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Spines may undergo rapid, activity-dependent changes in shape and size, reflecting reorganization of the actin cytoskeleton. This
remodeling is implicated in development and also in the late phase of long-term potentiation. However, the cellular mechanisms that
convert activity into morphological change remain poorly understood, and little is known about the anatomical distribution of the
actin-regulating proteins that mediate this remodeling. Using immunocytochemistry, we demonstrate here that cortactin (a protein
implicated in actin filament nucleation, branching, and stabilization) is concentrated in hippocampal spines, where it colocalizes with
F-actin. Cortactin has a Shank-binding domain; recent studies report that synaptic activity may trigger actin remodeling via this inter-
action with Shank. However, our immunogold electron microscopic data show that cortactin concentrates within the spine core, 100 –150
nm away from the postsynaptic density (PSD); only a small fraction of the cortactin in spines lies adjacent to the PSD. These data suggest
that the adult dendritic spine contains two functional pools of cortactin: a large pool in the spine core that may help to mediates changes
in spine shape and a small synaptic pool that may modify the PSD in response to synaptic activity.
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Introduction
The dendrites of excitatory neurons in the mammalian forebrain
are covered with spines, the principal loci of synaptic processing
(Ramón y Cajal, 1909). Typically, a single glutamatergic bouton
makes synaptic contact onto the spine head (Harris, 1999). Im-
mediately beneath this synaptic apposition lies the postsynaptic
density (PSD), an electron-dense matrix that contains glutamate
receptors, signal transduction molecules, and adaptor proteins
(Kennedy, 2000; Sheng, 2001). Accumulating evidence shows
that dendritic spines may change their shape in response to glu-
tamate, especially via activation of NMDA receptors (Halpain,
2000; Segal and Andersen, 2000). Besides its role in development
(Maletic-Savatic et al., 1999), spine remodeling has been associ-
ated with synaptic plasticity in the mature brain (Yuste and Bon-
hoeffer, 2001; Trachtenberg et al., 2002). Although cytoskeletal
reorganization is coupled to glutamatergic synaptic activity, the
mechanisms underlying this coupling remain unclear.

Electron micrographs reveal an intimate linkage between the
PSD and a network of actin-based filaments that may span the
length of the spine (Landis and Reese, 1983; Fifkova and Morales,
1992; Matus, 2000). Such images suggest a direct connection be-
tween synaptic activity and changes in spine geometry. The bio-
chemical machinery underlying this connection is not yet under-
stood, although �-actinin, a protein concentrated at the PSD that
can bind to both actin and the NMDA receptor, has been impli-

cated (Wyszynski et al., 1998). Spine remodeling can also be trig-
gered by activation of metabotropic glutamate receptors
(Vanderklish and Edelman, 2002). This effect may be mediated
via Shank, a PSD protein that can link to both the NMDA recep-
tor and the metabotropic receptor (Naisbitt et al., 1999; Tu et al.,
1999; Sala et al., 2001).

For a PSD scaffolding protein to modify spine shape, it must
affect the cytoskeleton. It is therefore intriguing that Shank inter-
acts with the actin-binding protein cortactin (Naisbitt et al.,
1999). Cortactin, an �80 kDa protein found throughout the an-
imal kingdom, contains an Arp 2/3-binding site near its N termi-
nal, five to six tandem repeats of an actin-binding domain, and a
proline-rich region, followed by an Src homology 3 domain at its
C terminal (Kanner et al., 1990; Wu and Parsons, 1993). Thus,
cortactin can bind to actin while simultaneously activating the
actin-nucleating Arp2/3 complex (May, 2001; Weaver et al.,
2001; Daly, 2004). Cortactin localizes to lamellopodia, filopodia,
and membrane ruffles at the leading edge of migrating fibro-
blasts, where it colocalizes with F-actin and the Arp2/3 complex;
this association is thought to mediate actin-based motility (Weed
et al., 2000; Weed and Parsons, 2001; Krueger et al., 2003). Recent
studies in cultured neurons suggest that cortactin may play an
analogous role in brain (Hering and Sheng, 2003; Martinez et al.,
2003). Despite this evidence implicating cortactin in the dynamic
organization of dendritic spines, very little is known about its
distribution in the intact brain.

We performed immunocytochemical experiments to find out
whether cortactin is present in spiny neurons of the rat brain,
and, if so, whether it concentrates in a location suited to trans-
duce interactions between the synapse and the actin cytoskeleton.

Materials and Methods
Preparation of tissue. Experiments were performed on adult (3–5 months
old) male Sprague Dawley rats from Charles River (Raleigh, NC). To
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explore development, we also used material from postnatal day 14 (P14)
and P21 rats. Animal housing and all experimental procedures were
strictly in compliance with Institutional Animal Care and Use Commit-
tee guidelines. The animals were deeply anesthetized with pentobarbital
(60 mg/kg, i.p.), then perfused intracardially through the left ventricle
with 0.9% NaCl, followed by a mixture of depolymerized paraformalde-
hyde (PFA; 4%) and glutaraldehyde (0.5%) in 0.1 M phosphate buffer
(PB), pH 7.4 (for electron microscopy), or 1% PFA (for light micros-
copy). Brains were removed and immersed in the same fixative for 2 hr; 50
�m coronal sections were cut with a vibratome between �3.0 and �6.0 mm
caudal from bregma and processed for immunohistochemistry.

Antibodies. The primary antibodies used included polyclonal rabbit
anti-cortactin (0.4 �g/ml; Santa Cruz Biotechnology, Santa Cruz, CA),
monoclonal mouse anti-synaptophysin (clone SVP38, ascites fluid,
1:1000; Sigma, St. Louis, MO), polyclonal guinea pig anti-vesicular glu-
tamate transporter 1 (VGLUT1; 1:2000; Chemicon, Temecula, CA), and
monoclonal mouse anti-�-actinin (clone EA-53, ascites fluid, 1:500;
Sigma). Most of these antibodies are widely used and have been charac-
terized in previous studies: for synaptophisin, see Jahn et al. (1985) and
Wiedenmann and Franke (1985); for VGLUT1, see Fujiyama et al. (2001)
and Todd et al. (2003); for �-actinin, see Wyszynski et al. (1998). The
cortactin antibody was the same used by Hering and Sheng (2003); to
verify its specificity, we performed Western blot analysis. Briefly, pro-
teins were separated by SDS-PAGE (10%), transferred to Immobilon-P
polyvinylidene difluoride membranes, and blocked with 5% fat-free dry
milk (Carnation) in sample buffer (20 mM Tris, 137 mM NaCl, pH 7.6,
and 0.1% Tween 20). Primary antibody was diluted 1:200 in blocking
solution. Immune complexes were visualized with an ECL immunode-
tection kit (Amersham Biosciences, Piscataway, NJ); bands were re-
corded using an imaging station from Eastman Kodak (Rochester, NY),
using ProSieve broad-range markers to determine molecular weights. As
shown in Figure 1, the antibody recognized two bands in the �80 – 85
kDa range in the cortex, hippocampus, and cerebellum.

Immunocytochemistry for confocal microscopy. Sections were blocked in
20% normal donkey serum (NDS; Jackson ImmunoResearch, West
Grove, PA) in 0.05 M PBS, pH 7.4, then incubated in various combina-
tions of primary antibodies for cortactin, �-actinin, synaptophysin, and
VGLUT1 in PBS containing 2% NDS overnight at room temperature.
After several washes, sections were incubated in secondary antibodies
(anti-rabbit Cy3 for cortactin, anti-mouse FITC for synaptophysin and
VGLUT1). Alexa Fluor-488 conjugated to phalloidin (Molecular Probes,
Eugene, OR) was used for visualization of F-actin (Allison et al., 1998).
For visualization of cell processes, we used the lipophilic dye 3,3�-
dioctadecyloxacarbocyanidine perchlorate (DiO; Molecular Probes),
which infiltrates the plasma membrane, labeling even the finest neuronal
processes (for details, see Burette et al., 2002). After several washes, sec-

tions were mounted on glass slides, coverslipped in Vectashield (Vector
Laboratories, Burlingame, CA) and examined with an SP2 laser scanning
confocal microscope (Leica, Nussloch, Germany). Optical sections ac-
quired with a Plan Apo 63� oil objective (numerical aperture, 1.4) were
scanned in a 1024 � 1024 pixel format. Images stored as RGB TIFF
images were digitally processed with Adobe Photoshop CS (version 8.0;
Adobe Systems, Mountain View, CA). Each image was cropped and
sharpened with unsharp masking; contrast, brightness, tonal range, and
color balance were edited. Each processing step was applied uniformly to
the entire image.

Immunocytochemistry for electron microscopy. For immunoperoxidase
staining, floating sections were treated for 30 min in 1% sodium boro-
hydride in PB to quench free aldehyde groups. The sections were incu-
bated in 20% NDS for 30 min to suppress nonspecific binding and then
for 12 hr in anti-cortactin antibody, along with 2% NDS. Sections were
incubated in biotinylated anti-rabbit IgG (Jackson ImmunoResearch)
for 2 hr. After several washes in PBS, sections were then incubated in
Extravidin peroxidase (1:5000; Sigma) for 1 hr. The immunopositive
structures were visualized with 3,3�-diaminobenzidine tetrahydrochlo-
ride (DAB). Sections were processed as described above in control exper-
iments, omitting primary antibody from the incubation solution. In such
sections, no immunostaining was observed. Some immunoperoxidase-
stained sections were prepared for light microscopy; these were mounted
on gelatin-coated glass slides, dehydrated in ascending ethanol series,
cleared with xylene, and coverslipped with DPX (Sigma) mountant.

For preembedding gold, sections were incubated together with those
for immunoperoxidase staining up to the secondary antibody stage. After
rinses in PBS, sections were incubated in goat-anti rabbit IgG coupled to
1.4 nm gold particles (1:30; Nanoprobes, Yaphank, NY) for 3 hr at room
temperature and rinsed in PBS. Sections were washed in 0.1 M Na acetate
(to remove phosphate and chloride ions), followed by silver enhance-
ment with Intense S-EM (Amersham Biosciences).

Sections for electron microscopy were postfixed in 0.5–1% osmium
tetroxide in 0.1 M PB for 35– 45 min and contrasted with 1% uranyl
acetate for 1 hr. After dehydration in ascending ethanol series and pro-
pylene oxide, sections were infiltrated with Epon/Spurr resin (Electron
Microscopy Sciences, Hatfield, PA) and flat-mounted between sheets of
Aclar within glass slides. Seventy-nanometer sections were cut, mounted
on 200 mesh copper grids, contrasted with uranyl acetate and Sato’s lead,
and examined in a Philips (Hillsboro, OR) Tecnai electron microscope at
80 kV; images were collected with a Gatan (Pleasanton, CA) 12-bit
1024 � 1024 CCD camera.

Quantitative analysis of the immunogold reaction. Electron micro-
graphs were taken from randomly selected fields, focusing on the proxi-
mal and middle regions of CA1 stratum radiatum, extending out to �250
�m from the cell layer. To determine the relative density of cortactin in
distinct subcellular compartments, axon terminals, dendritic shafts,
spines, and pyramidal cell nuclei were identified; gold particles within
their cytoplasm were counted, and the areas were measured. Both labeled
and unlabeled profiles were included in the analysis. To determine back-
ground, we calculated labeling over pyramidal cell nuclei (because nuclei
did not stain for cortactin in LM material). For details on measuring
positions of gold particles, see Valtschanoff and Weinberg (2001). Mem-
brane perimeters and profile areas were measured using the area calcu-
lator plug-in of ImageJ version 1.29 software (National Institutes of
Health, Bethesda, MD). This plug-in measures area, total area, and aver-
age area (for additional information, see http://rsb.info.nih.gov/ij/
plugins/area.html). Particle densities for somatic, dendritic, and spine
cytoplasm were computed and compared with nonspecific labeling, us-
ing a two-sided t test. Microsoft Excel, Kaleidagraph (Synergy Software,
Reading, PA), CricketGraph (Computer Associates, Islandia, NY), and
Data Desk (Data Descriptions, Ithaca, NY) were used to generate graphs
and to compute statistics.

Results
Light microscopy
Cortactin immunostaining was seen in gray matter throughout
the brain, sparing white matter. Staining was prominent in sev-
eral areas rich in dendritic spines, including the cerebellar cortex,

Figure 1. Western blot. A polyclonal antiserum generated against a recombinant protein
corresponding to amino acids 309 – 499 of human cortactin detected two major protein bands,
migrating at �80 and �85 kDa (left lane, cortex; middle lane, hippocampus; right lane, cer-
ebellum). The molecular weights are in kilodaltons.
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olfactory bulb, striatum, cerebral neocortex, and hippocampal
formation (Fig. 2A). Within the hippocampal formation, stain-
ing was dense in the neuropil of Ammon’s horn and the molec-
ular layer of the dentate gyrus (Fig. 2B). For this study, we fo-
cused our attention on CA1, the spiny pyramidal neurons of
which have been especially well studied. Immunoreaction was
present in CA1 pyramidal neurons, labeling their cell bodies and
apical dendrites but sparing the nucleus; somatic staining was
organized into small patches (Fig. 2C). No obvious glial staining
was observed. Proximal dendrites contained abundant immuno-
peroxidase reaction product, often associated with filamentous
structures (Fig. 2C,D). High-magnification views revealed punc-
tate staining in the stratum radiatum (Fig. 2E), suggesting that
cortactin may be concentrated in dendritic spines and/or
terminals.

To elucidate the organization of cortactin in the neuropil, we
performed high-resolution confocal microscopy on material
double labeled for cortactin and presynaptic markers. Cortactin
in the stratum radiatum was punctate; these puncta were fre-
quently adjacent to synaptophysin-immunopositive puncta.
Cortactin puncta often showed small regions of overlap with syn-
aptophysin puncta (Fig. 3A, arrows), but seldom was extensive
overlap detected, suggesting that cortactin concentrates in
postsynaptic structures. The same pattern was also seen after
double labeling with cortactin and VGLUT1, a marker for gluta-
matergic terminals (Fig. 3B) (Fremeau et al., 2001; Kaneko and
Fujiyama, 2002).

These results, along with previous data from cultured neu-
rons, suggested that cortactin in the hippocampus might
concentrate in dendritic spines. To clarify the issue, we used
the lipophilic dye DiO to label the dendritic plasma membrane.
This experiment confirmed that cortactin concentrates in den-
dritic spines in the adult brain (Fig. 3C, arrowheads). Because
cortactin has an F-actin-binding domain, we wondered whether
it colocalized with actin in specific subcellular compartments. We
therefore performed double labeling with phalloidin and found
massive dendritic colocalization, especially in spines (Fig. 3D)
(cf. Capani et al., 2001a,b).

These LM data show that cortactin is expressed at high levels
in spiny neurons and suggest that it concentrates along with actin
in dendritic spines.

Electron microscopy
To gain a better understanding of its subcellular organization, we
performed immmunoelectron microscopy for cortactin. In cell
bodies of CA1 pyramidal neurons, the electron-dense immuno-
peroxidase reaction product was mostly associated with rough
endoplasmatic reticulum (Fig. 4A). Most dendritic shafts con-
tained patches of reaction product, but staining was markedly
denser in spines (Fig. 4B,C, asterisks). Reaction product often
filled spines, although in some cases it was attenuated or absent

4

Figure 2. Immunoperoxidase staining for cortactin. A, Low-magnification view of a para-
sagittal section of adult rat brain. Staining is especially prominent in the cerebellar cortex and
hippocampus and is also strong in other brain regions rich in dendritic spines. B, Micrograph
showing the hippocampal formation. Staining is conspicuous in the molecular layer of the
dentate gyrus (DG) and in the neuropil of CA1 (dashed lines mark borders of the main regions
within the hippocampal formation). C, D, CA1 of hippocampus, showing stained somata and
apical dendrites of pyramidal neurons. The detail in C reveals patchy staining in the somatoden-
dritic compartment, surrounding immunonegative nuclei. E, High-magnification view of the
stratum radiatum reveals intensely labeled dendrites; puncta in the neuropil may correspond to
dendritic spines. Scale bars: A, 5 mm; B, 500 �m; C, E, 25 �m; D, 50 �m.
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from the region just beneath the PSD (Fig. 4 D,E). Reaction
product was not detected in axons and axon terminals. Thus,
immunoperoxidase electron microscopy confirms our LM ob-
servation that cortactin concentrates in spines.

The above results suggest that cortactin in spines may lie away

from the synaptic junction. However, these data do not allow
critical examination of the question, because immunoperoxidase
product may migrate away from the enzymatic site, often filling
the profile and making it difficult to define the precise location of
the antigen. To clarify this issue, we performed a set of experi-
ments with immunogold labeling. We repeatedly tried postem-
bedding techniques, but with little success; presumably the rele-
vant epitope is destroyed or occluded by the preliminary
histological processing. We therefore performed preembedding
immunogold labeling, followed by silver intensification, to ob-
tain more precise spatial localization of cortactin.

Numerous gold/silver particles coding for cortactin were seen
in dendritic shafts of CA1 pyramidal neurons (Fig. 5A). Most of
these particles were associated with microtubules, presumably
representing a transport pool trafficking between spines and the
cell body. Some dendritic labeling was not associated with micro-
tubules; we speculate that this pool is coupled to actin filaments
in the dendritic shaft, as hinted by phalloidin/cortactin double
immunfluorescent labeling (Fig. 3D). In a number of cases, cor-
tactin (presumably in association with actin filaments) concen-
trated in the general vicinity of asymmetric synaptic contacts
onto dendritic shafts of putative interneurons (Fig. 5B).

Immunofluorescence and EM immunoperoxidase indicate
that axons and axon terminals do not contain cortactin; however,
after immunogold processing, occasional gold particles were seen
in axon terminals (Fig. 5D, star). To assess whether these particles
might represent unspecific labeling, we performed quantitative
analysis of the density of immunogold labeling in different sub-
cellular compartments. Nonspecific background labeling was
calculated by measuring particle densities over the nuclei of py-
ramidal cells, because these were consistently immunonegative
with immunofluorescence (see Materials and Methods). Labeling
over axon terminals was not significantly above this background
( p � 0.3) (Table 1). In contrast, dendritic shafts (8 times above
background) and spines (15 times above background) contained
significantly higher concentrations of gold particles than did nu-
clei ( p � 0.001).

Labeling was especially prominent in the spines of pyramidal
neurons. Gold particles in spines usually spared the immediate
region of the PSD (Fig. 5C, arrows). Within spines, gold particles
were often associated with electron-dense filamentous material
(Fig. 5D,E), suggesting an interaction between cortactin and the
cytoskeleton. In a number of cases, gold particles were seen in
association with coated pits and vesicles in spines and dendritic
shafts, although these profiles were uncommon.

Because cortactin has been found to increase spine size in
cultured neurons, we wondered whether larger spines in the in-
tact brain contain higher concentrations of cortactin. However,
examining 236 randomly selected spine profiles, we found a weak
negative correlation between labeling density and profile area
(r � �0.11). Random stochastic noise inherent in sampling from
small profiles is likely to lead to underestimates of correlation. To
reduce this noise, we examined correlations after grouping the
data into 5, 10, or 20 bins of profile area and found correlations
ranging from �0.43 to �0.50. Because work on cultured neurons
suggests that cortactin may be important for spine development,
we speculated that cortactin density might be positively corre-
lated with spine size during postnatal development. However, a
similar weakly negative relationship was also seen in immature
animals: in a sample of 102 profiles from P21 hippocampus, r �
�0.04, and in a sample of 106 profiles from P14, r � �0.18;
again, the magnitude of the correlation, but not its sign, increased
with binning.

Figure 3. Subcellular distribution of cortactin in stratum radiatum of CA1. A, Confocal mi-
croscopy shows cortactin (red) and the presynaptic marker synaptophysin (green). The apposi-
tion of puncta immunopositive for the two markers (arrows in inset) suggests that cortactin
may be postsynaptic. B, Double immunofluorescence with cortactin (red) and VGLUT1 (green).
The pattern of punctate apposition suggests that cortactin is associated with glutamatergic
synapses. C, Cortactin immunostaining was performed on material treated with the lipophilic
dye DiO (green), which stains the plasma membrane of scattered pyramidal cells. Inset, Cortac-
tin puncta (c1 ) can be seen within DiO-stained (c2 ) spines (merge; c3 , arrowheads). D, Double
fluorescence with cortactin (red) and phalloidin (green). Results suggest that cortactin localizes
profiles also rich in actin. Inset, Arrowheads pointing to both cortactin-positive (d1 ) and
phalloidin-positive (d2 ) sspines. Scale bars: A–C, 5 �m; D, 20 �m; insets, 5 �m.
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Distribution of cortactin within spines
To establish the organization of cortactin
within spines, we measured the distances
of gold particles from the outer leaflet of
the postsynaptic membrane, as described
previously (Valtschanoff and Weinberg,
2001). Consistent with hints from the
DAB material (Fig. 4D,E), cortactin label-
ing concentrated away from the PSD, in
the cytoplasmic core of the spine, with a
peak labeling density �100 –150 nm away
from the synaptic membrane (Fig. 6A, E).
This result must be treated cautiously:
preembedding techniques may fail to de-
tect antigen within the dense protein ma-
trix of the PSD (Lorincz et al., 2002). This
possibility concerned us because some
biochemical studies (Husi et al., 2000;
Peng et al., 2004) have reported cortactin
in the PSD, although others failed to de-
tect cortactin (Walikonis et al., 2000; Yo-
shimura et al., 2004).

To control for the possibility that
methodological limitations might have
prevented detection of cortactin in the
PSD, we used the same preembedding
technique to detect �-actinin, an actin-
binding protein previously demonstrated
with postembedding techniques to con-
centrate within the PSD (Wyszynski et al.,
1998). We found that particles coding for
�-actinin concentrated 50 –70 nm from
the PSD, significantly closer than cortactin to the synaptic plasma
membrane ( p � 0.001) (Fig. 6A, Œ). Examining these data fur-
ther, we found that 9% of the particles coding for �-actinin (17 of
188) lay �30 nm from the postsynaptic membrane (a region
clearly within the PSD), whereas none of the cortactin particles (0
of 122) lay in this region. It is thus unlikely that methodological
limitations prevented detection of cortactin within the PSD.
However, �10% of the gold particles were �60 nm from the
synaptic membrane, close enough to permit a direct interaction
with binding partners within the PSD, especially proteins like
Shank that lie in its inner layer (Valtschanoff and Weinberg,
2001). As an additional control, we examined the distribution of
synaptophysin (Fig. 6C, ‚), confirming that it was exclusively
presynaptic, lying mainly �100 nm from the synaptic mem-
brane. Thus, our data indicate that the major pool of cortactin lies
within the spine core and suggests that the modest fraction asso-
ciated with the synapse lies at the cytoplasmic fringe of the PSD.

It still remains possible from the above data that cortactin
accumulates close to the plasma membrane but away from the
PSD. To test this possibility, we measured the distance of gold
particles coding for cortactin to the spine plasma membrane (Fig.
6B). The virtually complete absence of cortactin within 30 nm of
the plasma membrane, in contrast to its accumulation �100 –150
nm away, confirmed that cortactin concentrates in the spine core.

Discussion
An accumulating body of evidence associates long-term synaptic
plasticity in the hippocampus with changes in the morphology of
dendritic spines (Segal and Andersen, 2000; Yuste and Bonhoef-
fer, 2001; Nikonenko et al., 2002; Harris et al., 2003), but the
cellular mechanisms leading from activation of glutamate recep-

tors to spine remodeling are not well understood. Spines are
highly enriched in actin (Fifkova and Morales, 1992; Roelandse et
al., 2003), and it has long been suspected that actin remodeling
contributes to synaptic plasticity (Fifkova and Delay, 1982). Re-
cent evidence demonstrates that interfering with actin polymer-
ization can block long-term potentiation and thus confirms that
changes in the actin cytoskeleton play an essential role in at least
some forms of synaptic plasticity (Kim and Lisman, 1999; Hal-
pain, 2000; Krucker et al., 2000; Fukazawa et al., 2003).

Proteins that regulate actin remodeling
The Arp2/3 complex, a key regulator of actin polymerization, is a
likely component of spine remodeling (Machesky and Insall,
1998; Svitkina and Borisy, 1999; Meyer and Feldman, 2002).
Arp2/3 functions efficiently only when activated; its best-known
activator is the Wiskott-Aldrich syndrome protein (WASP)
(Mullins, 2000), but cortactin can also activate Arp2/3-mediated
actin assembly (Uruno et al., 2001; Weaver et al., 2001). However,
cortactin has a special branch-stabilizing activity that WASP lacks
(Uruno et al., 2003). Thus, cortactin is likely to have different
cellular functions than the WASP protein family.

Complete stabilization of the actin network would prevent the
spine from functioning as a plastic receptive unit (Kasai et al.,
2003). Cortactin in model systems provides only partial stabili-
zation, thus permitting continued flexibility or growth (Uruno et
al., 2003); we suggest that cortactin plays an analogous role in
dendritic spines. Furthermore, cortactin moves from the spine
into the dendritic shaft after activation of NMDA receptors (Her-
ing and Sheng, 2003), a stimulus previously found to stabilize
spine morphology (Star et al., 2002). Intriguingly, profilin, an-

Figure 4. Electron micrographs showing immunoperoxidase labeling of cortactin in CA1. A, Reaction product is visible in the cell
bodies of two pyramidal neurons, associated with the endoplasmatic reticulum but sparing the Golgi complex. n, Nucleus. B–E, Reaction
product accumulates in spines (asterisks) and dendrites (d) but not in presynaptic terminals. Arrowheads in D and E point to the region of
immunostained spines, just beneath the PSD, that lacks immunostaining. Scale bars: A, 1 �m; B, 0.5 �m; C–E, 0.25 �m.
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other regulator of actin polymerization (Finkel et al., 1994),
moves into the spine head after NMDA receptor activation (Ack-
ermann and Matus, 2003). Because profilin acts to stabilize spine
morphology, we suggest that the NMDA receptor-mediated ex-
change of profilin for cortactin may represent an activity-
dependent switch regulating actin stability.

Spine morphology and cortactin
Recent experiments in cultured neurons (Hering and Sheng,
2003) suggest a role for cortactin in spine development. Cortactin
can bind to Shank, a scaffold protein previously shown to in-
crease spine size. However, this association is apparently not the
primary mediator of the cortactin effect, because Shank overex-
pression increased spine head thickness, whereas cortactin over-

expression increased spine length; fur-
thermore, cortactin mutants unable to
bind to Shank also increase spine length
(Hering and Sheng, 2003). Our findings
extend this work by showing that cortactin
concentrates in spines in the mature brain.
Unexpectedly, our data suggest that cor-
tactin is more concentrated in small
spines, at variance with results from cul-
tured neurons (Hering and Sheng, 2003).
Cortactin might play functionally differ-
ent roles in developing and mature neu-
rons, but we also saw a negative correla-
tion in spines from the immature
hippocampus. Overexpression experi-
ments may not reflect the physiological
function of cortactin in vivo; alternatively,
one could speculate that small spines con-
taining high concentrations of cortactin
have been “marked” for subsequent en-
largement. Although purely observa-
tional, our results are consistent with Ka-
sai’s model (Kasai et al., 2003; Matsuzaki
et al., 2004) in that small spines, presum-
ably available for plasticity-dependent re-
modeling, contain more cortactin than
large, presumably stable spines.

Distribution of cortactin within spines
Our data show that cortactin concentrates
at a considerable distance (�100 –150
nm) from the synapse, suggesting that it
interacts with actin in the spine core, away
from the PSD. This apparent exclusion
was not only from the immediate vicinity
of the postsynaptic membrane but also at
nonsynaptic membranes. That this is un-

likely to reflect methodological limitations is supported by our
results with �-actinin; moreover, using the same technique, we
can detect other proteins that concentrate close to the membrane
and avoid the spine core (Racz et al., 2004). We propose that the
spine core represents a previously unrecognized domain playing
a special role in cytoskeletal organization and/or spine
remodeling.

The present results do not exclude that cortactin may bind to
Shank in the PSD. We detected a small amount of cortactin at the
cytoplasmic fringe of the PSD, and previous work from our lab-
oratory found Shank to concentrate in the cytoplasmic side of the
PSD (Valtschanoff and Weinberg, 2001). Together with previous
work (Naisbitt et al., 1999; Husi et al., 2000; Peng et al., 2004), the
present data suggest that although a small amount of cortactin
lies close to the PSD, it is only weakly associated with it. Thus,
unlike the Shank–PSD-95–GKAP (guanylate kinase-associated
protein) complex, cortactin is unlikely to be an integral compo-
nent of the PSD. Our data are consistent with the presence of two
distinct pools of cortactin within the spine, a small synaptic pool
and a larger core pool, only indirectly coupled to synaptic activ-
ity. We speculate that these two pools have distinct functions: the
core pool is situated to mediate changes in spine shape, whereas
the synaptic pool might help to modify the composition or shape
of the PSD in response to specific patterns of activity (Desmond
and Levy, 1986; Geinisman et al., 2000; Malinow and Malenka,
2002; Marrone and Petit, 2002; Harris et al., 2003).

Figure 5. Preembedding immunogold labeling for cortactin in stratum radiatum of CA1. A, B, Electron micrographs show
immunopositive dendrites (d). Most of the silver-enchanced gold particles visible in the apical dendrite in A are associated with
microtubules. Gold particles in the dendrite of a possible interneuron ( B) concentrate close to asymmetric synaptic appositions. C,
Low-magnification view of synaptic neuropil. Arrows point to three immunolabeled spines; d marks an immunopositive dendritic
shaft. D, E, High-magnification views showing immunopositive spines. Gold particles extend deep into the spine core (star in D
indicates axon terminal with a gold particle). Scale bars: A–C, 0.5 �m; D, E, 0.2 �m.

Table 1. Densities of gold particles coding for cortactin in different subcellular
compartments

Density (particles/�m2)

Nucleus 0.66 � 0.05 (n � 11)
Axon terminal 1.13 � 0.45 (n � 30)
Dendritic shaft 5.25 � 0.50 (n � 14)*
Spine 9.92 � 1.25 (n � 44)*

Randomly selected profiles identifiable as axon terminals, dendritic shafts, or spines were included in the analysis,
regardless of whether they were immunopositive. All data were collected from CA1 stratum radiatum, 4.0 mm
caudal to bregma. To assess noise, nuclear profiles from the stratum pyramidale were also examined. Only dendritic
shafts and spines showed significant differences from the nuclear background. *p � 0.001; two-sided t test
(mean � SE; n � number of profiles).
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Cortactin in dendrites
We found that cortactin is also concentrated in dendritic shafts,
although to a lesser degree than in spines. This may represent a
transport pool of cortactin en route from the cell body to spines.
However, cortactin has also been implicated in the morphogen-
esis of dendritic trees: �-catenin can bind to cortactin (Weed et
al., 2000); by activating Arp2/3-induced actin polymerization,
this catenin– cortactin complex induces process elongation, at
least in cultured neurons. In contrast, when �-catenin (which lies
at the plasma membrane) is tyrosine phosphorylated, the den-
dritic tree becomes highly branched, apparently because the
phosphorylation prevents the catenin– cortactin association
(Martinez et al., 2003). Thus, our data raise the possibility that
cortactin may also play a structural role in mature dendrites.
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