability were responsible for the higher average information
rates found for song-like sounds.
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Introduction
An animal’s ability to discriminate behaviorally relevant sounds
is crucial for social interaction and reproductive success (Catch-
pole, 1987; Ghazanfar and Hauser, 2001). Recent work has shown
that auditory neurons are tuned for acoustical features found in
conspecific vocalizations. Using synthetic stimuli, studies have
shown that midbrain and forebrain auditory neurons exhibit
tuning for specific frequency modulations (FMs) (Allon et al.,
1981; Fuzessery, 1994), amplitude modulations (AMs) (Langner
and Schreiner, 1988), comodulations (Nelken et al., 1999), sound
durations (Casseday et al., 1994), and frequency-delay pairs (Pol-
lak et al., 1977; Suga et al., 1978) found in animal vocalizations
(Creutzfeldt et al., 1980; Narins and Capranica, 1980; Rose and
Capranica, 1983), including human speech (Chi et al., 1999).
Additionally, studies have shown that some neurons in the mam-
malian auditory cortex and the avian auditory forebrain are pref-
erentially excited by animal vocalizations relative to acoustically
similar synthetic sounds (Newman and Wollberg, 1978; Raus-

checker et al., 1995; Wang et al., 1995; Grace et al., 2003). When
contrasted with the simple tonotopy of peripheral auditory neu-
rons, this suggests that natural sound selectivity may arise in a
hierarchical manner within the auditory processing stream. Fur-
thermore, recent information theoretic studies have shown that
neural responses to synthetic stimuli with natural spectral con-
tent (Rieke et al., 1995) and amplitude distributions (Escabi et al.,
2003; Machens et al., 2003) yield higher information rates and
efficiencies than responses to non-naturalistic synthetic stimuli.

We extended previous studies by testing the neural encoding
of synthetic stimuli that matched not only the power spectrum
and the amplitude distributions, but also the joint spectral and
temporal power in the amplitude modulations of natural sounds,
known as the modulation power spectrum (MPS) (Singh and
Theunissen, 2003). The MPS quantifies the AMs and FMs present
in sound that, as described above, are important acoustical pa-
rameters for neural recognition. We compared the neural encod-
ing of natural sounds with these matched synthetic sounds.

To quantify neural encoding, we implemented a novel
method of estimating mutual information with limited trial data.
We estimated the mutual information between sound and neural
responses of single auditory neurons in the zebra finch, for which
behaviorally relevant natural sounds have been well characterized
(Zann, 1996) and for which there is good evidence for neural
selectivity for conspecific song (Margoliash and Fortune, 1992;
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Theunissen and Doupe, 1998; Grace et al., 2003). We recorded
from three ascending auditory regions: the midbrain area [mes-
encephalicus lateralis dorsalis (MLd)], the primary forebrain area
(field L), and a secondary auditory forebrain area [caudal meso-
pallium (CM)], which has been directly implicated in the percep-
tion of learned complex sounds (MacDougall-Shackleton et al.,
1998; Gentner et al., 2001; Gentner and Margoliash, 2003).

Specifically, we addressed three questions. First, do the re-
sponses of single neurons encode sounds from a natural ensem-
ble more effectively than sounds from a synthetic ensemble? Sec-
ond, is there evidence for hierarchical processing of natural
sounds between the auditory midbrain and forebrain? Third, if
natural sounds are preferentially encoded, what statistics of the
natural sounds are necessary for this preference?

Materials and Methods
Electrophysiological recordings. All animal procedures were approved by
the Animal Care and Use Committee at University of California, Berke-
ley. Extracellular single-unit recordings were obtained from 36 adult
(�100 d old) male zebra finches (Taenopygia guttata). All birds were
raised by their parents in our zebra finch colony. Two days before record-
ing, a bird was anesthetized with modified Equithesin (0.03 ml, i.m.;
consisting of 0.85 g of chloral hydrate, 0.21 g of pentobarbital, 0.42 g of
MgSO4, 8.6 ml of propylene glycol, and 2.2 ml of 100% ethanol to a total
volume of 20 ml with H2O). The bird was then placed in a custom
stereotax with ear bars and a beak holder. Local anesthetic (2% lidocaine)
was administered, and a midline incision in the scalp was made. Small
(�1 mm), stereotaxically localized holes were made in the outer skull
overlying field L and CM, and a small metal pin was fixed to the skull with
dental cement. The bird was then allowed to recover for 2 d.

On the day of the recording, the bird was anesthetized with three
injections of 20% urethane (three intramuscular injections, 30 ml each,
30 min apart) and was placed in a custom stereotax. The bird’s head was
immobilized by attaching the small metal pin cemented to the bird’s skull
to a customized holder mounted on the stereotax. The inner skull layer
and dura were then removed from the small holes made over field L and
CM during the previous surgery. In the cases in which we also recorded
from MLd (20 birds), lidocaine was applied to the skin on the side of the
head. Then, an incision was made in the skin overlying the optic tectum.
A small opening (�1 mm) was made in the skull overlying the optic
tectum, and the dura was removed from the surface of the brain.

Neural recordings were conducted in a double-walled anechoic
sound-attenuated chamber (Industrial Acoustics, Bronx, NY). The bird
was positioned �20 cm in front of a Bose 101 speaker so that the bird’s
beak was centered both horizontally and vertically with the center of the
speaker cone. The output of the speaker was measured before each ex-
periment with a Radio Shack electret condenser microphone to ensure a
flat response (�5 dB) from 250 to 8000 Hz.

Extracellular recordings were obtained with epoxy-coated tungsten
electrodes (0.5–7.0 M�; Frederick Haer, Bowdoinham, ME, and A-M
Systems, Carlsborg, WA). The electrodes were advanced into the brain
with a stepping microdrive. We typically recorded from two brain areas
simultaneously. The extracellular signal was obtained with a Neuroprobe
amplifier (A-M Systems model 1800; 100� gain; high-pass fc 300 Hz;
low-pass fc 5 kHz), displayed on a multichannel oscilloscope (TDS 210,
Tektronix, Wilsonville, OR), and monitored on an audio amplifier/loud-
speaker (AM8, Grass Instruments, Quincy, MA). Single-unit spike ar-
rival times were obtained by thresholding the extracellular recordings
with a window discriminator and were logged on a Sun computer run-
ning custom software (�1 msec resolution).

Pure tones (250 – 8000 Hz), zebra finch songs, synthetic songs (syn-
songs), modulation-limited noise (ml-noise), and white noise were used
as search stimuli (these stimuli are described below). If the response to
any of these stimuli was significantly different from the baseline firing
rate, determined by an on-line t test, or the response was clearly time
locked to some portion of the stimulus, then we acquired 10 trials of data

to each of 20 zebra finch songs, 20 syn-songs, and 10 ml-noise stimuli. As
explained in more detail below, song and syn-song had identical fre-
quency spectra (and thus total power). Ml-noise was designed to have flat
power spectrum between 250 and 8000 Hz, and the absolute power level
was adjusted so that the peak value in the power spectrum of song (found
around 3.5 kHz) matched the steady power level of the ml-noise (see Fig.
1d). Ml-noise therefore had more total power than song and syn-song.
Finally, the absolute song levels of all three stimuli were adjusted so that
average peak levels in song stimuli were at 75 dB sound pressure level
(SPL) measured with a B&K sound level meter (rms weighting B, fast)
positioned 25 cm in front of the speaker at the location of the bird’s head.
With the same absolute level adjustment, average peak levels were 83 dB
SPL for syn-song and 81 dB SPL for ml-noise. Presentation of the stimuli
was random within a trial. Two seconds of background spontaneous
activity was recorded before the presentation of each stimulus. A random
interstimulus interval with a uniform distribution between 4 and 6 sec
was used.

At the end of a recording pass, one to three electrolytic lesions (100 �A
for 5 sec) were made to verify the recording sites of that pass. Lesions were
made well outside of any auditory areas, unless it was the last recording
pass.

To test for potential hierarchical processing, we obtained single-unit
recordings from three stages of auditory processing in the adult male
zebra finch: the MLd, which is the avian midbrain homolog of the infe-
rior colliculus (IC), field L, and CM. These areas were of particular inter-
est because, as mentioned in the introduction, previous work in mam-
mals has correlated the complex responses of neurons in IC and auditory
cortex with the acoustical structure of vocalizations. The avian secondary
auditory forebrain area, CM, has also been directly implicated in the
perception of learned complex sounds. We obtained recordings from a
total of 83 single neurons in MLd, 119 single neurons in field L, and 31
single neurons in CM. Because an estimation of mutual information is
not reliable for a neuron with a low spike rate or a low reliability, we
analyzed only neuronal recordings that had firing rates �0.5 spikes per
second and satisfied an additional criterion of reproducibility. Repro-
ducibility was assessed by quantifying the similarity in responses over
trials to the same stimulus by estimating the expected correlation coeffi-
cient between a single spike train and its time-varying mean firing rate
(Hsu et al., 2004). Only cells that showed a correlation �0.15 were ana-
lyzed. After deleting units that did not meet these two criteria, we were
left with 81 cells in MLd, 109 cells in field L, and 28 cells in CM.

Histology. After the recording session, the bird was deeply anesthetized
with Nembutal and transcardially perfused with 0.9% saline followed by
3.7% formalin in 0.025 M phosphate buffer. The brain was postfixed in
formalin and then cryoprotected in 30% sucrose. Parasagittal sections
(40 �m) were cut on a freezing microtome and divided into two series.
The sections were mounted on gelatin-subbed slides, and one series was
stained with cresyl violet and the other with silver stain. The electrolytic
lesions, and usually the electrode tracks as well, could then be identified.
We used the distance between two lesions from the same pass to calibrate
our depth measurements and then reconstructed the location of our
recording sites for each neuron.

Stimulus design and synthesis. To test the hypothesis that both the
natural power and the natural phase of temporal and spectral amplitude
modulations found in natural sounds are important for selectivity, we
used adult zebra finch song (see Fig. 1a) and two synthetic sounds: syn-
songs, which have the same modulation power spectra as natural sounds
but random modulation phase (see Fig. 1b), and ml-noise, which has flat
modulation power spectra that cover all modulations found in song (see
Fig. 1c). The song stimulus set consisted of 20 adult male zebra finch
songs (age �100 d). Each song (�2 sec in duration) came from a differ-
ent bird and was recorded in a sound-attenuated chamber (�30 dB).

To generate syn-song or ml-noise sounds, we first obtained the
spectral–temporal log envelope function of the desired sound (i.e., its
spectrogram in logarithmic units) by a sum of ripple component
sounds. Ripple sounds are broad band sounds with a spectrogram that
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is theauditory equivalent of a sinusoidal grating. This sum of ripples
sounds can be written as:

S�t, f � � �
i	1

N

cos�2��t,it � 2��f,if � �i),

where �� is the modulation phase and �t,i and �f,i are the temporal and
spectral frequency modulations for the i th ripple component, and S(t,f )
is the zero mean log envelope of the frequency band f. In our implemen-
tation, we used N 	 100 ripple components. For both syn-song and
ml-noise, the modulation phase was random and taken from a uniform
distribution. The spectral and temporal modulation frequencies for syn-
song were sampled randomly using the modulation spectrum of songs as
a density distribution. The spectral and temporal modulation frequen-
cies for ml-noise were sampled randomly from a uniform distribution
bounded by 50 Hz and 2 cycles/kHz.

We also matched the frequency power spectrum and modulation
depth of the syn-song to that of natural song. Calling A(f ) the average log
amplitude in each frequency band measured in an ensemble of song, �(f )
the SD in each frequency band measured in the original ensemble, and
�S(f ) the SD obtained from the ensemble of S(t,f ) functions from the first
step in the synthesis, we generate a new function for the log amplitude
envelopes given by:

SNorm�t, f � � A� f � �
�� f �

�s� f �
S�t, f �,

for frequencies between 250 and 8000 Hz. The sounds generated from
SNorm will now have a frequency power spectrum determined by A(f ) and
a modulation depth in the log amplitude envelopes given by the SD of
SNorm relative to A(f ). We verified that the syn-songs generated this way
had the same frequency spectrum as song (see Fig. 1d).

The ml-noise was generated using a normalized log envelope given by:

SNorm�t, f � � A� fPeak� �

�� f ��f

�s� f �
S�t, f �,

for frequencies between 250 and 8000 Hz. Thus, for ml-noise, the mean
amplitude in each frequency band was constant and given by the peak of
the log amplitude envelope in song: ml-noise had a flat power spectrum
between 250 and 8000 Hz, the level of which matched the peak of the
power spectrum of song found at fPeak �3.5 kHz (see Fig. 1d). The mod-
ulation depth (in log units) in each frequency band was also set to the
average modulation depth found in song.

Finally, we obtained the sound pressure waveform by first taking the
exponential of the normalized log amplitude envelope, SNorm(t,f ), and
then using a spectrographic inversion routine (Singh and Theunissen,
2003).

Information calculation. The mutual information quantifies the capac-
ity of a neuronal response to encode stimuli. It can be used to measure the
discrimination achieved by an ideal observer of the neural responses.
Strong et al. (1998) described a direct method of estimating the mutual
information that does not make any assumptions about the parameters
of the stimulus that are being encoded in the neural response, nor about
the nature of the neural code. The direct method is estimated as follows.
The spike trains are binned into letters, which are the number of spikes in
a given bin. Usually, bin sizes are chosen small enough such that there is
only one spike per bin. Sequences of L letters make up words of length L.
The distribution of words is then quantified using Shannon’s entropy as
follows:

H � ��
i

pi�w� log pi�w�,

where pi(w) is the probability of finding the i’th word. Signals with more
entropy have a higher capacity to transmit information. The total en-
tropy of a spike train is the entropy of the word distribution over all trials
and times. The noise entropy describes the distribution of words that

occur at the same time in the stimulus measured across trials, and thus
are responses to the same stimulus, as follows:

H�w�s�t�� � ��
i

pi�w�s�t�� log pi�w�s�t��.

.
The noise entropy is estimated by taking the average of word distribution
entropies calculated at each time point as follows: �H�w�s�t���t . The
mutual information is the difference between the total entropy and the
noise entropy:

Information � ��
i

pi�w� log pi�w� � 
�
i

pi�w�s�t�� log pi�w�s�t���t.

The estimation of total and noise entropies depends on both the letter
size and the word length chosen. The dependence on word length occurs
because words at neighboring times are often correlated with one an-
other. Because the estimation procedure assumes that different words are
independent, the information rate will be overestimated unless one ad-
justs for potential correlations. To adjust for correlations, both noise and
total entropy can be linearly extrapolated to infinite word length as a
function of 1/word length as described by Strong et al. (1998). Under the
direct method, assuming a word length of L and a maximum letter value
of 1 (each letter contains at most only one spike), there are 2L parameters
that need to be fitted (the probability of every possible word). For the
estimation of the noise entropy, each trial provides only one word sample
for any given time point. Thus, a large number of trials, on the order of
hundreds, are needed to obtain a reasonable estimate of the noise
entropy.

It is often difficult to collect the large number of trials needed to obtain
a reasonable estimate of the noise entropy using the direct method. For
example, in a case like ours for which we wanted to sample a large stim-
ulus space and hence used a large number of stimuli, limited recording
time allowed us to obtain only 10 trials in response to each stimulus. To
address this general issue, we have developed a method to estimate infor-
mation using a parametric model of spike responses, which requires
fewer data than the direct method of information estimation. We as-
sumed that the deterministic part of the neural response is described
entirely by the time-varying mean firing rate. This assumption has been
used in many models of spiking neurons (Gabbiani, 1996; Johnson, 1996;
Baddeley et al., 1997; Svirskis and Rinzel, 2000; Barbieri et al., 2001) and
validated with an information theoretical approach in some cases (Baker
et al., 1991; Oram et al., 1999). Using this assumption, we characterized
our neuronal responses with inhomogeneous Gamma point processes,
the generalization of the Poisson process. The probability density func-
tion of interspike intervals (ISIs) for a homogeneous Gamma process of
order 	 and mean rate r
/	 is given by the following:

P�
� �
r'�r' 
�	�1

��	�
exp(�r
 
),

where �(	) is the Gamma function of order 	 (any positive real number).
The Gamma process has been used previously to model spiking neurons
(Cox, 1962; Stein 1965; Gabbiani and Koch, 1998; Barbieri et al., 2001)
and allowed us to better model the variability in the neural response than
the Poisson process. Although an analytical solution for the information
transmitted does not exist for inhomogeneous Gamma models, we were
able to use our framework to generate enough model spike trains to
estimate information using the direct method. By fitting the neural re-
sponse with an inhomogeneous Gamma model, the number of parame-
ters needed to estimate the probability distribution of words of length L is
reduced from 2L to L � 1. These parameters are the L instantaneous mean
firing rates for each time bin of the particular word and the order of the
Gamma point process.

We estimated the time-varying mean firing rate of our responses as
follows: each spike train was smoothed with an adaptive time-varying
Gaussian window in which every spike was convolved with a window of
unique width. This width was chosen such that 5 SDs was the distance to
the farther of two neighboring spikes. The average over trials of
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smoothed spike trains was our estimate of the time-varying mean rate. To
characterize the noise (variability over trials) of the neural response, the
ISI distribution of the time-rescaled spike trains was used. Time rescaling
(Barbieri et al., 2001) normalizes each spike train individually by the
running integral of its instantaneous mean firing rate, which is assumed
to be known, thereby transforming each spike train into a rescaled time
representation with constant mean firing rate. Intuitively, for times with
high firing rates, spikes are spread apart in time, and for times with low
firing rates, spikes are moved closer together. The result is a new set of
spike trains represented in a “rescaled time” in which the mean rate is
constant. Rescaling works better when the estimate of the mean rate is
not heavily biased by the spike train being rescaled. Thus, we rescaled
each of our spike trains using a jack-knifed time-varying mean rate that
was estimated from the mean of all other spike trials smoothed in the
manner described above. The variations of ISIs in rescaled time now can
be attributed entirely to noise. To describe this noise, we fit the ISI dis-
tribution of the rescaled spike trains to a Gamma distribution of specified
order for every set of responses. A set consisted of all of the responses of
a particular neuron to a particular stimulus type. Neurons with low
variability are best fit by high Gamma order distributions and vice versa.
The time rescaling was used only for the purpose of describing the sto-
chastic aspect (variability over trials) of the spike response. Finally, we
generated 500 trials of (unrescaled) model spike trains that were inho-
mogeneous Gamma processes of the appropriate order with time-
varying spike rates matched to those estimated for our original spike
trains. We found that the information estimation converges reasonably
by 500 trials. The direct information estimation method was then per-
formed to obtain the information rate in the time-varying mean of our
neuronal responses.

Our method introduces two systemic biases in estimating informa-
tion. First, our method allows for limited data analysis at the expense of
the assumption that the neuronal response is adequately modeled by
inhomogeneous Gamma processes. The mean rate assumption neglects
any potential information that spike patterns may carry. These spike
patterns would not be precisely phase locked to the stimulus (otherwise
they would be represented in the time-varying mean firing rate) but
would reliably encode specific stimulus features. Such spike patterns
have not been found in the auditory cortex (Lu and Wang, 2004). If such
spike patterns existed, we would overestimate the noise entropy and the
total entropy. Because noise entropy primarily quantifies response en-
tropy over trials, the neglect of potentially encoding spike patterns will
cause larger overestimates for the noise entropy than for the total en-
tropy. Second, in our model we estimate the time-varying mean rate of
the response from the smoothed poststimulus time histogram (PSTH).
Because of data size limitations, this estimated time-varying mean rate is
sparser that the actual mean rate, resulting in an underestimation of the
entropy. Because total entropy primarily quantifies response entropy
over time, inaccurate rate estimations will cause larger underestimations
of the total entropy than of the noise entropy. The combined effects of the
underestimation of the total entropy caused by data size limitations and
the overestimation of the noise entropy caused by the limitations of the
model yields an underestimate of the mutual information (see Fig. 2 and
Results for validation of our methodology).

Response parameters affecting the information. We used one quantifier
to describe the response reliability and two quantifiers to describe deter-
ministic aspects of the neural response. The response reliability is given
by the order of the Gamma process that best fit the distribution of
rescaled ISIs (see Fig. 3a). The contribution to information from the
deterministic part of the neural response was characterized by the rate
distribution and the rate bandwidth. The rate distribution is the distri-
bution of the values of the time-varying mean rates. The time-varying
mean firing rate was fitted directly to a Gamma distribution using a
maximum-likelihood method. Note that this is different from the
Gamma distribution that was used to fit the rescaled ISIs. The fit to a
Gamma distribution allowed the rate distribution to be described as a
continuous function and circumvented the need to choose a time bin, as
would be needed if the distribution were to be estimated straight from a

histogram (see Fig. 3b). The rate bandwidth is the bandwidth of the
power density of the time-varying mean rate. We used the following:

bandwidth � ��f 2 psd� f � ,

where psd is the normalized power spectral density as a function of fre-
quency f, to quantify the range of dynamics, or frequencies present in the
signal, which for our spike trains is the time-varying mean firing rate (see
Fig. 3c).

Results
Spectral–temporal modulations of natural sounds
Behavioral and neural recognition of conspecific signals
(Creutzfeldt et al., 1980; Narins and Capranica, 1980; Rose and
Capranica, 1983; Theunissen and Doupe, 1998), including hu-
man speech (Drullman et al., 1994; Drullman, 1995; Shannon et
al., 1995; Chi et al., 1999), depends critically on the perceptual
and neural sensitivity to temporal and spectral modulations as
well as the actual frequency spectrum of the signal. It can there-
fore be argued that an appropriate basis set of sounds for the
study of sound identity perception is the space of temporal and
spectral amplitude modulations. These modulations are not to be
confused with the frequency spectrum, which is the Fourier de-
composition of the sound-pressure wave form. The temporal and
spectral modulations describe the modulations of the amplitude
envelope of the sound when it is decomposed into different fre-
quency bands (the spectrogram). These modulations are shown
visually in spectrographic representations of sound, which are
used extensively to study animal vocalizations. The correspond-
ing power density function for the spectrographic representation
of sounds is the modulation spectrum. The modulation spectrum
is a three-dimensional plot that shows the amount of energy
(color axis) of amplitude modulations of a particular temporal
frequency (x-axis) and spectral frequency ( y-axis) that is found
in a particular sound ensemble. Previously, we showed that nat-
ural sounds, and vocalizations in particular, exhibit a character-
istic joint modulation spectrum. In addition, we showed that the
amplitude probability distribution of the envelopes of natural
sounds has a strong exponential component. We therefore per-
formed the modulation spectrum analysis on the log of the am-
plitude envelopes (Singh and Theunissen, 2003).

The goal of our project was to quantify the neural encoding of
natural sounds, song (Fig. 1a), and compare it with the encoding
of two synthetic sounds: syn-songs and ml-noise. Syn-songs have
the same power density of spectral–temporal modulations as ze-
bra finch song (Fig. 1b), but have random modulation phase
structure. Ml-noise has uniformly sampled spectral–temporal
modulations that contain the modulations found in song as well
as modulations that are absent in song (Fig. 1c). More specifically,
ml-noise was white noise for which we low-passed the log ampli-
tude envelope modulations to temporal modulations �50 Hz
and spectral modulations �2 cycles/kHz. Song has not only the
natural modulation spectrum that we designed our syn-song to
have, but also the natural modulation phase relationships of am-
plitude envelopes across frequency bands.

Information calculation: validation of the inhomogeneous
Gamma model
To calculate the effectiveness of neural encoding, we estimated
the mutual information between the sound stimulus and the neu-
ral response using a novel framework that involved modeling the
neural spike patterns as an inhomogeneous Gamma process. Our

9204 • J. Neurosci., October 13, 2004 • 24(41):9201–9211 Hsu et al. • Neural Encoding of Natural Sounds



parametric models assume that the information is contained in
the time-varying mean firing rate of the response and allowed us
to estimate the mutual information with limited data. Our
method systematically underestimates the mutual information
but correlates positively with estimates obtained using the direct
method.

We validated our methodology on responses of two zebra
finch neurons from field L and one from CM for which we col-
lected 200 trials of responses to song. We compared the informa-
tion estimated using our method on 10 random trials of re-
sponses with the information estimated using the direct method
on all 200 trials. We repeated our estimation method for 10 dif-
ferent sets of 10 trials. Total and noise entropies calculated using
PSTHs composed of different sets of 10 trials with our parametric
method had SDs of �3% and therefore were similar regardless of
which sets of trials we used. For the three neuronal responses that
we tested, noise entropies were overestimated by 6% and total
entropies were underestimated by 1% on average. Consequently,
the resulting information values estimated with our parametric
method using 10 trials were �35% lower than the information
estimated for the direct method. The largest contributing factor
to the bias was the overestimation of noise entropies, presumably
resulting from ignoring spike pattern information and approxi-
mating the spike train as a Gamma process. Although the noise
entropy is also affected by the same negative bias as the total
entropy because of the inaccurate PSTH estimation, as men-
tioned above, this effect is smaller for noise entropy than for total
entropy estimation. Information values estimated from our para-
metric method for our three test cells were 8.5, 12.4, and 26.5 bits
per second, whereas the direct method gave 13.1, 19.6, and 37.5
bits per second, resulting in an information underestimation of
35, 36, and 30%, respectively.

We also applied our method of information estimation on a
PSTH composed of all 200 trials. Counterintuitively, the under-
estimation increased slightly when 200 trials were used instead of
10. Because the PSTH was better modeled with 200 trials, the total
entropy, which is not as sensitive to the limitations of the Gamma
model, was estimated without any systemic bias. The better PSTH
estimate also reduced the effect of the negative data limitation
bias on the noise entropy; however, because the positive noise
entropy bias that resulted from ignoring spike patterns remained,
average noise entropies were underestimated by 10% on average.
This is a greater underestimation than when only 10 trials were
used, in which overestimation of the noise entropy was partially
offset by a negative bias caused by the inaccurate PSTH. In gen-
eral, the information values that we calculated using our method
systematically underestimate the information; however, the rela-
tive effects of our systemic biases, and therefore the degree of
underestimation, depend on the number of trials used. For con-
stant data size, the underestimation of information was very sim-
ilar across the three test neurons (Fig. 2), the information values
of which spanned the range of information values measured in
the population. All relative values of our information estimates
correlate positively with the values obtained in the direct method
and therefore serve as a useful comparative measure of neural
information.

 

   

Figure 1. Modulation power spectrum of the three stimulus ensembles. The temporal and
spectral structure of particular sounds can be quantified and visualized by calculating the MPS of
an ensemble of the sounds. The MPS is estimated by the average modulus-squared two-
dimensional Fourier transform of the sound spectrograms. Power density is indicated by color,
with red showing the spectral–temporal modulations with most energy. a, The MPS of zebra
finch songs (song). b, The MPS of syn-songs, which match song in the distribution of spectral
and temporal modulations but do not contain the modulation phase information found in song.
c, The MPS of ml-noise, which uniformly samples spectral and temporal modulations found
both inside and outside the borders of the MPS of song. d, The frequency power spectrum of the
three stimulus ensembles. Syn-song sounds were designed to have the same frequency power
spectrum as song, whereas ml-noise was designed to have a flat frequency power spectrum.

Figure 2. Validation of the information calculation. Two hundred trials of responses from
two neurons from field L and one neuron from CM were collected to validate the parametric
information calculation used in this study. Information and entropy estimates using the para-
metric method on 10 sets of 10 random trials (� marks) are plotted versus those calculated
using the direct method on all the data. Values for all 10 sets were similar and thus the �s
overlap. “O” values are estimated using the parametric method on all 200 trials and plotted
versus direct method estimates. Estimates for information ( a), total entropy ( b), and noise
entropy ( c) correlate strongly with those obtained from the direct method for these three cells
that exhibited the range of information values observed in the population of cells. The para-
metric method results in an underestimate, as explained in Results.
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Response parameters affecting the information
Mutual information depends on spiking reliability and response
dynamics. We assessed the relative contribution of these factors
by calculating one metric for spike reliability, and two metrics for
response dynamics, rate distribution entropy, and rate band-
width (Fig. 3). These three metrics affect the information in the
following way. (1) Increased spiking reliability increases infor-
mation, (2) rate distributions that approach the exponential dis-
tribution have the highest entropy for any given mean rate
(Dayan and Abbott, 2001), and thus allow maximum informa-
tion, and (3) increased bandwidth of the time-varying mean rate
increases information.

Reliability was quantified using the order of the Gamma dis-
tribution that best described the distribution of time-rescaled
ISIs as explained above (see Materials and Methods). Distribu-
tions with higher Gamma constants are more sharply peaked, as
are the distributions of ISIs for reliable spike trains. Hence, a
greater Gamma constant equals greater reliability. Figure 3A il-
lustrates this measure of reliability by comparing the responses of
two model neurons with different Gamma constants but other-
wise similar time-varying mean firing rates. Figure 3A (bottom
panels) shows the ISI distribution of rescaled spike times. The
thick dashed line is the analytical ISI distribution of the fitted
Gamma point process. The spike trains on the left have Gamma
order 77 (more reliable), and those on the right are Poisson, or
Gamma order 1 (less reliable). The greater reliability of the
Gamma order 77 model neuron would lead to higher informa-
tion rates. In actuality, our spike trains were fit to Gamma pro-
cesses with orders ranging from 0.3 to 5.4. The unrealistic
Gamma order 77 was used for illustrative purposes.

The rate distribution was calculated by estimating the distri-
bution of the magnitude of the time-varying mean firing rate
from the smoothed PSTH. The rate distribution was then nor-
malized to have a mean firing rate of one spike per second to
quantify only the effect of the distribution on coding capacity and
eliminate the effect of the overall average mean rate. The rate
entropy was then calculated for this distribution. Entropy distri-
butions that are closer to the exponential distribution have higher
entropies, and therefore greater capacity to transmit informa-
tion. This effect is illustrated in Figure 3B, where we calculated the
entropy in the mean firing rate of two model neurons that have
time-varying rates with identical average mean rates but with
different amplitude distributions. The neuron depicted on the
left has an exponential distribution of time-varying firing rates
and therefore larger response entropy than the neuron depicted
on the right. Dotted lines represent a true exponential distribu-
tion, and dashed lines are the best-fit Gamma distributions,
which were used to describe the rate distributions (see Materials
and Methods).

Finally, two responses can have the same mean rate distribu-
tion but have different power spectra. The response with higher
bandwidth power spectra will have greater coding capacity. This
effect is illustrated with two modeled neurons in Figure 3C. The
two mean rates have the same rate distribution (data not shown);
however, the mean rate signal on the left has greater bandwidth
and therefore greater coding capacity than the signal on the right.

Sample response and information analysis
We calculated the neural discrimination of single auditory neu-
rons to song, syn-song, and ml-noise by estimating the mutual
information between the stimulus and the neural response as
described above. We performed this information analysis at
three levels of the avian auditory processing stream in the male

Figure 3. Measures affecting information values. Three factors that affect the amount of
information transmitted in the time-varying mean firing rate of a neuron are spike train reli-
ability, mean rate distribution, and mean rate bandwidth (see Materials and Methods). We
illustrated the effect of these three factors independently using model data. The condition
pictured in the left panels in A, B leads to higher information values. A, Spike train reliability.
Two sets of model spike trains (middle panels) with the same time-varying mean rate (top
panels) with their rescaled ISI distributions fit to a Gamma process (bottom panels). The spike
trains on the left are more reliable. The thick dashed line is the analytical ISI distribution of the
fitted Gamma point process. B, Rate distribution entropy. Top panels show two mean rates as a
function of time with their different rate distributions shown underneath: an exponential dis-
tribution (left) and a distribution that is far from exponential. Dotted line is the curve of an
exponential distribution. Dashed line is the best-fit Gamma distribution. C, Top panels show two
different time-varying mean rates that have the same rate distribution (data not shown). Bot-
tom panels show their corresponding power spectral densities and bandwidths.
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zebra finch: (1) MLd (n 	 81), (2) field L (n 	 109), and (3)
CM (n 	 28).

Figure 4 shows the responses of a single neuron in MLd to
sample sounds from each of the three stimulus ensembles (Fig.
4a–d, top panel) and illustrates the analysis results (Fig. 4e–g,
bottom panel). This neuron responded robustly and in a phase-
locked manner to all three types of sounds as shown in Figure 4b.
To calculate the mutual information, these spike trains are mod-
eled as inhomogeneous Gamma processes. The mean firing rate

of the Gamma process is obtained by con-
volving the PSTH with a varying-width
Gaussian window. This time-varying
mean rate is shown in Figure 4d (top). To
calculate the order of the Gamma model,
the spike trains are time rescaled to obtain
spike trains (Fig. 4c) with constant mean
rates (Fig. 4d, bottom). The ISI histogram
obtained from the rescaled spike trains is
then fitted with a Gamma distribution
(Fig. 4e). The Gamma order and the esti-
mated time-varying mean rate are then
used as parameters for the model Gamma
neuron, and mutual information values
are obtained from 500 model spike trains.
In this case, the information analysis
showed that although the mean rate was
similar in the three cases, the spike trains
carried the most information about the
identity of sound segments taken from
natural song over all the other stimuli. In-
formation was also higher for syn-song
over ml-noise. In this case, greater band-
width (Fig. 4f) contributed to the higher
information for natural song, and distri-
bution entropy (Fig. 4g) contributed to the
higher information rates in responses to
stimuli with natural modulation power
spectra. Reliability (Fig. 4e) was similar for
responses from all three stimuli. Although
this neuron is representative of the average
trend (see results below), it should be
noted that for some neurons, the reliability
or firing rates were different across the
three stimuli. In general, higher reliability,
more exponential rate distributions, and
larger response bandwidth all lead to
higher information rates.

Information analysis shows a gradual
selectivity for bird song
As shown in Figure 5a, the mean firing
rates obtained to sounds from the three
ensembles, averaged over time and over
neurons, were remarkably similar. All
three stimuli elicited statistically equiva-
lent spike rates, and this was true in each of
the three processing stages (all p � 0.2);
however, the spike trains elicited by each
type of stimulus were not equal in their
ability to encode the identity of the sounds
(Fig. 5b). Song and syn-songs elicited, on
average, higher information rates than ml-
noise. Moreover, we observed a gradual

increase in selectivity in terms of information rates for responses
to song relative to other stimuli with ascension in the auditory
pathway. All population significance statistics were obtained us-
ing a two-tailed paired t test with the Bonferroni adjustment to
compensate for multiple comparisons.

In the MLd, the highest information was found for the re-
sponses to syn-song over both song ( p � 0.01) and ml-noise
( p � 0.00005), whereas song also elicited higher information
rates than ml-noise ( p � 0.01). In field L, song and syn-song had

Figure 4. Example responses to the three stimuli (top panel) and analysis results (bottom panel). a, Spectrograms of song,
synthetic song, and modulation-limited noise show their frequency content over time. b, Spike train responses of a sample
neuron. c, Time-rescaled spike trains show the spike trains rescaled so that the mean firing rate is constant. d, Original time-
varying mean (top) and time-rescaled mean (bottom). e, Interspike interval distribution of rescaled spikes and their best-fit
Gamma distribution (thick solid line). f, Power spectra and bandwidth of time-varying mean firing rate. g, Mean rate distribution
and the entropy of the corresponding distribution with a mean rate of one spike per second. Solid line is the best-fit Gamma
distribution to the rate distribution.
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similar information rates; however, syn-
song elicited significantly higher informa-
tion rates than ml-noise ( p � 0.01), and
song showed a similar trend ( p � 0.05).
Finally, in CM, song responses had the
highest information. Song responses had
significantly greater information rates
than ml-noise responses ( p � 0.0015),
and a similar trend was seen for song over
syn-song responses ( p � 0.05). Our data
show that at the lowest level of auditory
processing that we examined, the auditory
midbrain, the neural representation is al-
ready selective for statistical properties of
natural sounds. By this we mean that the
information that can be extracted about
the sound identity is greater for natural-
like sounds than for other complex but synthetic sounds. Fur-
thermore, there is a hierarchical processing of natural sounds,
during which the computations performed by successive audi-
tory stages lead to an increase in the relative selectivity for natural
sounds. In the midbrain, information rates showed selectivity for
the modulation spectrum of natural sounds but not for the mod-
ulation phase relationships of natural sounds. In the secondary
forebrain, information rates were affected both by the phase and
the power of natural sound amplitude modulations.

Because information is expressed on a logarithmic scale, the
additional �1 bit of information found in response to stimuli
with natural spectral and temporal modulations results in a dou-
bling of the sound features being encoded. In other words, based
on the spiking patterns of single neurons, an ideal observer would
be able to discriminate approximately twice as many short seg-
ments of sound from song or syn-song than from ml-noise in the
midbrain and primary forebrain and twice as many short seg-
ments of sound from song than from syn-song or ml-noise in the
secondary auditory forebrain. We also noted that the absolute
value of average information rates for song were remarkably con-
stant across the three stages. Thus, at the level of single neurons,
we find that across multiple synaptic stages, there was no degra-
dation in the amount of information in the response (Fig. 5).

As shown in Table 1, top, the increase of information for the
natural or natural-like sound can also be quantified by counting
the number of cells in each brain region that has higher informa-
tion for song, syn-song, or ml-noise. An equal number of cells in
MLd showed higher information to song (37) and syn-song (37),
and this number was significantly greater than the number of
cells that showed higher information to ml-noise (7) ( p �
0.0001). In field L there was a trend for greater preference to song
(44) and syn-song (39) compared with ml-noise (26) ( p � 0.1).
Finally, CM showed the greatest song selectivity, with 17 cells that
showed higher information to song, 9 cells that showed higher
information to syn-song, and 2 cells that showed higher informa-
tion to ml-noise ( p � 0.005). Table 1, bottom, shows that in all
auditory areas, cells significantly showed higher information to
natural and natural-like stimuli (song and syn-song) over ml-
noise (p � 1 � 10�5 for MLd; p � 0.05 for L; p � 0.005 for CM).
p values were obtained with a goodness of fit � 2 test.

Because the mean firing rates were similar across sounds from
the three stimulus ensembles and information rates were higher
for either song or syn-song, we would expect that the information
efficiency, the information per spike, would also be higher for the
natural or natural-like sounds. Indeed, as shown in Figure 5c, we
also found gradual selectivity for song in information efficiencies

going from MLd to field L. MLd neurons showed significantly
higher information efficiencies for syn-song over natural song
( p � 0.0005) and ml-noise ( p � 5 � 10�5). In MLd, song also
elicited higher response efficiency than ml-noise ( p � 0.005).
Field L neurons showed significantly higher information efficien-
cies to song over both syn-song ( p � 0.005) and ml-noise ( p �
0.0005) as well as a strong trend for higher efficiencies to syn-song
over ml-noise ( p � 0.03). The information efficiency in CM was
similar for all three sounds. The nonlinear relationship between
mean rate and efficiency explains this apparently paradoxical re-
sult. Although information efficiencies averaged over all cells are
similar for noise and song responses, the high-efficiency re-
sponses to noise tended to have lower average mean rates,
whereas the high-efficiency responses to song usually had higher
average mean rates. This resulted in a significantly greater infor-
mation rate for song responses relative to ml-noise.

To understand what factors lead to higher information rates
despite similar response mean rates, we evaluated three compo-
nents of the neuronal response that can influence the information
of a neuron: response reliability, response bandwidth, and re-
sponse distribution (Fig. 6).

Reliability is greatest in MLd but not affected by
stimulus types
Using the Gamma order to quantify reliability, we found that, on
average, there was no difference in reliability among responses to
different stimulus types (Fig. 6a); however, we did find reliability
differences among regions. For responses to all stimuli, reliability
was significantly greater in MLd than in field L ( p � 1 � 10�4).
There was also a strong trend for greater reliability in MLd than in
the CM for syn-song responses ( p � 0.07) as well as a similar but
smaller trend for the other stimulus types ( p � 0.13).

Figure 5. Average mean rates and information values. Average rate and information values over all neurons recorded from
MLd (83), field L (119), and CM (31). a, Average mean rate. b, Average information value. c, Average information efficiency. The
error bars show �1 SE. All statistical tests were performed using paired comparisons (paired t test), and the Bonferroni correction
was used to adjust the significance level for multiple comparisons; the significance cutoff was reduced from p � 0.05 to p �
0.0167; *p � 0.0167.

Table 1. Information rate rankings

Song Syn-song Ml-noise

MLd 37 37 7
L 44 39 26
CM 17 9 2

Natural-spectrum sounds Ml-noise

MLd 74 7
L 83 26
CM 26 2

Preference was defined by the stimulus ensemble that elicited the highest information rates. Top, For each of our
three stimuli, the number of cells that showed highest information to that stimulus. Bottom, Same as top, but with
song and syn-song grouped together under natural-spectrum sounds.
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Bandwidth shows trends similar to information
Averaged response bandwidth differences among stimuli showed
trends similar to that of average information rates and efficiency
(Fig. 6b). In the MLd, there was a trend for higher bandwidth to
syn-song over song ( p � 0.033). In field L, there was a trend for
higher bandwidth in responses to song relative to syn-song ( p �
0.025) and ml-noise ( p � 0.025). In the CM, there was a signif-
icantly higher bandwidth in responses to song over responses to
ml-noise ( p � 0.015). As with entropy, sounds with natural
modulation power have higher response bandwidth than syn-
thetic sounds. This result is unexpected a priori because all three
stimuli span the same temporal frequencies in their amplitude
modulations (Fig. 1). Moreover, the naive assumption would
suggest that ml-noise responses have the greatest bandwidth, be-
cause ml-noise has more power in the higher temporal frequen-
cies than either song or syn-song. Among areas, bandwidth in
responses to song increased from MLd to field L ( p � 0.005),
showed a similar trend from MLd to CM ( p � 0.05), but did not
increase from field L to CM.

Rate distribution entropy highest for song
The actual probability distribution of responses affects informa-
tion capacity in the sense that distributions that exhibit a higher
number of possible symbols (different rates) will be able to en-
code more symbols (segments of songs). To separate the effect of
mean firing rate from the effect of the shape of the distribution,
we calculated the entropy with the average rate normalized to one
spike per second. We found significant differences in rate distri-
bution entropies among responses to different stimuli (Fig. 6c).
In all areas, responses to song had significantly higher rate entro-
pies than responses to ml-noise (MLd: p � 5e-5; field L: p � 5e-5;
CM: p � 0.01). Furthermore, rate entropies in responses to syn-
song were also significantly greater than rate entropies in re-
sponses to ml-noise for all areas (MLd: p � 0.01; field L: p �
0.0005; CM: p � 0.01). Entropies calculated for song were signif-
icantly higher than those obtained for syn-song in field L ( p �
0.015), with a similar trend in MLd ( p � 0.05).

In summary, the higher information and information effi-
ciency values obtained from the song and syn-song responses are
attributable principally to an increase in the entropy and band-
width of the time-varying mean firing rate. Spike reliability (or
neural noise) does not appear to play a significant role.

Discussion
We found that sounds with natural modulation power spectra
and natural modulation phase could be better encoded by single
neurons than synthetic sounds that covered the natural acoustical
space. This result supports the hypothesis that auditory systems
have evolved or developed to process natural sounds efficiently.

Our results are consistent with previous
data showing that vocalizations are partic-
ularly good stimuli for eliciting responses
in higher auditory neurons that respond
poorly to simple tones and with a signifi-
cant reduction in spike rate to other non-
natural complex stimuli (Rauschecker et
al., 1995; Wang et al., 1995; Grace et al.,
2003). Previous studies have already
shown that synthetic sound ensembles
with natural properties are coded more ef-
ficiently by auditory neurons in the inver-
tebrate (Machens et al., 2001, 2003), verte-
brate auditory nerve (Rieke et al., 1995),
and mammalian midbrain (Escabi et al.,

2003). This study is the first, however, that quantifies and com-
pares the encoding ability of single auditory neurons with sounds
from natural ensembles versus synthetic sound ensembles. In
addition, our synthetic sound ensembles were carefully designed
to be supersets of the natural sound ensemble. The syn-song
ensemble included all possible sound features found in natural
songs as well as sound features that had the same modulation
power spectra as song but random modulation phase. Similarly,
the ml-noise ensemble includes all the possible sound features in
the song-ensemble as well as other sounds with different modu-
lation power spectra and random modulation phase. Our analy-
sis shows that at the highest levels of auditory processing, song,
the smallest subset of sounds, was best encoded by single neu-
rons. This is followed by syn-song, the subset of sounds with a
natural-like modulation spectrum but random modulation
phase. Finally, ml-noise, the ensemble of sounds that had random
modulation phase and a non-natural modulation spectrum, was
least well encoded.

A difference between our results and previous results is that all
three of our stimulus ensembles elicited similar average spiking
rates, whereas previous research had shown that natural vocaliza-
tions elicited higher rates for certain neurons or brain areas. The
differences in information rates that we measured cannot be ex-
plained by differences in average spike rates but, as we showed,
are caused by differences in the statistics of the time-varying re-
sponse. The fact that we did not find differences in average firing
rates as was found in previous work, including work from our
laboratory in the same preparation (Grace et al., 2003), is likely
because of our use of a novel synthetic sound ensemble that was
designed to more closely match natural sounds. Our results also
justify to some extent the use of ml-noise to characterize auditory
neurons. Ml-noise has recently been used to obtain the spectral–
temporal receptive fields (STRFs) of auditory neurons (Depireux
et al., 2001; Escabi and Schreiner, 2002).

We also found a hierarchical processing of natural sounds in
terms of information rates: on average, midbrain auditory neu-
rons are not selective for the natural modulation phase of spec-
tral–temporal amplitude modulations, whereas neurons in the
auditory forebrain, secondary auditory forebrain in particular,
are sensitive to this natural modulation phase. We also found that
in the midbrain, single neurons, on average, have greater capacity
to encode sounds from the syn-song ensemble than sounds from
the song ensemble. This is likely because of the entropy difference
between syn-song and song: the entropy of the syn-song ensem-
ble is greater than that of the song ensemble. Similarly, the en-
tropy of the ml-noise ensemble is greater than that of both the
syn-song and song ensemble. Therefore, a priori, one might na-
ively expect to observe higher information rates in responses to

Figure 6. Average measures of response reliability ( a), bandwidth ( b), and rate entropy ( c). (See Results). These average
values are obtained on the same data set as the information values shown in Figure 5. The error bars show �1 SE. The within-area
statistics are paired t test corrected for multiple comparisons. *p � 0.0167.
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ml-noise, followed by syn-song and finally song. If an auditory
processing stage were tuned to the modulation power spectrum
but not to its phase, we would expect higher information rates for
syn-song than for song, just as we observed in the midbrain.

Although the greatest information is for syn-song responses at
the midbrain, there appears to be a filtering process by which
higher-level (forebrain) single-neuron responses selectively en-
code sounds with natural modulation phase, whereas informa-
tion about other sounds from the syn-song ensemble is lost. It is
possible that similar information across the two ensembles would
be maintained if the population neuronal response were consid-
ered. In any case, the higher information rates and efficiencies in
single-cell responses suggest that the neural representation at the
higher levels is more efficient for natural sounds than for other
stimuli. This means that the relevant information can be ex-
tracted from a small number of neurons and fewer spikes are able
to convey more information. This result is consistent with a
sparse and information theoretically efficient neural representa-
tion of natural sounds.

How can we explain the depressed information rates in ml-
noise responses? Because we matched the total power in the mod-
ulation spectrum of ml-noise to that of song, ml-noise had more
power in the higher modulation frequencies and less power in the
lower modulation frequencies relative to song. It is therefore con-
ceivable that the increase in information could be caused by hav-
ing a majority of cells tuned to the lower modulations frequen-
cies, which have more power in song and syn-song. We have two
reasons to refute this hypothesis, at least in its simple linear form.
First, we found similar average firing rates in response to all three
stimuli. Second, when we analyzed the linear spectral–temporal
response properties of the cells in the midbrain, we found that
their peak modulation tuning was found in the range of temporal
frequencies between 10 and 50 Hz, with most of the cells having
best temporal modulation frequencies �25 Hz (Theunissen et al.,
2004). It is also at temporal frequencies �25 Hz that the modu-
lation power in ml-noise becomes greater than song. We there-
fore postulate that nonlinear response properties to higher spec-
tral–temporal modulation frequencies found in ml-noise
suppress the response to lower or intermediate frequencies and
disrupt the phase locking. This hypothesis would explain the sim-
ilar firing rates and the increase in response bandwidth found for
responses to song and syn-song relative to ml-noise, with its cor-
responding increase in information rates. The non-phase-locked
responses in ml-noise may also correspond to a different mech-
anism for the encoding of high-frequency modulation in which
the information is represented by average rates that are not syn-
chronized to the stimulus at the time scales analyzed here (Lang-
ner and Schreiner, 1988; Lu and Wang, 2004).

How can we explain the increase in information rates for song
responses over syn-song in the auditory forebrain? Here also,
both linear and nonlinear stimulus–response properties could
come into play. Although the song and the syn-song have the
same modulation spectrum, because of differences in their phase
spectrum, song and syn-song will have different higher order
statistics. For example, the variance in the modulation spectrum
of song is different both in magnitude and distribution than the
variance of syn-song. It is therefore possible that the linear STRFs
of a majority of neurons would be tuned to regions of the mod-
ulation spectrum that show greater variability across different
segments of songs than across different segments of syn-song. For
such neurons, the response strength (or mean firing rate) would
be identical, but the entropy of the response distribution would
then be higher for song than for syn-song. In addition, it is prob-

able that nonlinear tuning properties play a role in the efficient
coding of natural sounds. For example, it is easy to conceive of
selective tuning to the temporal or spectral phase in the ampli-
tude modulations of natural sounds. Such selective tuning would
affect both the response dynamics and distribution and would
not be captured by the linear STRF. By analyzing the match be-
tween the linear STRF of neurons and the modulation spectrum
of song or its higher moments (Theunissen et al., 2004) and by
assessing the role of the natural phase in the nonlinear fraction of
the neural response, we will be able to investigate these hypothet-
ical mechanisms.

Finally, we found that the absolute information rates for
sounds in the song ensemble remain constant as one moves up
the auditory processing stream; however, the reliability in the
response decreases as one moves up the processing stream. Fur-
thermore, absolute rate entropies and mean rates remain rela-
tively constant. Thus, the auditory system apparently preserves
the information in song by increasing the bandwidth of the time-
varying response (Fig. 6). In addition, if we postulate that the
increased variability in higher-auditory areas is caused partly by
inputs that are not well controlled in these experiments, such as
fluctuating input from other sensory modalities or internal states
of the animal, then the information for natural sounds may be
even higher than that reported here and with greater relative
increases in information as one moves up the auditory processing
stream.
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