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Schwann cells (SCs) cover most of the surface of all axons in
peripheral nerves. Axons and these glial cells are not only in inti-
mate physical contact but also in constant and dynamic commu-
nication, each one influencing and regulating the development,
function, and maintenance of the other. In recent years, there has
been significant progress in the understanding of the molecular
mechanisms of axon–Schwann cell interactions, particularly
those relevant for postnatal development and maintenance of
nerve function and structure. In this review, we discuss recent
progress in four aspects of axon–Schwann cell interactions, in-
cluding the roles of the neuregulin1 (NRG1)– erbB signaling
pathway, the mechanisms underlying the formation and function
of the node of Ranvier, the role of perisynaptic Schwann cells at
the neuromuscular junction, and the mechanisms that generate
Schwann cell tumors.

Along the entire length of mammalian peripheral nerves, ax-
ons of motor, sensory, and autonomic neurons are in close asso-
ciation with SCs. The intimate contact between SCs and periph-
eral axons provided a first indication that these cells interact in
important ways. In the mature nervous system, Schwann cells can
be divided into four classes: myelinating cells (MSCs), nonmyeli-
nating cells (NMSCs), perisynaptic Schwann cells (PSCs) (also
known as terminal Schwann cells), and satellite cells of peripheral
ganglia. These classes are based on their morphology, biochemi-
cal makeup, and the neuronal types (or area of their axons) with
which they associate. MSCs, the best characterized SC, wrap
around all large-diameter axons, including all motor neurons
and some sensory neurons. Each MSC associates with a single
axon and creates the myelin sheath necessary for saltatory nerve
conduction (Fig. 1A). NMSCs associate with small-diameter ax-
ons of C-fibers emanating from many sensory and all postgangli-
onic sympathetic neurons. Each NMSC wraps around several
sensory axons to form a Remak bundle, keeping individual axons
separated by thin extensions of the Schwann cell body (Fig. 1B).

Finally, located more peripherally, PSCs reside at the neuromus-
cular junctions (NMJ), where they cover, without completely
wrapping around, the presynaptic terminal of motor axons (Fig.
1C). Satellite cells, which will not be discussed here, associate with
neuronal cell bodies in peripheral ganglia.

Schwann cells, their origins, and their adult characteristics
The diverse types of SCs found in the adult nerve are primarily
derived from a single precursor cell type, the neural crest cell.
Some SCs may derive from placodes and ventral neural tube. The
multipotent and actively migratory neural crest cells migrate into
the peripheral nerves during embryonic development, in which
they mature in a stepwise process, giving rise to all SCs (Fig. 2). By
embryonic day 12 (E12) to E13 in mice, Schwann cell precursors
begin to express three differentiation markers: P0 (myelin pro-
tein 0), GAP43 (growth-associated protein 43), and F-spondin,
(Jessen and Mirsky, 1999). From E15 to the time of birth, these
precursors give rise to immature Schwann cells, which express
S100� and low levels of the myelin protein P0 (Jessen et al., 1994).
Finally, after birth, the immature SCs differentiate into myelinat-
ing, nonmyelinating, and perisynaptic phenotypes, a process that
continues over several weeks. Axons provide signals that regulate
the choice between the different SC phenotypes, but molecular
identity of these signals remains unknown. Undoubtedly, signals
from the different axonal types and regions are important.

The three types of SCs not only differ in the type of axons with
which they associate, their location along axons, and their mor-
phology, but they also differ dramatically in their biochemical
composition. MSCs, the best characterized biochemically, ex-
press myelin proteins such as MBP (myelin basic protein),
PMP22 (peripheral myelin protein 22), P0, MAG (myelin-
associated glycoprotein), and MAL (myelin and lymphocyte pro-
tein). These proteins are critical for the formation and function of
myelin sheaths. The NMSCs and PSCs have been characterized to
a much lesser extent. NMSCs can be distinguished from their
neighboring MSCs by their high levels of glial fibrillary acidic
protein (GFAP) (Jessen et al., 1990), the low-affinity neurotro-
phin receptor p75 (Jessen et al., 1990) and the cell adhesion mol-
ecule L1 (Faissner et al., 1984). No specific markers exist for PSCs,
but, within the NMJ, these cells can be easily visualized and stud-
ied using S100� as a marker (Woolf et al., 1992) (see Fig. 4).

Myelinating, nonmyelinating, and perisynaptic SCs also differ
in their function. As with their other aspects, MSCs are the best
understood. These cells form the myelin sheath critical for rapid
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saltatory nerve conduction. They also regulate the formation and
contribute to the structure of the nodes of Ranvier (see below).
MSCs influence several aspects of axonal structure, including ax-
onal diameter, axonal neurofilament spacing, and phosphoryla-
tion (Hsieh et al., 1994). In contrast, the functional roles of
NMSCs have been very poorly investigated, but recent studies
indicate that they play critical roles in the maintenance and func-
tion of unmyelinated axons and nociception in the adult (see
below). PSCs in amphibians and mammals appear to play impor-
tant roles in the maturation and function of the NMJ, as well as in
its regeneration after injury (see below).

NRG1– erbB signaling in axon–Schwann cell interactions
Numerous molecules mediate specific aspects of the interactions
between peripheral axons and SCs, including MAG (Yin et al.,
1998), p75 (Cosgaya et al., 2002), IGF1 (Syroid et al., 1999), in-
tegrins (Feltri et al., 2002), and TGF-� (Guenard et al., 1995). The
growth factor NRG1 and its receptors, the erbB receptors tyrosine
kinases, have emerged as key regulators of axon–SC interactions
at every stage and for all SC types. NRG1 is also known as glial
growth factor, a protein purified as a mitogen for Schwann cells
in culture (Marchionni et al., 1993). Early studies showed that
spinal cord motoneurons, DRG sensory neurons, and autonomic
neurons express NRG1 (Corfas et al., 1995) and that SCs express
erbB2 and erbB3 receptors (Meyer and Birchmeier, 1995). Thus,
it seemed reasonable that this ligand–receptor system would me-
diate interactions between these neurons and SCs. Indeed, many
in vitro studies provided compelling evidence that NRG1 regu-
lates many aspects of SC development. NRG1 can induce the
differentiation of neural crest cells into the SC phenotype (Shah
et al., 1994), the maturation of SC precursors isolated from em-
bryonic nerves (Dong et al., 1995), and the survival of SCs iso-
lated from neonate nerves (Syroid et al., 1996). NRG1 also pro-
motes SC motility and migration (Mahanthappa et al., 1996) and
induces SC proliferation in culture (Marchionni et al., 1993).
NRG1 appears to also regulate physiological properties of SCs
because it induces expression of Na� channels (Wilson and Chiu,
1993) and increases gap junction communication between SCs
(Chandross et al., 1996).

The importance of NRG1– erbB signaling in SC development
has also been demonstrated in vivo with genetically modified

mice. The first series of mice lacking
NRG1, erbB2, or erbB3 established the es-
sential role of these molecules in Schwann
cell precursor development (Lee et al.,
1995; Meyer and Birchmeier, 1995; Erick-
son et al., 1997; Riethmacher et al., 1997).
These mice have cranial ganglia defects, as
well as reduction of Schwann cells, enteric
ganglia, and adrenal chromaffin cells, sug-
gesting that the primary site of action for
NRG1– erbB signaling is neural crest cells
(Erickson et al., 1997; Riethmacher et al.,
1997; Lin et al., 2000). Unfortunately, these
mutant mice die as embryos because of heart
defects; thus, these initial studies were lim-
ited to early stages of development.

Subsequently, NRG1– erbB signaling
in axon–SC interactions were examined
using more elaborated animal models, in-
cluding knock-outs of specific NRG1 iso-

Figure 2. NRG1– erbB signaling and Schwann cell development. During development, neu-
ral crest cells give rise to Schwann cell precursors, which then develop into the three adult
phenotypes: PSCs, NMSCs, or MSCs. Whereas, during their differentiation into MSCs and NMSCs,
the precursors proceed through a stage called immature Schwann cell, the direct precursor of
PSCs remains unknown. NRG1– erbB signaling regulates important aspects of Schwann cell
biology at each step of their development (see boxed text).

Figure 1. Myelinated, unmyelinated, and perisynaptic Schwann cells as seen with the electron microscope. A, Cross section of
a myelinated axon of an adult mouse sciatic nerve. The myelin sheath (MS) surrounding the axon (Ax) and the Schwann cell nucleus
(S) are clearly visible. B, Cross section of a bundle of unmyelinated axons of an adult mouse sciatic nerve. The Schwann cell forms
the Remak bundle, a bouquet-like bundle of thin axons, each separated from its neighbor by thin cytoplasmic extensions of the
Schwann cell. C, Cross section of a frog neuromuscular junction reveals three juxtaposed cellular elements: the perisynaptic
Schwann cell, nerve terminal (N), and muscle fiber (M). The perisynaptic Schwann cell body (S indicates nucleus) and its processes
cap the nerve terminal, but the processes do not wrap around the nerve terminal region facing acetylcholine receptors on muscle.
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forms (Kramer et al., 1996; Meyer et al., 1997; Wolpowitz et al.,
2000) and rescue of early lethality by expression of erbB receptors
in the heart (Morris et al., 1999; Woldeyesus et al., 1999). Alto-
gether, these studies showed that (1) different NRG1 isoforms
have similar yet somewhat different roles in SC development, (2)
defects in SC development attributable to lack of NRG1– erbB
signaling in embryogenesis result in the degeneration of both
sensory and motor neurons in mice and (3) defects in NRG1–
erbB signaling during embryonic development lead to NMJ de-
fects. These studies highlighted the importance of SCs in the de-
velopment and maintenance of peripheral nerves.

More recently, several studies have explored NRG1– erbB sig-
naling in axon–SC interactions with conditional knock-outs
(Garratt et al., 2000), mice heterozygous for NRG, erbB2, and
erbB3 (Michailov et al., 2004), and cell-specific blockade or erbB
receptors in transgenic mice (Chen et al., 2003). These studies
showed that the roles of erbB signaling in SCs differ between
postnatal and embryonic cells, as well as between myelinating
and nonmyelinating Schwann cells.

To interfere with NRG1– erbB signaling between unmyeli-
nated axons and NMSCs, Chen et al. (2003) generated transgenic
mice expressing a dominant-negative erbB receptor in NMSCs.
These mice had normal peripheral nerves until the third postna-
tal week but then developed a small fiber neuropathy with loss of
thermal nociception, consistent with dysfunction of unmyeli-
nated C-fiber axons. The loss of erbB signaling in NMSCs re-
sulted in the loss of Remak bundles and extensive proliferation of
NMSCs. These results were surprising, because they indicated
that, in adult NMSCs, erbB signaling prevents rather than in-
duces proliferation, opposite to its role during development. The
rate of SC apoptosis was also increased in these mice, demonstrat-
ing that erbB signaling is a pro-survival stimulus for adult
NMSCs. The mutant mice had significant loss of unmyelinated
axons by postnatal day 30, indicating that NMSC are involved in
maintenance of unmyelinated axon integrity throughout life. In-
terestingly, even at stages in which mice were unable to respond
to thermal stimuli, they still retained 50% of their C-fiber axons,
suggesting that NMSCs may play a role in electrical conduction of
unmyelinated axons as MSCs do for myelinated axons. At later
stages, the number of unmyelinated DRG neurons was dramati-
cally reduced, indicating that NMSCs are involved in the promo-
tion of long-term sensory neurons survival. This DRG loss oc-
curred in conjunction with a dramatic reduction in the levels of
expression of glial cell line-derived neurotrophic factor, a trophic
factor expressed by SCs and known to be important for the sur-
vival of a population of C-fiber neurons. These results show that,
as part of a set of reciprocal axon–SC interactions, adult NMSCs
are important in the maintenance of C-fiber sensory neurons as a
source of essential trophic support.

The roles of NRG1– erbB signaling in MSCs were first studied
by Garratt et al. (2000). They generated mice in which the erbB2
gene was deleted by expression of Cre recombinase under the
control of the promoter of Krox20, a transcription factor ex-
pressed by MSCs. These mice showed hypomyelination of pe-
ripheral nerves, revealing that erbB signaling is necessary for nor-
mal myelination. Moreover, at early postnatal stages, there was a
significant reduction in the number of developing SCs in the
ventral and dorsal roots, suggesting that erbB signaling also reg-
ulates the SC precursor pool. Interestingly, adult nerves con-
tained normal numbers of SCs, leading the authors to suggest
that other mechanisms compensated for the lack of erbB signal-
ing. This line of inquiry was taken a step further by Michailov et
al. (2004). Their study showed that mice with only one copy of the

NRG1 gene have thinner myelin, whereas mice overexpressing
one of the NRG1 isoforms (type III NRG1) in neurons under the
control of the Thy1.2 promoter have thicker myelin. Interest-
ingly, type I NRG1 did not have the same effect. Because NRG1
heterozygotes showed the same phenotype as observed in nrg1:
erbb2:erbb3 triple heterozygotes, the authors concluded that ax-
onal NRG is the rate-limiting factor for myelination. This study
also found normal internodal length in the mutant mice, suggest-
ing that NRG1– erbB signaling is not involved in the regulation of
SC length. This surprising result suggested that the regulation of
myelin thickness and internode length might be regulated by
different mechanisms. However, this may have resulted from an
incomplete blockade of erbB signaling in these mice.

NRG1– erbB signaling appears also to regulate important as-
pects of PSC biology. Trachtenberg and Thompson (1996) found
that, in the neonate, PSCs die after muscle denervation and that
this apoptosis could be prevented by application of NRG1. Fur-
thermore, exogenous NRG1 applied to normal neonatal muscles
resulted in retraction of nerve terminals and alterations in PSC
morphology (Trachtenberg and Thompson, 1997). Because both
SCs and muscle have erbB receptors, it is not clear which cell is the
primary target of NRG1, but the investigators speculated that
NRG1 acted on PSCs.

These studies provide irrefutable support for the essential
roles of NRG1– erbB signaling in axon–SC interactions during
development and in the adult. Nevertheless, many important
questions remain to be answered regarding the mechanisms by
which NRG1– erbB signaling regulates SC biology, including how
signaling through the same erbB receptors can result in different
biological outcomes in SCs depending on the NRG1 isoform used
or the state of differentiation of the glia.

Axoglial interactions at the node of Ranvier
As discussed above, myelin is essential for efficient and rapid
propagation of action potentials. However, this function also de-
pends on the molecular specialization of the nodes of Ranvier, the
short periodical interruptions in the myelin sheath that are reg-
ularly spaced at intervals of �100 times the axonal diameter. The
nodal region is organized into several distinct domains, nodes,
paranodes, and juxtaparanodal region (Fig. 3). Each domain con-
tains a unique set of ion channels, cell adhesion molecules, and
cytoplasmic adaptor proteins (Poliak and Peles, 2003; Salzer,
2003). Disruption in nodal organization results in pathophysio-
logical changes often seen in demyelinating diseases. The local
differentiation of myelinated axons is tightly regulated by MSCs
through contact-dependent mechanisms.

The nodal axolemma is characterized by high density (�1200/
mm 2) of Na� channels essential for the generation of the action
potential during saltatory conduction. Na� channels colocalize
with KCNQ2 K� channels (Devaux et al., 2004) and several other
transmembrane and cytoskeletal proteins. These include the cell
adhesion molecules of the Ig superfamily (Ig-CAMs) NrCAM
and neurofascin 186 (NF186) (Davis et al., 1996), the cytoskeletal
adaptor ankyrin G (Kordeli et al., 1995), and the actin-binding
protein spectrin �IV (Berghs et al., 2000). Axoglial contact at the
nodes can be mediated by both the nodal CAMs and the � sub-
unit of Na� channel (Isom, 2002). Ankyrin G, a membrane-
cytoskeleton adaptor that links integral membrane proteins to
the spectrin cytoskeleton, interacts with Na� channels (Sriniva-
san et al., 1988), KCNQ2 (Devaux et al., 2004), NF186 and Nr-
CAM (Garver et al., 1997), as well as to �IV spectrin, a spectrin
isoform that is enriched at the nodes of Ranvier and axon initial
segments (Berghs et al., 2000). The interaction between ankyrin
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G and �IV spectrin may provide further anchorage of the nodal
Na� channel and Ig-CAMs to the axonal cytoskeleton. The nodal
axolemma is contacted by microvilli emanating from the outer
aspect of MSCs. Three ERM proteins ezrin, radixin, and moesin,
as well as ezrin-binding protein EBP50 and Rho-A GTPase, are
localized at the microvilli (Melendez-Vasquez et al., 2001;
Scherer et al., 2001). Several extracellular matrix proteins are
present in the nodal gap under the basal lamina, including the
hyaluronan-binding proteoglycan versican (Apostolski et al.,
1994), tenascin C (Rieger et al., 1986; Martini et al., 1990), and
syndecans (Goutebroze et al., 2003). Dystroglycan is also located
at the nodes (Saito et al., 2003). SC-specific ablation of dystrogly-
can results in disorganization of the microvilli, marked reduction
in nodal Na� channels, and consequently impaired nerve con-
duction (Saito et al., 2003).

The paranodal junctions (PNJ) that are formed between the
axon and the myelinating cell flank the nodes of Ranvier. In this
region, the compact myelin lamellae open up into a series of
cytoplasmic loops that spiral around the axon, forming a series of
septate-like junctions with the axolemma. These junctions ap-
pear relatively late during myelination, first generated closer to
the nodes by the most outer paranodal loop and then forming
gradually as additional loops are attached to the axon. As a result,
they are composed of a number of rings that represent each turn
of the myelin wrap. The PNJ was proposed to provide attachment
of the myelin sheath to the axon, to separate the electrical activity
at the node of Ranvier from the internodal region under the
compact myelin sheath, and to serve as a boundary that limits the
lateral diffusion of membrane components. The axonal mem-
brane at the paranodes contains a complex of cell adhesion mol-
ecules that include Caspr (Einheber et al., 1997; Peles et al., 1997)
[contactin-associated protein, also known as paranodin (Mene-
goz et al., 1997)] and the glycosylphosphatidylinositol (GPI)-
linked cell adhesion molecule contactin (Rios et al., 2000). This
complex is connected to the axonal cytoskeleton through protein
4.1B (Gollan et al., 2002). The glial membrane at the PNJ contains
neurofascin 155 (NF155), a spliced isoform of the cell adhesion
molecule neurofascin that is specifically found at the glial loops

(Tait et al., 2000). Although NF155 binds
directly to contactin, it is presently unclear
whether the Caspr– contactin complex in-
teracts directly with NF155 (Charles et al.,
2002; Gollan et al., 2003). Both Caspr and
contactin are essential for the formation of
the paranodal junction, and, in their ab-
sence, the ultrastructure of the paranodes
is severely altered. Specifically, the gap be-
tween glial and axonal membranes is in-
creased, and the electron-dense material
forming the septa that are the hallmark of
the PNJ in wild-type mice is absent (Bhat
et al., 2001; Boyle et al., 2001; Gollan et al.,
2003). Similar to other so-called paran-
odal mutants (Poliak and Peles, 2003),
such as the galactolipids (Dupree et al.,
1999; Poliak et al., 2001) and sulfatide-
deficient mice (Ishibashi et al., 2002), the
absence of a normal paranodal junction
results in only a minor expansion of the
nodes but causes a shift in the accumula-
tion of K� channels from the juxtaparan-
odal region to the paranodes (Bhat et al.,
2001; Boyle et al., 2001; Gollan et al.,

2003). Thus, an important function of these junctions is to form
a barrier between the nodal Na� channels and the juxtaparan-
odal K� channels.

The juxtaparanodal region is located beneath the compact
myelin at both sides of each internodal interval. It is characterized
by the presence of delayed rectifier K� channels of the Shaker
family, Kv1.1, Kv1.2, and their Kv�2 subunit, that may stabilize
conduction and help to maintain the internodal resting potential
(Wang et al., 1993; Vabnick et al., 1999). At this site, the channels
colocalize and create a complex with Caspr2, the second member
of a family of putative cell recognition molecules (Poliak et al.,
1999). Two other proteins that are found at the juxtaparanodal
region are TAG-1 (transient axonal glycoprotein 1), a GPI-
anchored cell adhesion molecule related to contactin (Traka et
al., 2002), and connexin 29, which is found at the glial membrane
(Altevogt et al., 2002). Axonal Caspr2 creates a cis-complex with
TAG-1 that associates with a glial-derived TAG-1. In the absence
of Caspr2 or TAG-1, K� channels do not accumulate at the jux-
taparanodal region, and, instead, they are distributed along the
internodes, suggesting that Caspr2 and TAG-1 form a scaffold
that maintains K� channels at their correct juxtaparanodal posi-
tion (Poliak et al., 2003; Traka et al., 2003).

During the development of myelinated nerves, the different
nodal domains are formed gradually. Na� channels are first clus-
tered at the nodes, followed by the generation of the paranodal
junction, and only then by the clustering of K� channels at the
juxtaparanodal region (Vabnick et al., 1996, 1999). Na� channels
cluster initially at sites adjacent to the edges of processes extended
by MSCs (Vabnick et al., 1996; Ching et al., 1999). Additional
longitudinal growth of these glial cell processes is associated with
the movement of Na� channel clusters until ultimately two
neighboring clusters appear to fuse, indicating that these chan-
nels are positioned by direct glial cell contact (Pedraza et al.,
2001). In sciatic nerve, NrCAM, NF186, and ankyrin G precede
Na� channels, suggesting that these cell adhesion molecules bind
ankyrin G, which in turns recruits Na� channels (Lambert et al.,
1997; Jenkins and Bennett, 2002). In support of this model, the
addition of a soluble NrCAM to myelinating dorsal root ganglia

Figure 3. Molecular structure of the node of Ranvier. Longitudinal section through the nodal region of a peripheral myelinated
axon showing the organization and composition of axonal and glial domains. The axon is covered by an MSC, which in turn is
surrounded by a basal lamina. In the paranodal region, the myelin sheath forms a series of paranodal loops (PNL) that invaginate
and appose the axon creating a septate-like structure. At the node, the outermost cytoplasmic extension of MSC contains numer-
ous microvilli that contact the axolemma. Specific sets of proteins are enriched in each domain of both axon (red text) and Schwann
cells (blue text).
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cultures was shown to inhibit Na� clustering (Lustig et al., 2001).
Moreover, the appearance of ankyrin G and Na� channels at the
nodes is delayed in NrCAM null mice (Custer et al., 2003), indi-
cating that this adhesion molecule participates in the clustering of
these channels. Cell– cell contact controls the two other domains
near the nodes; the formation of the paranodes requires Caspr
and contactin (Bhat et al., 2001; Boyle et al., 2001; Gollan et al.,
2003), whereas the formation of the juxtaparanodal region de-
pends on the presence of Caspr2 and the contactin-related mol-
ecule TAG-1 (Poliak et al., 2003; Traka et al., 2003).

In summary, several proteins that may mediate the interac-
tions between myelinating Schwann cells and their underlying
axons have been identified, and their role in the local differenti-
ation of the nodal region is being explored. However, despite this
progress, the exact molecular mechanisms by which myelinating
glial cells control the formation of the nodes and, particularly, the
clustering of Na� channels should probably await the identifica-
tion of novel components in the future.

Perisynaptic Schwann cells in neuromuscular junction
development and maintenance
PSCs cap the presynaptic motor nerve terminal, which in turn
aligns with postsynaptic acetylcholine receptors (AChRs) at ver-
tebrate NMJs (Fig. 1). The arrangement of these three intimately
juxtaposed cellular elements was demonstrated by electron mi-
croscopy more than four decades ago (Birks et al., 1960), but it
was not until the 1990s that it became clear that PSCs play active
roles in synaptic function, growth, and maintenance. One key
finding was the profuse sprouting of PSC processes observed after
nerve injury at the mammalian NMJs (Reynolds and Woolf,
1992). The significance of this observation was soon recognized
and extended by Thompson and colleagues, who demonstrated
that PSC sprouts may lead nerve terminal growth during synaptic
regeneration and sprouting (Son and Thompson, 1995). Using
repeated in vivo imaging, Ko and colleagues have shown that PSC
processes are dynamic and may also lead nerve terminal sprouts
during synaptic remodeling at frog NMJs (Chen et al., 1991; Chen
and Ko, 1994; Ko and Chen, 1996). PSCs have also been shown to
sense synaptic activity by raising their intracellular calcium
(Jahromi et al., 1992; Reist and Smith, 1992) and to be capable of
modulating synaptic transmission at the NMJ in response to ma-
nipulation of G-protein pathways or internal calcium levels (Ro-
bitaille, 1998; Castonguay and Robitaille, 2001). Coincidentally,
the role of glial cells in synaptic function and development in the
CNS also began to unfold in the 1990s (Newman and Volterra,
2004). The importance of glial cells as active and integral compo-
nents of chemical synapse has now been well acknowledged and
has led to the concept of the tripartite synapse (Araque et al.,
1999).

The frog NMJ has served as an excellent model to investigate
the roles of PSCs. Two vital probes, peanut agglutinin (PNA),
which labels the extracellular matrix associated with frog PSCs
(Ko, 1987), and a monoclonal antibody (mAb), 2A12, which la-
bels the external membrane surface of frog PSCs (Astrow et al.,
1998), provide powerful tools for the study of PSC behavior at
adult and developing NMJs in vivo (Fig. 4). In addition, mAb
2A12 can be used with complement-mediated lysis to selectively
ablate PSCs en masse from frog muscles (Reddy et al., 2003).

Nerve–muscle contacts can be formed in the absence of
Schwann cells in tissue culture (Kullberg et al., 1977), and tran-
sient nerve–muscle contacts have also been seen in mouse mu-
tants that lack of Schwann cells (Riethmacher et al., 1997; Morris
et al., 1999; Lin et al., 2000; Wolpowitz et al., 2000). Thus, it

appears that the initial formation of nerve–muscle contact does
not require PSCs. However, PSCs are present and dynamic soon
after the initial NMJ formation. During tadpole development,
PSCs partially colocalize with developing nerve terminals at the
earliest discernible NMJs but quickly cover the full extent of
NMJs and often extend profuse processes beyond the nerve ter-
minals by tens or hundreds of micrometers. Repeated, in vivo
observations of identified tadpole NMJs show that developing
nerve terminals grow along these PSC sprouts in tadpoles (Reddy
et al., 2003). When PSC were specifically ablated, very few NMJs
showed nerve terminal growth and nearly one-half underwent
retraction, in contrast to control muscles, which showed robust
NMJ growth. Furthermore, whereas �10% of NMJs observed in
controls were new synapses, no new synapses were seen in PSC-
ablated muscles. These results demonstrate that PSCs promote
synaptic growth and are vital for the stability of developing NMJs
in vivo.

The mechanisms by which SCs contribute to neuromuscular
synaptogenesis are not completely understood. In cultures con-

Figure 4. Perisynaptic Schwann cells at the neuromuscular junction. Frog skeletal muscle
triple labeled with anti-neurofilament for axons (first panel, arrow) and synapsin I antibodies
for nerve terminals (first panel, arrowhead), a monoclonal antibody, 2A12, for perisynaptic
Schwann cells (second panel, the cell bodies are marked with *), and �-bungarotoxin for
postsynaptic acetylcholine receptors (third panel). The merged image is shown in the fourth
panel.
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taining embryonic Xenopus spinal neurons and muscle, neuro-
trophic factors and elevated cAMP induce a dramatic increase in
neuron survival and neurite outgrowth (Peng et al., 2003). How-
ever, the number of nerve–muscle contacts that showed AChR
clusters was greatly inhibited. Interestingly, addition of medium
conditioned by SCs or TGF-�1 increased AChR clusters at neu-
ron–muscle contacts (Peng et al., 2003; Feng and Ko, 2004).
These findings suggested that Schwann cell-derived factors allow
neurons to switch from a “growth phase” to a “synaptogenic
phase.” In addition, SC-conditioned medium modulates trans-
mitter release at the nerve–muscle contacts in Xenopus culture, by
increasing the frequency but not the amplitude of spontaneous
synaptic current. The identity of the factors that promote these
effects is not known, but they appear to be small molecules of �5
kDa (Cao and Ko, 2001).

PSC ablation has provided an effective tool to selectively
“knock-out” PSCs and thus investigate the roles of these cells in
the maintenance and function of adult NMJs in vivo (Reddy et al.,
2003). After acute PSC ablation (up to 5 hr after ablation), no
abnormality of nerve terminal morphology or clusters of AChRs
was reported at the light microscopic level. Despite the damage of
PSCs, the ultrastructure of nerve terminals and muscles was un-
changed, suggesting that acute ablation of PSCs does not alter
synaptic structure. Moreover, miniature endplate potentials
(mepps), evoked endplate potentials (epps), quantal contents,
and paired-pulse facilitation and synaptic depression in response
to high-frequency stimulation before and after acute PSC abla-
tion were unchanged. Furthermore, acute ablation of PSCs did
not affect muscle twitch tension in response to nerve stimulation.
All in all, these findings suggest that PSCs, despite their capability
to modulate transmitter release in response to pharmacological
manipulations (Auld et al., 2003), do not seem to play a signifi-
cant role in acute synaptic modulation and the overall function-
ing of adult muscles.

In contrast, PSCs are essential for the long-term maintenance
of synaptic structure and function (Reddy et al., 2003). One week
after PSC ablation, the frequency of mepps, the amplitude of
epps, and the mean quantal content were reduced approximately
by half, whereas mepp size was not altered. Nerve-induced mus-
cle twitch tension was significantly reduced 1 week after PSC
removal. These changes in presynaptic function were accompa-
nied by partial or total retraction of nerve terminals, as seen with
light microscopy. Electron microscopy showed “empty” synaptic
gutters resulting from the retraction of nerve terminals. How-
ever, there were no signs of either nerve damage typically seen
after axotomy or detachment of the remaining length of the re-
tracting nerve terminals. Thus, it seems that, rather than acting as
a “glue” to mechanically attach nerve terminals, the PSCs and
their derived factors maintain synaptic structure and function.
The identity of these factors remains to be investigated.

Repeated in vivo imaging of double-labeled NMJs has shown
that, in contrast to mammals, frog PSC sprouting after axotomy
occurs with the arrival of regenerating nerve terminals. PSCs ex-
tend processes ahead of regenerating nerve terminals, which
grow along the preceding PSC processes (Koirala et al., 2000).
These observations suggest that regenerating nerve terminals in-
duce PSCs sprouting, and PSC sprouts, in turn, lead and guide
nerve terminal sprouts. Similar roles for PSCs in leading growing
nerve terminals during synaptic remodeling (Chen et al., 1991;
Macleod et al., 2001) and during sprouting induced by nerve
implants (Chen and Ko, 1994; Ko and Chen, 1996) have been
reported. In addition to a guiding role, in the frog, SCs may also
play a role in the aggregation of AChRs at extrajunctional sites

during nerve reinnervation and sprouting by expressing active
isoforms of agrin (Yang et al., 2001).

Evidence for PSCs sprouts leading regenerating nerve termi-
nals in vivo has also been made in mammalian muscles (O’Malley
et al., 1999; Kang et al., 2003). These in vivo observations have
confirmed previous suggestions inferred from static images that
regenerating axons indeed grow along PSC sprouts at mamma-
lian NMJs. Together, in vivo imaging studies suggest that PSCs
guide and lead the growth of regenerating and sprouting nerve
terminals at adult vertebrate NMJs. Whether PSCs are absolutely
required for guiding nerve terminal sprouting at adult NMJs is
not clear. This question could be answered by ablating PSCs at
regenerating NMJs.

In summary, studies from the past decade have revealed many
active and essential roles of PSCs in synaptic function, formation,
and maintenance throughout the life of vertebrate NMJs (for
review, see Auld et al., 2003; Kang et al., 2003; Koirala et al., 2003).
These studies suggest that PSCs, similar to CNS glial cells (for
review, see Ullian et al., 2004), may instruct neurons to make
larger, stronger, and more stable synapses. However, little is
know about the identity of the molecules that PSCs and nerve
terminals communicate with each other at the NMJ. To have a
complete understanding of the tripartite neuromuscular synapse,
the future challenge is to unravel the molecular mechanisms of
the reciprocal interactions among PSCs, nerve terminals, and
muscles.

Schwann cell tumors
As described above, communication between axons and SCs is
critical for normal nerve function, and disruption of the intimate
interactions of SCs with axons results in debilitating peripheral
neuropathies, including those caused by peripheral nerve tu-
mors. These tumors can be classified as neurofibromas and
schwannomas. Neurofibromas are unencapsulated benign tu-
mors that contain Schwann cells, mast cells, fibroblasts, and per-
ineurial cells comingled with axons in an abundance of collagen-
rich matrix. Schwann cells account for 60 – 80% of the cells in
neurofibromas, as defined by staining for the S100� protein (Ste-
fansson et al., 1982; Peltonen et al., 1988). In contrast, schwan-
nomas are encapsulated benign tumors almost entirely com-
posed of Schwann cells that are perched on, but not comingled
with, normal nerve bundles (Fig. 5). Neurofibromas occasionally
progress to malignant peripheral nerve sheath tumors (MPNST)
(Evans et al., 2002), whereas schwannomas apparently do so only
after radiation exposure. Schwannomas consist almost entirely of
S100�-positive cells (Johnson et al., 1988). At the electron micro-
scopic level, interdigitating SC processes are frequent, and
schwannoma cells have characteristic SC basal lamina (Cravioto,
1969; Erlandson and Woodruff, 1982). Schwann cells within the
tumor are surrounded by a collagen-poor, laminin-rich matrix.

Clues to tumor formation come from inherited human dis-
eases in which affected individuals are predisposed to develop SC
tumors. Neurofibromatosis type 1 (NF1) and neurofibromatosis
type 2 (NF2) arise from mutations in different genes, each of
which plays a key role in regulating SC function. The Nf1 gene on
human chromosome 17 encodes an intracellular signaling mole-
cule that functions as a GTPase activating protein for Ras pro-
teins, whereas the Nf2 gene on human chromosome 22 encodes a
cytoskeletal-membrane linking protein. Patients with NF1 and
NF2 typically present with different types of benign SC tumors in
which most SCs lose contact with axons. Neurofibromas are the
hallmark of NF1 disease, whereas schwannomas are the hallmark
of NF2 disease (Fig. 5). There is great interest in neurofibroma-
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tosis type 1 because it is one of the most
common of all inherited human diseases,
affecting 1 in 2500 –3500 individuals of all
races worldwide (Rasmussen and Fried-
man, 2000). The prevalence of NF1 is sim-
ilar to all the Charcot-Marie-Tooth pe-
ripheral neuropathies together (1:2000).

NF1 is inherited as a dominant trait. It
is a complex disease with an unpredictable
clinical course. Diagnostic criteria, two or
more of which define a diagnosis of NF1,
include the following: cafe-au-lait mac-
ules, freckling, optic glioma, Lisch nod-
ules, a bony lesion, a first degree relative
with NF1, and two or more benign nerve
sheath tumors (neurofibromas) (Gut-
mann et al., 1997). Numerous abnormal-
ities can be observed in individual NF1 pa-
tients. At least one-half of NF1 children
have learning disabilities (for review, see
Kayl and Moore, 2000). Short stature,
macrocephaly, benign pilocytic astrocyto-
mas, and scoliosis are also frequent (Friedman and Birch, 1997).

The 350 kb Nf1 gene on human chromosome 17q11.2 is a
tumor suppressor gene, and complete loss is correlated with tu-
mor formation (Legius et al., 1993). NF1 disease is thought to be
caused by loss of NF1 protein because defined Nf1 mutations
predict deletions and rearrangements with no evidence for
dominant-negative effects; mutations are found scattered
throughout the gene (Fahsold et al., 2000). No relationship be-
tween genotype and phenotype has been defined except for pa-
tients with gross gene deletions who may have deletions in
gene(s) contiguous to Nf1. These individuals have a severe NF1
phenotype, with large neurofibroma burden (Lopez-Correa et
al., 2001).

Neurofibromas develop in most or all NF1 patients (Friedman
and Birch, 1997). NF1 patients can have a few or thousands of
these benign peripheral nerve tumors. Discrete neurofibromas
can be associated with any peripheral nerve or with small nerve
endings under the skin, typically appear during or after puberty,
and are prone to growth during pregnancy (Dugoff and Sujansky,
1996). In contrast, plexiform neurofibromas expand within the
perineurium and displace surrounding tissue. Plexiform neuro-
fibromas are associated with major nerve trunks and appear in
young children (for review, see Wiestler et al., 1994). Currently,
the only therapy for neurofibromas is surgical removal.

Recent data strongly support the view that Schwann cells are a
crucial pathogenic cell type in neurofibroma formation. Neuro-
fibroma SCs aberrantly stimulate angiogenesis and are invasive
(Sheela et al., 1990), and mutations in both Nf1 alleles are present
in neurofibroma SCs but not neurofibroma fibroblasts (Kluwe et
al., 1999; Serra et al., 2001). A conditional (cre/lox) allele of Nf1
was used to ablate Nf1 in the SC lineage. These mice developed
peripheral nerve tumors, but only when all the cells in the mice
were also Nf1�/� (Zhu et al., 2002), suggesting a role for a permissive
haploinsufficient environment in conjunction with mutant SCs.

NF1 encodes a GTPase activating protein for Ras proteins
called neurofibromin (for review, see Donovan et al., 2002).
Thus, loss of neurofibromin through mutation at the Nf1 locus
might be expected to result in a failure to terminate Ras signals.
Indeed, increased levels of Ras-GTP are detected in SCs isolated
from neurofibromas (Sherman et al., 2000). Ras-GTP is also ele-
vated in SCs hemizygous or null at Nf1 using a biochemical assay

(Kim et al., 1995). Some Nf1 phenotypes are likely caused by
increased Ras-GTP because morphological changes and de-
creased cell division in Nf1 mutant SCs are mimicked in SCs
expressing a constitutively activated Ha-Ras allele (Ridley et al.,
1988; Kim et al., 1995). In addition, farnesyl protein transferase
inhibitor, a drug that inhibits H-Ras activity, reverses prolifera-
tion abnormalities in mouse SCs lacking Nf1 (Kim et al., 1997).

Neurofibromin also has ill-defined, non-Ras-related func-
tions. Mutation in Drosophila Nf1 results in small sluggish flies
with a block in PACAP (pituitary adenylate cyclase-activating
polypeptide)-stimulated enhancement of inwardly rectifying K�

channels at the larval body wall NMJ (Guo et al., 1997). This is not
an effect of the classical Ras–MAPK (mitogen-activated protein
kinase) pathway, but rather results from abnormalities in the
cAMP-mediated opening of the channel. Enlarged peripheral
nerves in NF1 mutant flies result from Ras or non-Ras pathway
defects (Yager et al., 2001). Neurofibromin is also a substrate of
PKA. Aberrant K� currents have also been described in SCs from
MPNST cell lines and could be induced in normal human SCs by
exposure to cAMP analogs (Fieber, 1998). PAKs (p21-activated
kinases) have also been implicated in SC transformation (Tang et
al., 1998). R-Ras and R-Ras2/TC21 may mediate some effects of
Nf1 loss in SCs (Huang et al., 2004).

It seems reasonable that Nf1 mutant SCs would reveal dereg-
ulation of molecules necessary for normal neuron– glial interac-
tion and provide therapeutic targets for NF1 patients. To study
neurofibroma formation resulting from Nf1 mutation, mice with
a targeted mutation in Nf1 were developed (Brannan et al., 1994;
Jacks et al., 1994). Nf1�/� mouse embryos die by E14.5, and adult
Nf1�/� mice do not spontaneously develop neurofibromas.
However, neurofibromas formed when Nf1�/� embryonic stem
cells were added to wild-type blastocysts (Cichowski et al., 1999)
or after wounding of Nf1�/� peripheral nerves (Rizvi et al.,
2002). Moreover, when dorsal root ganglion cells are purified
from Nf1 mutant embryos at E12.5, the Nf1�/� and Nf1�/�

Schwann cells from these cultures do show some abnormalities.
Notably, an additional morphologically transformed, fast-
growing, p75NGFR, S100�, and GFAP-expressing subpopula-
tion of cells, denoted Nf1�/� TXF, is also present in these cultures
(Kim et al., 1997; Rizvi et al., 2002). These cells have been used as
a model of neurofibroma formation.

Figure 5. Schwann cell tumors. In neurofibromas, Schwann cells fibroblasts and perineurial cells are within collagen-rich tumor
matrix; axons and mast cells are common. Neurofibromas are not encapsulated, although the plexiform neurofibroma develops
inside the perineurium (not shown). Schwannomas are encapsulated by a collagenous sheath and are made up almost entirely of
S100�-positive Schwann cells, with little or no fibroblast involvement; axons are present only at the boundary of the tumor with
the associated nerve trunk.
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Recently, studies using the candidate gene approach and more
global gene expression profiling have provided new insights into
neurofibroma formation. As an example of the candidate gene
approach, Ratner and colleagues found that Nf1�/� TXF cells
aberrantly express the epidermal growth factor receptor (EGFR)
(DeClue et al., 2000). Supporting use of the Nf1�/� TXF cells as a
model for tumorigenesis, EGFR is also aberrantly expressed in a
subset of S100�-expressing cells in neurofibromas and in mouse
and human MPNST cell lines, in which EGFR antagonists inhibit
cell growth (DeClue et al., 2000; Li et al., 2002). This has led to an
ongoing therapeutic trial of EGFR antagonists in MPNST.

Applying global gene expression profiling to the Nf1 mutant
mice has revealed numerous new candidate genes. For example,
cDNA microarray analysis showed that expression of Blbp (brain
lipid binding protein)/Fabp7 (fatty acid binding protein) was in-
creased in Nf1�/� TXF cells (Miller et al., 2003). The correlation
between the higher expression levels of BLBP, which has been
shown to mediate adhesion between neurons and glia (Feng et al.,
1994), and the defects in the ability of Nf1�/� TXF Schwann cells
to extend processes along axons suggested that these events could
be related (Miller et al., 2003). Strikingly, BLBP blocking anti-
bodies enabled process outgrowth from Nf1�/� TXF cells and
restored interaction with axons (Miller et al., 2003). BLBP ex-
pression was also detected in EGFR-positive cell lines derived
from human MPNST and Nf1:p53 double-mutant mice (Li et al.,
2002). Thus, these results not only validate the utility of the
Nf1�/� TXF system to identify genes relevant to tumorigenesis
but implicate BLBP in the disease phenotype.

In summary, peripheral nerve tumors that form in neurofi-
bromatosis type 1 disrupt axon–SC interactions and peripheral
nerve structure. Currently available knock-out mice and SC cul-
ture models are available to study peripheral nerve tumorigene-
sis, and insights into the involvement of Ras signaling, proteins
including BLBP, and tyrosine kinase pathways driven by EGFR in
these tumors are providing targets for possible therapeutic inter-
ventions in NF1. Many important questions remain, including
the role of non-SCs in neurofibromas, identification of addi-
tional proteins that are biomarkers or therapeutic targets in dis-
ease, and identification of the pathway by which loss of NF1
disrupts axon– glial interactions.
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