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SUMMARY In recent years, the worldwide spread of the so-called high-risk clones
of multidrug-resistant or extensively drug-resistant (MDR/XDR) Pseudomonas
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aeruginosa has become a public health threat. This article reviews their mecha-
nisms of resistance, epidemiology, and clinical impact and current and upcoming
therapeutic options. In vitro and in vivo treatment studies and pharmacokinetic
and pharmacodynamic (PK/PD) models are discussed. Polymyxins are reviewed as
an important therapeutic option, outlining dosage, pharmacokinetics and phar-
macodynamics, and their clinical efficacy against MDR/XDR P. aeruginosa infec-
tions. Their narrow therapeutic window and potential for combination therapy
are also discussed. Other “old” antimicrobials, such as certain �-lactams, amin-
oglycosides, and fosfomycin, are reviewed here. New antipseudomonals, as well
as those in the pipeline, are also reviewed. Ceftolozane-tazobactam has clinical
activity against a significant percentage of MDR/XDR P. aeruginosa strains, and
its microbiological and clinical data, as well as recommendations for improving
its use against these bacteria, are described, as are those for ceftazidime-
avibactam, which has better activity against MDR/XDR P. aeruginosa, especially
strains with certain specific mechanisms of resistance. A section is devoted to re-
viewing upcoming active drugs such as imipenem-relebactam, cefepime-
zidebactam, cefiderocol, and murepavadin. Finally, other therapeutic strategies,
such as use of vaccines, antibodies, bacteriocins, anti-quorum sensing, and bac-
teriophages, are described as future options.

KEYWORDS Pseudomonas aeruginosa

INTRODUCTION

There are several major reasons why the emergence and dissemination of
multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas

aeruginosa strains have recently become issues of public health concern. First, P.
aeruginosa causes severe infections, particularly in health care settings and in
immunocompromised patients. Second, it has an outstanding capacity for being
selected and for spreading antimicrobial resistance in vivo (1, 2). Third, the suc-
cessful worldwide spread of the so-called “high-risk” clones of P. aeruginosa poses
a threat to global public health that needs to be studied and managed with urgency
and determination (3).

The lack of therapeutic alternatives means that infections caused by these
antibiotic-resistant bacteria pose a considerable threat regarding morbidity and
mortality worldwide. The impact of inadequate therapy in these infections is
significant; indeed, the World Health Organization reported in 2017 that
carbapenem-resistant P. aeruginosa was listed in the “critical” group for which new
antibiotics were urgently required (4).

Recent years have witnessed an increasing prevalence of MDR and XDR P. aerugi-
nosa strains, with rates of between 15% and 30% in some geographical areas (5–7).
Most countries in Europe report rates of resistance of more than 10% for all antimi-
crobial groups under surveillance (8). Combined resistance is also common in P.
aeruginosa. In 2015, the European Centers for Disease Prevention and Control stated
that 13.7% of P. aeruginosa isolates were resistant to at least three antimicrobial groups
and 5.5% to all five antimicrobial groups under surveillance (EARS-Net) (8). According
to data from the United States, MDR P. aeruginosa is the cause of 13% of severe health
care-associated infections (9).

The solutions to this crisis are to allocate more resources to basic and clinical
research and to infection control and antimicrobial stewardship, to develop new
antimicrobials, and to optimize the use of those that are currently available. This article
reviews the current definitions and mechanisms of multidrug resistance in P. aeruginosa
and the epidemiology of high-risk clones disseminated worldwide. Based on the
information available, current and upcoming therapeutic options are reviewed, includ-
ing clinical studies and, where these are lacking, in vitro and animal studies. It should
be noted that most clinical studies have methodological limitations and that interpre-
tation of the evidence is difficult.
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OVERVIEW OF P. AERUGINOSA RESISTANCE MECHANISMS
Intrinsic P. aeruginosa Resistance (Intrinsic Resistome)

P. aeruginosa has a remarkable array of mechanisms of antibiotic resistance in its
arsenal, including multiple chromosomal determinants as well as the complex regula-
tory pathways involved in intrinsic and adaptive resistance (1, 2, 10–13). The mecha-
nisms thought to have the greatest effect on the lower natural susceptibility of P.
aeruginosa compared to other Gram-negative microorganisms are inducible AmpC
cephalosporinase expression, constitutive (MexAB-OprM) and inducible (MexXY) efflux
pump production, and low outer membrane permeability. Since the aminopenicillins
and a number of cephalosporins (cefoxitin, in particular) are strong inducers of expres-
sion and are also efficiently hydrolyzed by AmpC, inducible �-lactamase production has
a key role in the natural resistance of P. aeruginosa to these agents. Inducible AmpC
expression plays a decisive role in the natural reduced susceptibility of P. aeruginosa to
imipenem, since the hydrolytic stability of this antibiotic is to some degree affected by
its high inducer potency. Two other chromosomal �-lactamases, the OXA enzyme
OXA-50/PoxB (14, 15) and the more recently described imipenemase (PA5542) (16), may
also have an impact on intrinsic �-lactam susceptibility levels, although their role in
intrinsic and/or acquired resistance requires further elucidation. Constitutive expression
of the MexAB-OprM efflux pump plays a major role in lower basal levels of susceptibility
to the vast majority of �-lactams (except for imipenem) and fluoroquinolones, whereas
inducible production of MexXY has a major effect on the intrinsic low-level resistance
to aminoglycosides (17). In addition to these well-known resistance determinants, an
analysis of mutant libraries resulting from whole-genome screening has revealed a
large set of genes, referred to collectively as the intrinsic resistome, which have an
effect on antibiotic susceptibility (2, 16, 18, 19).

Acquisition of Resistance through Chromosomal Gene Mutations (Mutational
Resistome)

Apart from its vast intrinsic resistome, P. aeruginosa shows an outstanding ability to
develop further antimicrobial resistance to all available antibiotics via the acquisition of
chromosomal mutations. Table 1 provides a summary of the main genes known to
increase resistance levels and thus shape the P. aeruginosa mutational resistome (3).

Overproduction of chromosomal AmpC cephalosporinase, involving a broad range
of genes belonging to the complex regulatory cell wall recycling pathways, is probably
the most common mutation-driven �-lactam resistance mechanism. It has been de-
tected in over 20% of P. aeruginosa clinical isolates (13, 20, 21). Mutational inactivations
of dacB (which encodes PBP4) and ampD (which encodes an N-acetylmuramyl-L-alanine
amidase) are known to be the most common mechanisms of ampC hyperproduction
and �-lactam resistance (21, 22). Inactivation of PBP4 has also been demonstrated to
activate the CreBC/BlrAB two-component system, increasing resistance levels further
(21). Specific mutations leading to modification of the conformation of the transcrip-
tional regulator AmpR, which regulates ampC overexpression and �-lactam resistance,
have also been detected in clinical strains. These mutations include D135N, docu-
mented in species other than P. aeruginosa, and the R154H mutation, associated with
the epidemic MDR/XDR ST175 high-risk clone (13). Mutations in various other genes
have been found to upregulate ampC, including those encoding other amidases
(AmpDh2/AmpDh3), other penicillin-binding proteins (PBP5 or PBP7), lytic transglyco-
sylases (MltB and SltB1), MPL (UDP-N-acetylmuramate:L-alanyl-�-D-glutamyl-meso-
diaminopimelate ligase), and NuoN (NADH dehydrogenase I chain N). Nevertheless,
further analysis of their effect on �-lactam resistance in natural strains is still required
(13).

Apart from AmpC hyperproduction, recent studies have highlighted the fact that
mutations leading to the structural modification of AmpC may be the cause of
resistance to �-lactams, including the novel �-lactam–�-lactamase inhibitor combina-
tions ceftolozane-tazobactam and ceftazidime-avibactam (23–26). Another study de-
tected several amino acid variants in AmpC in a small proportion (approximately 1%)
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of P. aeruginosa clinical isolates that were linked to ceftolozane-tazobactam and
ceftazidime-avibactam resistance (27). To date, over 300 Pseudomonas-derived cepha-
losporinase (PDC) variants have been reported, some of which confer increased
ceftolozane-tazobactam and ceftazidime-avibactam resistance. An updated database of
PDC variants is available free from Antonio Oliver’s laboratory at https://arpbigidisba
.com. In addition to �-lactamases, there is growing evidence of the role of PBP
modification in �-lactam resistance, especially mutations in PBP3 (encoded by ftsI).
Recent data from cystic fibrosis (CF) patients (28, 29), epidemic strains (30, 31), and in
vitro studies (32, 33) have shown that specific mutations in PBP3 play a role in the
emergence of �-lactam resistance. Those most frequently reported are R504C/R504H
and F533L, located in domains involved in the stabilization of the �-lactam–PBP3
inactivation complex (34).

Loss of the carbapenem-specific porin OprD may be the result either of inactivating
mutations/insertion sequences in the oprD gene or of remote mutations that upregu-
late efflux system MexEF-OprN or CzcCBA with concomitant downregulation of oprD

TABLE 1 Main genes known to be involved in P. aeruginosa mutational antibiotic resistance

Gene(s) Resistance mechanism Antibiotics affected

gyrA Quinolone target modification (DNA gyrase) Fluoroquinolones
gyrB Quinolone target modification (DNA gyrase) Fluoroquinolones
parC Quinolone target modification (DNA topoisomerase IV) Fluoroquinolones
parE Quinolone target modification (DNA topoisomerase IV) Fluoroquinolones
pmrA, pmrB, phoQ, cprS,

colR, colS
Lipopolysaccharide modification (addition of the

4-amino-4-deoxy-L-arabinose moiety
to the lipid A portion)

Polymyxins

parR Lipopolysaccharide modification (addition of the
4-amino-4-deoxy-L-arabinose moiety
to the lipid A portion)

Polymyxins

OprD downregulation Imipenem, meropenem
MexEF-OprN hyperproduction Fluoroquinolones
MexXY hyperproduction Fluoroquinolones, aminoglycosides, cefepime

parS Lipopolysaccharide modification (addition of the
4-amino-4-deoxy-L-arabinose moiety
to the lipid A portion)

Polymyxins

OprD downregulation Imipenem, meropenem
MexEF-OprN hyperproduction Fluoroquinolones
MexXY hyperproduction Fluoroquinolones, aminoglycosides, cefepime

mexR, nalC, nalD MexAB-OprM hyperproduction Fluoroquinolones, ceftazidime, cefepime,
piperacillin-tazobactam, meropenem,
ceftazidime-avibactam

nfxB MexCD-OprJ hyperproduction Fluoroquinolones, cefepime

mexS MexEF-OprN hyperproduction Fluoroquinolones
OprD downregulation Imipenem, meropenem

mexT MexEF-OprN hyperproduction Fluoroquinolones
OprD downregulation Imipenem, meropenem

cmrA, mvaT, PA3271 MexEF-OprN hyperproduction Fluoroquinolones
mexZ, PA5471.1, amgS MexXY hyperproduction Fluoroquinolones, aminoglycosides, cefepime
oprD OprD porin inactivation Imipenem, meropenem
ampC AmpC structural modification Ceftolozane-tazobactam, ceftazidime-avibactam
ampD, ampDh2, ampDh3,

ampR, dacB, mpl
AmpC hyperproduction Ceftazidime, cefepime, piperacillin-tazobactam

ftsI �-Lactam target modification (PBP3) Ceftazidime, cefepime, piperacillin-tazobactam,
ceftolozane-tazobactam, ceftazidime-avibactam,
meropenem

fusA1 Aminoglycoside target modification (elongation factor G) Aminoglycosides
glpT Inactivation of transporter protein GlpT Fosfomycin
rpoB Rifampin target modification, RNA polymerase �-chain Rifampin

Horcajada et al. Clinical Microbiology Reviews

October 2019 Volume 32 Issue 4 e00031-19 cmr.asm.org 4

https://arpbigidisba.com
https://arpbigidisba.com
https://cmr.asm.org


expression. Mutational inactivation or downregulation of the OprD porin (along with
inducible AmpC production) drives imipenem resistance and decreased meropenem
susceptibility. The prevalence of imipenem resistance is frequently above 20%, and
most of the isolates involved are OprD deficient (20, 35). OprD inactivation frequently
acts synergistically with AmpC overexpression to drive resistance to all the classic
antipseudomonal �-lactams (36). Mutational overexpression of one of the four major
efflux pumps of P. aeruginosa also plays a major role in mutation-driven resistance (17,
20, 37, 38). Overexpression of MexAB-OprM and MexXY is common (10% to 30%)
among clinical isolates, whereas the prevalence of MexCD-OprJ and MexEF-OprN
overexpression is considerably lower (�5%). MexAB-OprM has the widest substrate
spectrum, and mutation-driven overexpression of this efflux pump results in reduced
susceptibility to fluoroquinolones and all �-lactams (except imipenem). The combina-
tion of MexAB-OprM overexpression and OprD inactivation is one of the major causes
of resistance to meropenem among clinical strains (35). Apart from its role in intrinsic
aminoglycoside resistance, mutation-driven hyperproduction of MexXY is a common
driver of resistance to cefepime in clinical strains (39). MexCD-OprJ or MexEF-OprN
hyperproduction is less prevalent and mainly affects fluoroquinolones, although the
mutations (mexT/mexS) that drive MexEF-OprN hyperproduction also determine resis-
tance to imipenem due to the repression of oprD (40). Overexpression of MexCD-OprJ,
which is particularly prevalent in chronic infections, also drives increased cefepime
MICs, despite determining increased susceptibility to several �-lactams and aminogly-
cosides (41).

Apart from efflux pump overexpression, P. aeruginosa fluoroquinolone resistance
frequently arises from mutations in DNA gyrases (GyrA and GyrB) and type IV topo-
isomerases (ParC and ParE) (42). The prevalence of fluoroquinolone resistance varies
according to geography but is over 30 to 40% in multiple countries. Studies have
recently shown that, in addition to MexXY overexpression and horizontally acquired
mechanisms (see below), aminoglycoside resistance may result from mutations in
fusA1, encoding elongation factor G, and indeed, specific FusA1 mutations have been
shown to confer aminoglycoside resistance in vitro (43, 44) and in clinical strains,
particularly among CF patients (29, 44, 45). The role of specific fusA1 mutations in
resistance has also been demonstrated using site-directed mutagenesis (46).

Finally, while the prevalence of colistin resistance remains relatively low (�5%), it
has grown recently, possibly because of increased use of colistin as a last-resort agent
for the treatment of infections caused by MDR/XDR strains. Colistin resistance fre-
quently results from the modification of the lipid A moiety of lipopolysaccharide (LPS)
following the addition of 4-amino-4-deoxy-L-arabinose (47). The mutations involved are
frequently linked to the two-component regulatory systems PmrAB and PhoPQ, which
lead to activation of the arnBCADTEF operon. More recently, it has been shown that
mutations in the ParRS two-component regulator not only drive colistin resistance by
activating the arnBCADTEF operon but also lead to an MDR profile through overex-
pression of MexXY and downregulation of OprD (12). Two other two-component
regulators (ColRS and CprRS) are also known to be involved in polymyxin resistance
(48).

Horizontally Acquired Resistance Mechanisms (Horizontally Acquired Resistome)

In addition to mutational resistance, which is relatively frequent, transferable resis-
tance in P. aeruginosa is another area of increasing concern. Indeed, there is a growing
prevalence worldwide of the most troublesome of transferable �-lactamases, the
extended-spectrum �-lactamases (ESBLs) and carbapenemases (especially class B
carbapenemases, or metallo-�-lactamases [MBLs]), although the distribution is not
uniform and ranges from below 1% to nearly 50%, depending on the hospital
and geographic area (49). Furthermore, the challenge of detecting transferable
�-lactamases in P. aeruginosa may mean that their prevalence has been underesti-
mated in several areas (50). The genes encoding ESBLs and carbapenemases are
generally found in class 1 integrons along with determinants of aminoglycoside
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resistance. These integrons are often inserted into transposable elements located on
the bacterial chromosome, although the involvement of conjugative elements is in-
creasingly reported (51–54). Transferable �-lactamases detected so far in P. aeruginosa
were recently reviewed by Potron et al. (55). The most frequently reported ESBLs in P.
aeruginosa include those in class D (such as OXA-2 or OXA-10 variants) and class A (PER,
VEB, GES, BEL, and PME). Class A ESBLs typically documented in the order Enterobac-
teriales (such as TEM, SHV, or CTX-M �-lactamases) are infrequently documented in P.
aeruginosa. With respect to the carbapenemases, MBLs are by far the most prevalent in
P. aeruginosa, with the VIM and IMP types being the most frequent and the most
geographically widespread. The SPM MBL is prevalent in Brazil, and NDM, GIM, and FIM
are detected only occasionally. Finally, the worldwide prevalence of class A carbapen-
emases in P. aeruginosa is low, although GES and KPC enzymes have been detected in
several countries (54).

Transferable aminoglycoside resistance is most frequently driven by aminoglycoside-
modifying enzymes encoded in class 1 integrons. Those most commonly described in
P. aeruginosa are acetyltransferases from the AAC(3=) (gentamicin) and AAC(6=) (tobra-
mycin including amikacin or not) groups and nucleotidyltransferase ANT(2=)-I (genta-
micin and tobramycin) (1). Nevertheless 16S rRNA methyltransferases (such as Rmt or
Arm), which confer resistance to all aminoglycosides on the market, including the novel
plazomicin, also represent major emerging threats (55). Transferable fluoroquinolone
resistance driven mainly by Qnr determinants such as QnrVC1 has occasionally been
detected (56). A very recent study has also reported the occurrence of plasmid-
mediated quinolone resistance apparently driven by a novel phosphotransferase, CrpP
(57).

The novel combinations ceftolozane-tazobactam and ceftazidime-avibactam are
known to be relatively stable against AmpC hydrolysis (58, 59), relying on the stability
of ceftolozane against hydrolysis by AmpC in the case of ceftolozane-tazobactam and
on the inhibitory activity of avibactam against AmpC in the case of ceftazidime-
avibactam. However, recent in vitro and in vivo data indicate that the development of
resistance to both agents may be the result of a combination of mutations leading to
hyperproduction and the structural modification of AmpC (23, 25–27). Available in vitro
and in vivo data also suggest that specific PBP3 mutations may reduce susceptibility
to both combinations. On the other hand, overexpression of different efflux pumps
seems to affect ceftazidime-avibactam susceptibility more than that of ceftolozane-
tazobactam (27, 60).

With respect to acquired �-lactamases, neither ceftolozane-tazobactam nor ceftazidime-
avibactam shows activity against MBL-producing strains. However, ceftazidime-
avibactam, but not ceftolozane-tazobactam, may show activity against isolates produc-
ing class A carbapenemases such as GES enzymes (61). Likewise, the activity of
ceftolozane-tazobactam and ceftazidime-avibactam against ESBL-producing P. aerugi-
nosa isolates is variable, but it is generally favorable in the case of ceftazidime-
avibactam. Finally, extended-spectrum mutations in horizontally acquired OXA-type
�-lactamases may lead to the emergence of resistance to both agents (25, 62, 63).

EPIDEMIOLOGY OF MULTIDRUG-RESISTANT P. AERUGINOSA: DEFINITIONS AND
PREVALENCE

Over the last decades, various definitions of MDR P. aeruginosa profiles have been
used, although the consensus definition that is probably most widely used at present
is the one published by Magiorakos et al. (64) in 2012. Multidrug resistance (MDR) was
defined as nonsusceptibility (intermediate plus resistant [I�R]) to at least one agent in
at least 3 antibiotic classes, extensive drug resistance (XDR) as nonsusceptibility to at
least one agent in all but 1 or 2 antibiotic classes, and pan-drug resistance (PDR) as
nonsusceptibility to all agents in all classes. The following classes and antibiotics were
recommended for testing: antipseudomonal cephalosporins (ceftazidime and cefepime),
antipseudomonal penicillins plus �-lactamase inhibitors (ticarcillin-clavulanate and
piperacillin-tazobactam), monobactams (aztreonam), antipseudomonal carbapenems
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(imipenem, meropenem, and doripenem), aminoglycosides (gentamicin, tobramycin,
amikacin, and netilmicin), fluoroquinolones (ciprofloxacin and levofloxacin), phos-
phonic acids (fosfomycin), and polymyxins (colistin and polymyxin B). While this
proposal was certainly useful for the harmonization of definitions of P. aeruginosa
resistance profiles, several other aspects remain to be considered. First, even if a single
definition is used, the result will vary depending on whether EUCAST or CLSI break-
points are used. Second, the comprehensive application of the proposed definition is
limited by the lack of clinical breakpoints (both CLSI and EUCAST) for one of the agents
(fosfomycin). Similarly, until 2019, EUCAST breakpoints for aztreonam considered P.
aeruginosa intrinsically nonsusceptible to this agent and therefore not applicable to
MDR/XDR/PDR definitions based on acquired resistance. Finally, the current definition
does not consider recently introduced antipseudomonal agents such as ceftazidime-
avibactam or ceftolozane-tazobactam.

Regardless of the question of definitions mentioned above and the mechanisms
involved, the prevalence of MDR P. aeruginosa is probably increasing worldwide,
although with major geographical differences. The prevalence of MDR P. aeruginosa has
increased over the last few decades and is now within the 15 to 30% range in multiple
areas (5–7, 56). Furthermore, a significant proportion of MDR strains also meet the
criteria for classification as XDR, which further restricts the treatment options available.
As an example, a recent (2017) large-scale (51 hospitals) multicenter study of P.
aeruginosa infections performed in Spain showed that 26% of isolates were MDR
and 65% of those (17% of all isolates) met the criteria for XDR, and most were
susceptible only to colistin including amikacin or not (56). Indeed, in many hospitals
worldwide, colistin-only-sensitive (COS) profiles are not uncommon and pan-drug
resistance has already been documented (65, 66). However, resistance to the novel
antipseudomonal agents ceftolozane-tazobactam and ceftazidime-avibactam was
not considered in most of these studies. While the overall prevalence of resistance
to these new therapeutic options is below 10%, there is considerable geographical
variation depending on the prevalence of acquired �-lactamases such as ESBLs or
carbapenemases (31, 66–70).

Epidemic High-Risk Clones

An analysis of the molecular epidemiology of P. aeruginosa isolates obtained from
hospital-acquired infections, CF patients, or the environment typically reveals high
clonal diversity, with most isolates being linked to unique genotypes, However, a closer
look shows that this is true for antibiotic-susceptible isolates but not for those showing
MDR/XDR phenotypes. Indeed, there have been multiple epidemic outbreak reports
and alerts of MDR/XDR strains in the hospital environment for decades. More recent
studies have provided further evidence of the MDR/XDR global clones, referred to as
“high-risk” clones, disseminated in several hospitals worldwide (71). P. aeruginosa
high-risk clones were recently reviewed (3). A map of the worldwide distribution of the
most prevalent high-risk clones is provided in Fig. 1 and a summary of their charac-
teristics in Table 2.

With regard to the prevalence and impact of high-risk clones, a 2008 –2009 multi-
center study of P. aeruginosa bacteremia carried out in Spain revealed that the vast
majority of susceptible isolates were represented by single genotypes but that clonal
diversity was much lower among MDR and, especially, XDR strains (72, 73). Seventy-
three of 81 (90%) XDR isolates in fact were found to belong to just 3 clones, which were
those of the major international MDR/XDR high-risk clones: ST175 (62), ST111 (9), and
ST235 (5, 10). In a multicenter study performed 7 years later, ST175 continued to be
the most common high-risk clone (68% of XDR isolates) (31). The same pattern was
found in several studies worldwide, with most of the MDR/XDR isolates being linked
to these and a few other clones (74–78). Of the three major high-risk clones, ST235,
associated with serotype O11, is without doubt the most widespread, being found
in many countries across all five continents (3, 79). ST111 (serotype O12) also has a
worldwide distribution and has so far been documented on every continent except
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Oceania. Finally, ST175 (serotype O4) is widely distributed in several European
countries. Interestingly, even though susceptible isolates have probably been
studied less than MDR isolates, the available information suggests that these clones
are infrequent among susceptible isolates. Apart from the 3 major high-risk clones,
ST277 is of particular significance, being widely disseminated in Brazil (79). ST244 is
also frequently detected in several countries but is not always linked to MDR/XDR
profiles (72, 80). Other recently reported emerging high-risk clones include ST308
and ST395 (81, 82).

The link between high-risk clones and horizontally acquired resistance mechanisms
is overwhelming, and most ESBL- or MBL-producing P. aeruginosa isolates belong to a
few clones, with ST235 being the most frequent, followed by ST111 (3). A recent
genomic analysis suggested that the specific presence in ST235 of DprA, a determinant
involved in homologous recombination present in transformable species, likely in-
creases the ability of this high-risk clone to acquire and maintain foreign resistance
elements at a higher rate than other P. aeruginosa clones (79). A significant relationship
between high-risk clones and mutation-driven resistance mechanisms has also been
reported. For example, the mechanisms responsible for the XDR phenotype of the
ST175 clone, which is widespread in Spanish and French hospitals, are combinations of
specific mutations in AmpR (G154R), OprD (Q142X), and MexZ (G195E) and 3 quinolone-
resistance determining region (QRDR) mutations (GyrA T83I and D87N and ParC S87W)
(30). An analysis of the resistomes of large worldwide collections of P. aeruginosa strains
also showed that mutation-driven mechanisms were frequent among ST111 and ST235
clones; most of them had QRDR mutations (frequently GyrA T83I and ParC S87L) and
often showed a mutated oprD (31, 83, 84).

FIG 1 World distribution (A) and European distribution (B) of ST235, ST111, and ST175 based on published data. (Reproduced from reference 3 with permission
from Elsevier.)

TABLE 2 Characteristics of the three major global P. aeruginosa high-risk clones

Characteristic ST111 ST175 ST235

O-antigen serotype O12 O4 O11
Type III secretion system ExoS ExoS ExoU
Virulencea �� � ���
Worldwide distribution �� � ���
Transferable resistance �� � ���
Mutational resistance �� ��� ��

aCapacity to produce more severe and/or higher mortality in acute infections according to results from
animal models and clinical experience (5, 60, 65, 85, 86).

Horcajada et al. Clinical Microbiology Reviews

October 2019 Volume 32 Issue 4 e00031-19 cmr.asm.org 8

https://cmr.asm.org


The pathogenicity of epidemic high-risk clones is another major issue that should be
taken into account (85). Current evidence suggests that virulence among the different
high-risk clones is variable. We considered virulence as the capacity to produce more
severe infections and/or higher mortality in acute infections according to results with
animal models and clinical experience (5, 61, 66, 86, 87). These studies specifically show
that the ExoU� ST235 high-risk clone is highly virulent and associated with very high
mortality, whereas the virulence of ST175 appears to be particularly low. Apart from
virulence, determining which factors drive the success of the high-risk clones is another
major issue that certainly needs clarification. A recent study evaluated a panel of eight
biological characteristics potentially associated with the success of these clones
(73). Surprisingly, the three major high-risk clones (ST111, ST175, and ST235) were
found to be defective in the three types of motility and pigment (pyoverdine and
pyocyanin) production and also showed reduced fitness in vitro. On the other hand,
high-risk clones displayed increased spontaneous mutant frequencies and biofilm
growth. Other recent studies have demonstrated enhanced biofilm formation and
decreased motility in high-risk clones (88). Hence, there are similarities between
these biological markers defined for P. aeruginosa high-risk clones and those
typically resulting from adaptation to chronic infection (73). Nevertheless, further
analysis, including information from whole-genome sequencing (WGS) (30, 31, 73,
84, 89, 90), is needed for a more complete understanding of the factors driving the
success of high-risk clones.

CLINICAL IMPACT OF MULTIDRUG RESISTANCE IN P. AERUGINOSA

One of the main consequences of multidrug resistance is the difficulty of selecting
an appropriate empirical antibiotic treatment. Patients with infections due to MDR/XDR
pathogens are at an increased risk of receiving inadequate initial antimicrobial therapy
(91, 92). Delays in receipt of effective antibiotic therapy are associated with worse
outcomes and higher mortality rates in patients with P. aeruginosa bloodstream
infections (93–96), and MDR/XDR patterns are also associated with a greater likelihood
of inadequate empirical treatment in these infections (97–100). Furthermore, directed
therapies used for MDR/XDR infections are usually second- or third-line antimicrobial
agents and are thus less effective than those used to treat infections caused by
susceptible strains (85). Nevertheless, the direct relationship between multidrug resis-
tance and clinical outcome remains unclear (97, 101, 102). Although it is generally
assumed that infections caused by MDR bacteria are associated with poor outcomes
(94, 97, 103–105), infection outcomes depend not only on delays in receiving adequate
antimicrobial therapy or use of suboptimal directed therapy but also on factors
associated with the host or the pathogen (5, 85, 98, 106–108). With respect to the host,
MDR/XDR P. aeruginosa colonization and infection usually occur in patients with
multiple underlying diseases, which may explain the worse outcome (109, 110). Con-
sequently, mortality in these patients may be due to severe preexisting comorbidities
(111, 112). With respect to the pathogen, the biological implications of antibiotic
resistance for virulence in P. aeruginosa is currently a hot topic (85, 86). It is generally
assumed that acquisition of resistance mechanisms is associated with fitness costs that
lead to decreased virulence in MDR/XDR strains (86, 113–117). Nevertheless, it has also
been reported that some resistance mutations are not associated with fitness costs
(115, 118), and other reports have claimed that MDR strains would be able to develop
compensatory or suppressor mutations that allow them to recover their initial fitness so
that, in the end, they do not lose virulence (113–115, 119). As mentioned previously, P.
aeruginosa has a large number of virulence factors (5, 85, 108, 120). One of the most
important virulence determinants is the type III secretion system (TTSS) (5, 120–122),
which injects effector cytotoxins (ExoS, ExoT, ExoU, and/or ExoT) into the host cells (5,
120, 122). ExoU is the most potent of the four effector exotoxins identified, and its
expression correlates with a poor prognosis (5, 85, 120–123). A recent clinical study
conducted in patients with P. aeruginosa bacteremia demonstrated that the exoU�

genotype was associated with increased early mortality and suggested that it would be
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a useful prognostic biomarker in P. aeruginosa infections (5). Apart from the TTSS, other
virulence determinants of P. aeruginosa have recently been described, such as toxin
ExlA, which induces plasma membrane disruption of host cells, conferring increased
virulence to the bacterium (108, 124). The HigB/HigA toxin/antitoxin system may
influence some virulence factors of P. aeruginosa, such as pyocyanin, swarming, and
biofilm formation (125). With respect to the impact of multidrug resistance on the
virulence of P. aeruginosa, Peña et al. (5) found an association between some TTSS
genotypes and antibiotic resistance patterns, with the exoU� genotype being less
frequent in MDR strains (5). Other studies also suggest an association between the
TTSS and certain resistance profiles (115, 122, 123). The exoU� genotype is present
in only one of the three most prevalent high-risk clones worldwide, ST235 (5, 86).
As previously noted, this high-risk clone is more virulent than the other prevalent
clones, ST175 and ST111 (85, 86) (Table 2). Several experimental and clinical studies,
however, suggest potentially reduced virulence in MDR/XDR P. aeruginosa (5, 73, 86,
117, 126–129). Experimental in vitro studies have shown that MDR strains have a
lower growth rate and are defective in virulence determinants such as bacterial
motility or pigment production (73, 86, 117). Experimental in vivo animal models
have demonstrated that MDR/XDR P. aeruginosa strains are less able to produce
infection, an inflammatory response, and mortality than susceptible strains (86, 126,
127, 129). Clinical studies also support the impaired virulence of MDR P. aeruginosa
strains (5, 100, 107, 111, 130), and some of them showed that infections caused by
MDR/XDR strains were not associated with higher mortality, even though they were
more frequently managed with delayed adequate therapy (5, 98–100, 111, 114,
131). Taking these studies into account, we conclude that XDR strains may be
associated with fitness costs and reduced virulence, but the data should be
interpreted with caution, because, as mentioned above, at least one of the inter-
national XDR high-risk clone strains maintains high virulence regardless of its
resistance profile. More studies are needed to clarify this.

IN VITRO AND IN VIVO TREATMENT MODELS: ANTIMICROBIAL COMBINATION
OPTIONS
In Vitro Models

Pharmacodynamic interactions between drugs and bacteria have been studied in
several in vitro models. Static systems can be used for rapid determination of time-kill
behavior (132). Dynamic models such as the one-compartment in vitro model (IVM) and
the two-compartment hollow-fiber infection model (HFIM) provide information that
allows the development of dosing regimens that improve therapeutic results (133).
Studies of dose fractionation, the suppression of resistant mutants, combination ther-
apy, and the magnitude of the index required to obtain a specific amount of bacterial
kill can be performed with both systems (132). Compared with the one-compartmental
model, the hollow-fiber model allows the bacterial load to remain constant, biohaz-
ardous organisms to be safely contained, and absorption and elimination curves and
rapid half-lives (t1/2s) to be modeled (133).

In vitro studies have been conducted to find “optimal treatment options” against
MDR or XDR P. aeruginosa. Combination antibiotic therapy for MDR/XDR P. aeruginosa
is generating interest because of the potential severity of these infections and the high
risk of resistance selection with monotherapy. The possibilities of expanding the
spectrum of coverage, achieving additive or synergistic antibacterial effects, and
suppressing emerging resistance are all factors that favor the use of combination
therapy (7).

Several studies have examined in vitro interactions between various antipseudomo-
nal antibiotics (e.g., carbapenems, colistin and polymyxin B, fosfomycin, aminoglyco-
sides, and quinolones). A number of methods of detecting synergy have been em-
ployed, including the microdilution checkerboard technique, gradient diffusion (Etest),
time-kill curve assays (134, 135), and dynamic models. Reported synergistic drug
combinations against MDR/XDR P. aeruginosa include colistin-ceftazidime (136),
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colistin-rifampin (137), cefepime-tobramycin (138), ceftazidime-avibactam-amikacin (139),
colistin-doripenem, imipenem, and meropenem (140–142), meropenem-levofloxacin (143),
imipenem-levofloxacin and colistin-levofloxacin (144), meropenem-ciprofloxacin (145),
polymyxin B-enrofloxacin (146), fosfomycin-amikacin (147), and even some double-�-
lactam combinations (148). Table 3 provides a list of studies of different drug combi-
nations against MDR/XDR P. aeruginosa, showing the in vitro study model used, type of
drug interactions, and whether or not suppression of resistance was achieved. Never-
theless, these studies have not led to clear recommendations for clinical practice, and
there is a lack of consensus about which antibiotic combinations should be used
against these difficult-to-treat infections to improve the therapeutic response and
reduce selection of resistant mutants (135).

The lack of antipseudomonal agents in the pipeline adds a further complication to
this situation (149), although in recent years some progress has been made with the
development of new molecules and new �-lactamase inhibitor combinations (150,
151). The new cephalosporin ceftolozane (formerly known as CXA-101) (58) in combi-
nation with tazobactam has shown promising characteristics for the treatment of P.
aeruginosa infection (152). Since 2010, many in vitro studies of the role of ceftolozane
against MDR and XDR P. aeruginosa have been carried out. VanScoy et al. (153) studied
the effect of ceftolozane-tazobactam against two isolates of P. aeruginosa: an ATCC
strain and a clinical isolate. Against the wild-type isolate (MIC of 0.5 mg/liter), resistance
was not selected by any dose; against the clinical P. aeruginosa isolate (MIC of
4 mg/liter), however, although resistance was suppressed by a ceftolozane-tazobactam
dose of 2 g/1 g every 8 h, resistance selection was observed with intermediate dosing
regimens (125/62.5 through 1,000/500 mg) (153). For this reason, combination therapy
is also starting to be studied for some MDR/XDR infections. Some recent studies have
shown synergistic effects of ceftolozane-tazobactam with colistin and amikacin (154–
156). Interestingly, in a hollow-fiber infection model, the combination therapy of
ceftolozane-tazobactam plus meropenem had a synergistic effect on cell killing and
also prevented resistance selection against XDR P. aeruginosa strains belonging to the
ST175 clone (157).

Clinical trials are needed to confirm the results of these models, which are none-
theless very useful for deciding which trials should be developed.

In Vivo Models

There are few in vivo studies related to different antibiotic options and combinations
against MDR/XDR P. aeruginosa. In a mouse model of pneumonia, intranasal colistin
combined with rifampin was beneficial for synergistic antibacterial activity (158). High-
dose colistin showed a 1.5-log10 CFU reduction against MDR P. aeruginosa infections in
a neutropenic mouse thigh model (159). In the same study, the combination of
high-dose colistin with aztreonam was even better, showing a 2.5-log10 CFU reduction.
Yadav et al. recently demonstrated substantially enhanced killing in vivo against an
MDR P. aeruginosa clinical isolate with an optimized imipenem-plus-tobramycin com-
bination regimen (160).

CURRENTLY AVAILABLE ANTIMICROBIALS FOR THE TREATMENT OF MDR AND
XDR P. AERUGINOSA INFECTIONS
Polymyxins

Increased bacterial resistance to antibiotics in conjunction with the lack of new
drugs in the pipeline has become a major clinical and public health concern worldwide,
which is especially worrisome in the case of MDR, XDR and PDR P. aeruginosa (3, 4).
Although novel agents such as ceftolozane-tazobactam and ceftazidime-avibactam
have expanded the therapeutic arsenal (67, 157, 161–165), polymyxins continue to
represent the only therapeutic option in some cases.

Two polymyxins are available for clinical use: colistin (polymyxin E) and polymyxin
B. They were released in the 1950s and were not subjected to the same drug
development procedures and regulatory scrutiny that are needed for modern drugs, so
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our underlying pharmacological knowledge of these two polymyxins has until relatively
recently been less than reliable (166–168). In recent years, however, a significant
amount of preclinical and clinical data about these “old drugs” has emerged (169–173).
The chemistry of polymyxins is very important for their antibacterial activity. Polymyx-
ins are positively charged, enabling them to interact with phosphate groups in lipid A
of the lipopolysaccharide (LPS) that are negatively charged (168). Polymyxins also have
hydrophobic regions that can interact with the LPS (174). The result of these interac-
tions is disruption of the bacterial cell membrane (174–176), which is the first step in
the mechanism of action. Nevertheless, the final mechanism involved in bacterial cell
death remains unknown (168). Recent studies performed on P. aeruginosa have argued
against the traditional idea that colistin exerts its bactericidal effect by creating holes
in the cytoplasmic membrane (177–179). New studies should explore other hypotheses,
such as that bacterial killing is due to phospholipid exchange between the outer and
cytoplasmic membranes, inhibition of respiratory enzymes, and/or formation of reac-
tive oxygen species (179).

Since colistin and polymyxin B differ by only a single amino acid in the peptide ring
(174), it is not surprising that they have similar antibacterial spectra, mainly against
Gram-negative bacilli (174). In spite of their similar chemical structures, however, they
are used in different forms when administered to patients parenterally. Polymyxin B is
administered directly as an active antibiotic, whereas colistin is administered as an
inactive prodrug, colistin methanesulfonate (CMS) (168, 176), which must be converted
into colistin after administration (180). The use of one or the other polymyxin varies
according to geographical area. In Europe and Australia, the only available form is
colistin (in the form of CMS), whereas in the United States, Brazil, Malaysia, and
Singapore, clinicians can use either colistin or the polymyxin B parenteral formulation
(168).

Intravenous colistin dosing is controversial. Initially, low doses of CMS were used in
clinics, based on the manufacturer’s instructions (181–183), but thanks to more recent
pharmacokinetic and pharmacodynamic (PK/PD) data from population studies, it is now
possible to provide an update of recommended dosages (171, 172, 184, 185). Some
clinical studies evaluated the efficacy of parenteral colistin at higher doses (4.5 IU
administered every 12 h), following a loading dose of 9 million IU (186, 187), although
there are no clinical data available for the outcomes for patients receiving doses based
on the equation proposed by Garonzik et al. (170) and updated by Nation et al. (171,
172) in 2016. In an attempt to translate PK/PD knowledge to clinical practice, Sorlí et al.
studied the impact of colistin plasma concentrations on clinical outcome in 91 patients
with infections caused by MDR/XDR P. aeruginosa (188). The mean colistin plasma
concentrations in this cohort of patients were 1.67 � 1.42 mg/liter, which is lower
than those proposed in other studies and in the recent polymyxin use guidelines
(170–172, 185). Nevertheless, 79.9% of patients achieved clinical cure, and colistin
plasma concentrations were not observed to be statistically related to clinical cure
(188). The same group demonstrated that a high plasma concentration of colistin
was an independent risk factor for nephrotoxicity (183, 189). In conclusion, al-
though PK/PD studies have concluded that higher doses of colistin should be used,
there is a lack of clinical studies on the outcomes for patients treated according to
more recent recommendations (171, 172, 185). In the case of urinary tract infec-
tions, colistin is a good option because concentrations of formed colistin in urine
are high (185). Moreover, and because of this, in urinary tract infections the colistin
dose could be lower than in other invasive infections (190). However, no clinical
data are available to confirm this option.

There are several published clinical studies focused on colistin for treating MDR/XDR
P. aeruginosa infections. The majority are single-center retrospective series with low
numbers of patients, with two exceptions comprising more than 100 patients (182, 183)
and with very different patient profiles (intensive care unit [ICU], cancer, hematologic,
pneumological, etc.). The most frequent infectious source was low respiratory tract
infection. Colistin doses were variable and adjusted for renal function. Combination
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therapy was administered to 51 to 100% of patients in these series. The clinical
response at different time points varied between 52% and 79% and was higher than
70% in half of the studies. Mortality (at different time points) was between 11% and
61%. No information about resistance selection was given in these studies (181, 182,
188, 191–201) (Table 4).

The question of whether combination therapy might improve patient outcomes is
another major issue to be considered for the use of polymyxins in the treatment of
MDR/XDR P. aeruginosa infections. Data from PK studies confirm that colistin plasma
concentrations following the dosing suggestions of the European Medicines Agency
(EMA) and FDA are low and inadequate for the treatment of MDR/XDR P. aeruginosa
infections (165–167, 178, 182, 183). These findings highlight the importance of consid-
ering colistin combination therapy for MDR/XDR P. aeruginosa infections. Zusman et al.
(202) recently published a systematic review about polymyxins in combination or as
monotherapy against carbapenem-resistant Gram-negative bacteria (GNB) and showed
that polymyxin combined with carbapenems or tigecycline and/or aminoglycosides
had an unadjusted association with survival, but when biased studies were excluded
from the analysis, there was no association between combination therapy and survival.
The majority of the studies did not include P. aeruginosa infections (202). In a cohort
of patients with pneumonia due to XDR P. aeruginosa, Khawcharoenporn et al.
showed that combination therapy with 2 active drugs was associated with better
survival than active monotherapy, including colistin in the majority of cases (Table
4) (203). Interestingly, a recent prospective clinical series of bone and joint infec-
tions due to MDR/XDR P. aeruginosa also showed better clinical outcomes with
colistin in combination therapy, in comparison with �-lactam or colistin as mono-
therapy (204) (Table 4). Larger clinical series and randomized clinical trials with
invasive MDR/XDR P. aeruginosa infections are needed to confirm these data. Until
then, the recent expert-panel guidelines for optimal use of polymyxins recommend
that for the treatment of MDR/XDR P. aeruginosa infections, polymyxin should be
used in combination with one or more additional agents to which the pathogen
displays a susceptible MIC (185).

With respect to polymyxin B, there is limited clinical experience with MDR/XDR P.
aeruginosa infections (166, 205–209). The studies are retrospective series with low
numbers of patients, except for one with 126 cases (208). Bacteremia and pneumonia
were the predominant indications. Clinical response is insufficiently studied, and mor-
tality rates are worryingly high (Table 4).

Nephrotoxicity is a common adverse effect of systemically administered polymyxins
(210, 211). This adverse effect is dose-limiting for both polymyxins (colistin and poly-
myxin B), although polymyxin B seems to be less nephrotoxic (205). In the case of
colistin, plasma concentrations associated with renal damage overlap those required
for a bacterial effect (212). Colistin plasma concentrations have been demonstrated to
be the most important risk factor for the development of acute kidney injury (AKI). An
average steady-state plasma colistin concentration of greater than �2 mg/liter is
considered to be an independent risk factor for colistin-associated nephrotoxicity (183,
189, 213). These data highlight the narrow therapeutic window of colistin. In this
scenario, therapeutic drug monitoring could be a useful clinical tool to maximize
clinical goals while minimizing potential nephrotoxicity (185).

Both polymyxin B and CMS have been administered as inhalation therapy for the
treatment of pneumonia, bronchiectasis, and chronic P. aeruginosa infection and for
pulmonary exacerbations in patients with cystic fibrosis. Once again, most of the
studies of inhaled administration were performed with CMS. A recent meta-analysis
focused on the use of inhaled colistin monotherapy for respiratory infections in non-CF
patients (214). The analysis included 10 studies of patients diagnosed with pneumonia
and 2 studies of those with ventilator-associated tracheobronchitis. Overall all-cause
mortality was 33.8% and the clinical success rate was 70.4% (214). The authors of this
meta-analysis concluded that the outcomes for patients receiving therapy with inhaled
CMS as monotherapy were encouraging and deserved further consideration for the
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treatment of respiratory tract infections caused by MDR GNB. Another recent meta-
analysis analyzed the combination of inhaled and intravenous (i.v.) colistin. The studies
used low-quality data, which suggested that the combination does not lower mortality
in patients with MDR Gram-negative infections except when a low i.v. colistin dose is
administered. The results for MDR/XDR P. aeruginosa infections were not specifically
extracted (215).

Regarding studies performed in patients with infections caused by P. aeruginosa,
Athanassa et al. performed a pharmacokinetic study of inhaled CMS in mechanically
ventilated critically ill patients (216). The study included 8 patients with P. aeruginosa
infection receiving 80 mg of CMS every 8 h. Colistin concentrations in epithelial lining
fluid (ELF) were 5-fold higher than those achieved in serum, although ELF concentra-
tions at 4 and 8 h were below the EUCAST breakpoints. Based on these data, the
authors concluded that inhaled colistin can achieve high drug concentrations in the
lungs, although a dose of 80 mg every 8 h may not be suitable for the treatment of
infections caused by MDR GNB (216). Lu et al. (217) compared the clinical outcomes for
122 patients with ventilator-associated pneumonia (VAP) caused by P. aeruginosa and
Acinetobacter baumannii strains susceptible to �-lactams, aminoglycosides, or quino-
lones and treated with i.v. antibiotics for 14 days with those for patients with VAP
caused by MDR P. aeruginosa or A. baumannii treated with nebulized colistin (5 million
IU every 8 h) either in monotherapy (n � 28) or in combination with i.v. aminoglyco-
sides. With several methodological limitations, they concluded that nebulized CMS was
noninferior to intravenous �-lactams associated with aminoglycosides or quinolones
(217). With respect to the use of CMS in patients with ventilator-associated tracheo-
bronchitis, Maskin et al. demonstrated in a study of 17 patients infected with MDR P.
aeruginosa that inhaled CMS was able to reduce the volume of tracheal secretions,
purulence, and bacterial load (218).

There is little clinical information about the use of nebulized polymyxin B. A recent
study of inhaled polymyxin B against P. aeruginosa in a mouse lung infection model
highlighted the advantage of pulmonary delivery of polymyxin B over intravenous
administration for achieving high levels of drug exposure in ELF (219). A clinical study
performed by Pereira et al. that focused on the use of nebulized polymyxin B as salvage
therapy for pneumonia and initial treatment of tracheobronchitis caused by MDR GNB
(220) concluded that inhaled polymyxin B was useful as salvage therapy for hospital-
acquired pneumonia caused by MDR GNB that failed i.v. treatment and also when used
alone in the treatment of P. aeruginosa tracheobronchitis. Taking all these results into
account, we consider that inhaled polymyxins should be considered for the treatment
of lower respiratory tract infections caused by MDR/XDR P. aeruginosa. The evidence is
not strong enough to consider inhaled therapy alone for pneumonia, where a combi-
nation of intravenous and inhaled polymyxins would be a good option. In the case of
tracheobronchitis, inhaled therapy alone could be used, although more dosage studies
and clinical series are needed.

Another scenario in which polymyxins can play an important role is in the treatment
of central nervous system infections (CNS) due to MDR/XDR bacteria. When MDR
organisms are the cause of infection, CNS mortality has been reported to be as high as
71% (221). This is partly due to the fact that only a proportion of the intravenous
antibiotic dose reaches the site of infection in these difficult-to-treat infections (222–
224). Hence, high intravenous doses are required to achieve bacterial killing. Peripheral
administration of colistin, however, is neither effective nor safe for CNS infection, due
to extensive renal reabsorption and the risk of colistin-associated nephrotoxicity (225).
To overcome this problem, intrathecal or intraventricular delivery of polymyxins has
generally been used in clinical practice and has become the only therapeutic option for
the treatment of MDR GNB CNS infections that are resistant to all other antibiotics.
Although most clinical experience with this administration route has been reported for
infections caused by Acinetobacter baumannii, there are some reports of infections
caused by MDR/XDR P. aeruginosa (226–233) that have had good clinical outcomes.
Even though the intrathecal route in this setting is mandatory, intrathecal polymyxin
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therapy has never been optimized according to PK/PD indices (225). The current IDSA
guidelines suggest an intrathecal dose of 10 mg of CMS or 5 mg of polymyxin B once
daily (234). The recent international consensus guidelines on the use of polymyxins
recommend an intraventricular or intrathecal dose of 125,000 IU CMS (�4.1 mg colistin
base activity) or 5 mg (50,000 IU) polymyxin B per day (185).

In clinical practice and even in the guidelines, both the dose and the duration of
treatment of CNS infections are chosen empirically, since no PK/PD targets have so far
been established. For this reason, and as Nation et al. pointed out, it is important in the
near future to define optimal targets for the optimization of dosage regimens for the
administration of polymyxins by the intrathecal route (169).

Carbapenems

Like all �-lactam antibiotics, carbapenems exhibit time-dependent antibacterial
activity. Different in vitro and in vivo studies have identified the PK/PD parameter most
predictive of efficacy as the percentage of the dosing interval that unbound or free
serum drug concentrations exceed the MIC for the pathogen (fT � MIC). Old in vitro and
in vivo PK/PD studies initially defined an fT � MIC of �40% as the optimal value for the
bactericidal activity of carbapenems (235). A similar value was identified in a murine
thigh model infected with P. aeruginosa strains overexpressing MexA-MexB-OprM efflux
pumps at both standard and high inocula (236).

With the currently approved antibiotic doses and short-term infusion regimens, the
probability of achieving optimal PK/PD target exposures across all patient populations
and susceptible pathogens is greater than 80% (http://www.eucast.org/documents/rd/;
accessed 25 October 2018). This probability is considerably reduced, however, in the
case of infections caused by less susceptible or even resistant pathogens, such as MDR
or PDR P. aeruginosa. New strategies aimed at achieving the desired targets are
therefore required. In this scenario, numerous studies have assessed new dosing
strategies, such as increasing the dose or using prolonged infusion administration.

Various studies aimed at defining the optimal carbapenem dose for these difficult-
to-treat P. aeruginosa infections in different special populations show that high doses
may be needed.

One pharmacodynamic study used Monte Carlo simulation to evaluate different
dosage regimens of meropenem administered in intermittent or extended (3-h) infu-
sions against populations of Enterobacteriaceae, P. aeruginosa, and Acinetobacter spe-
cies with different susceptibilities. MIC data and distributions were derived from the
Meropenem Yearly Susceptibility Test Information Collection (MYSTIC), a multicenter,
longitudinal surveillance program in 14 American centers. A total of 276 isolates of P.
aeruginosa were included, 22.1% of them with MIC values of �4 mg/liter. A meropenem
dosage of 1 g/8 h in extended infusion, or 2 g/8 h in intermittent/extended infusion,
was required for exposure of 50% fT � MIC against all susceptible P. aeruginosa isolates
(MIC values of �4 mg/liter). However, for organisms considered intermediate-resistant
to meropenem (MIC � 8 mg/liter), only the higher-dose regimen of 2 g/8 h in extended
infusion achieved adequate bactericidal exposure. The authors suggested the highest
dose of meropenem (2 g/8 h) administered by extended infusion for treatment of
intermediate or resistant P. aeruginosa (237).

An in vitro infection model also using Monte Carlo simulation evaluated the optimal dosage
of imipenem combined with tobramycin against carbapenem- and aminoglycoside-resistant P.
aeruginosa clinical isolates. The simulated doses that obtained the best antibacterial
activity were imipenem at 4 or 5 g/day in continuous infusion combined with tobra-
mycin (238). The same group confirmed the adequacy of this dosage regimen in a
neutropenic mouse thigh model of XDR P. aeruginosa infection (160). In one study of
bloodstream infections that included 237 isolates of P. aeruginosa with reduced sus-
ceptibility to carbapenems, different carbapenem dosing regimens were tested: imi-
penem at 0.5 to 1 g/6 h by 0.5- and 3-h infusion, meropenem at 1 to 2 g/8 h by 0.5- and
3-h infusion, and doripenem at 0.5 to 2 g/8 h by 1- and 4-h infusion. A T � MIC of 40%
was considered to be the optimal PK/PD ratio. The results showed that meropenem at
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2 g/8 h infused over 3 h and doripenem at 1 g/8 h infused over 4 h showed the best
efficacy against P. aeruginosa with reduced susceptibility to carbapenems (239). Inter-
estingly, in a case report of a critically ill double-lung transplant patient with pneumo-
nia due to MDR P. aeruginosa with a meropenem MIC of 32 mg/liter who received
meropenem in continuous infusion (8 g meropenem/24 h), a clinical cure was achieved
(240).

Other Classical Antipseudomonal �-Lactams

There are very few data regarding the role of some classical antipseudomonal
�-lactams such as cefepime, ceftazidime, piperacillin-tazobactam, and aztreonam in
monotherapy against MDR/XDR P. aeruginosa infections.

Aztreonam could be a possible option for the treatment of Ambler class B MBL-
producing Gram-negative bacteria, including P. aeruginosa. One series assessed its
clinical efficacy in MBL-producing P. aeruginosa infections. In that study, the mortality
rate was 30%, but most cases involved combination therapy, and the sample size was
too small to be able to draw definitive conclusions (241). Another series included nine
patients with MBL-producing Pseudomonas infections receiving i.v. colistin combined
with aztreonam or piperacillin-tazobactam, and seven (77.8%) of these patients had
favorable outcomes and survived (242).

A case report described an immunocompromised patient with an MDR P. aeruginosa
wound infection who was successfully treated with high-dose aztreonam administered
in continuous infusion (8.4 g/day) (243). Another case report described a patient
undergoing hemodialysis who developed MDR P. aeruginosa bacteremia with a
cefepime MIC of 16 mg/liter and was successfully treated with an extended-infusion
regimen (3 h) of this antibiotic (244).

A severely immunodepressed patient with MDR P. aeruginosa bacteremia with a
ceftazidime MIC of 64 mg/liter was treated with high-dose ceftazidime administered in
continuous infusion (6.5 to 9.6 g/day) with clinical success (243).

As previously mentioned, some in vitro combination assays, such as those with
cefepime-tobramycin (138) and cefepime-aztreonam (148), have shown additive or
synergistic effects against MDR P. aeruginosa.

Based on the type of strain and resistance phenotype and genotype, a possible
strategy in individual cases could be to use one of these drugs at high doses admin-
istered in prolonged infusion in a combination therapeutic regimen.

Aminoglycosides

Some aminoglycosides remain active against several MDR/XDR P. aeruginosa strains
(245, 246). Although they can be used in monotherapy in urinary tract infections (247),
aminoglycosides could be used in combination with other antimicrobials for the
treatment of more severe infections caused by MDR/XDR P. aeruginosa.

With respect to their pharmacodynamics, numerous in vitro and in vivo studies have
demonstrated that aminoglycosides have concentration-dependent antibacterial activ-
ity and that a peak concentration (maximum concentration [Cmax]/MIC) of �8 to 10 is
the best PK/PD predictor of efficacy (248). This value should be reached during the first
24 to 48 h of treatment. This PK/PD index was associated with better clinical cure rates
in a retrospective clinical study performed in patients with P. aeruginosa bacteremia
that was not specifically caused by MDR or XDR P. aeruginosa strains (249).

A few studies in recent years have set out to optimize dosing regimens to combat
MDR GNB such as P. aeruginosa. One PK model, cited above, evaluated the optimal dose
of tobramycin and imipenem against carbapenem- and aminoglycoside-resistant P.
aeruginosa clinical isolates (238). The authors concluded that a 7-mg/kg dose of
tobramycin every 24 h, given in 0.5-h infusions, combined with imipenem was needed
to achieve adequate bacterial killing and prevent regrowth at 48 h.

One strategy used to treat infections caused by XDR P. aeruginosa was to administer
very high doses of aminoglycosides combined with continuous renal clearance tech-
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niques to prevent renal toxicity. The results showed high survival rates, although the
number of included patients was limited (250, 251).

In the case of severe or deep infections such as pneumonia or meningitis due to
MDR or XDR P. aeruginosa, other routes of administration can be used for aminogly-
cosides. For the treatment of pneumonia, inhaled amikacin allows high drug concen-
trations to be achieved at the site of infection (e.g., ELF) and prevents high systemic
exposures that can potentially cause systemic toxicity. The use of inhaled antibiotics
(polymyxins or aminoglycosides), however, is currently recommended only as adjunc-
tive therapy for infections caused by Gram-negative bacilli susceptible only to amin-
oglycosides or polymyxins, and in combination with other systemically administered
agents (252).

Meningitis is another difficult-to-treat infection. The efficacy of intravenous amin-
oglycosides is limited due to poor penetration into the central nervous system, which
leads to low and inadequate concentrations at the site of infection. In cases of this kind,
administration of intraventricular aminoglycosides may be needed. A recent case of
postsurgical meningitis caused by PDR P. aeruginosa was successfully treated with a
combination of intravenous cefepime administered by continuous infusion and com-
bined with intravenous and intraventricular amikacin (253). Although the strain had an
MIC for amikacin of 32 mg/liter, the achievement of concentrations of 200 mg/liter in
the central nervous system was sufficient for resolution of infection.

Fosfomycin

Because of its excellent in vitro bactericidal activity against a wide spectrum of
organisms, including MDR P. aeruginosa, intravenous fosfomycin in combination with
other antimicrobials has reemerged for the treatment of infections caused by MDR
bacteria (254, 255). One proposed therapeutic option is to use fosfomycin with car-
bapenems, a combination that has shown good synergistic activity against different P.
aeruginosa isolates. This combination has also demonstrated better clinical outcomes,
especially when the carbapenem is administered in extended infusion (256–258).

Other experiments have assessed the use of fosfomycin in combination with
�-lactams, aminoglycosides, or colistin (259). In one of these, fosfomycin was admin-
istered to 5 patients undergoing orthotopic liver transplantation, 3 of whom had
infections due to XDR P. aeruginosa with a MIC for fosfomycin of �16 mg/liter and
another due to XDR Klebsiella pneumoniae and P. aeruginosa with MICs of 32 mg/liter
(259). In two of the patients, the infection was eradicated, but in the other three,
treatment failed (in two the clinical response was poor, and the third developed a
superinfection).

This so-called “old” antibiotic has also been associated with new antimicrobials, such
as ceftazidime-avibactam or ceftolozane-tazobactam (260, 261). A patient with XDR P.
aeruginosa meningitis was successfully treated with a 3-g/8-h dose of ceftolozane-
tazobactam associated with a 4-g/6-h dose of fosfomycin (261). Nevertheless, the doses
of fosfomycin used in these cases varied considerably, which provides evidence that the
optimal dose of this antibiotic for the treatment of difficult-to-treat infections is yet to
be defined.

In a systematic review of the clinical and microbiological effectiveness of fosfomycin
for the treatment of MDR, XDR, or PDR nonfermenting Gram-negative bacterial infec-
tions, the fosfomycin dose for P. aeruginosa infections ranged from 2 g/12 h to 5 g/8 h
in combination with other antimicrobials (254).

Several studies have evaluated different dosage regimens of fosfomycin in combi-
nation with carbapenems for the treatment of non-MDR and MDR P. aeruginosa clinical
isolates based on PK/PD target attainment. In one of these, Monte Carlo simulation was
used to calculate the probability of target attainment for different fosfomycin and
carbapenem doses and infusion times (262). In the case of non-MDR P. aeruginosa
isolates, prolonged infusion of a carbapenem combined with fosfomycin in continuous
infusion at 16 to 24 g/day obtained the best PK/PD ratios. However, for the MDR P.
aeruginosa isolates, none of the fosfomycin and carbapenem combinations achieved
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the PK/PD targets. It should be borne in mind that the clinical isolates tested in this
study, which was carried out in Thailand, had very high fosfomycin MIC values, and the
results cannot be extrapolated to other settings (262).

More clinical series and trials are needed to define the future role of fosfomycin in
these infections, including the optimal dose and possible combinations.

NEW ANTIMICROBIALS AGAINST MDR AND XDR P. AERUGINOSA

Although a clear distinction has often been made between old and new antipseu-
domonal antibiotics (263, 264), two antibiotics resulting from the combination of old
and new drugs have been released in recent years (265, 266).

Ceftolozane-Tazobactam

Ceftolozane-tazobactam is an effective combination against several MDR Gram-
negative bacilli, especially MDR/XDR P. aeruginosa. Ceftolozane is one of the most
active antipseudomonals. Its activity against P. aeruginosa exceeds that of the rest of
the antipseudomonal �-lactams by between 20% and 25% (267). Ceftolozane inhibits
PBPs and non-ESBL TEM and SHV variants and AmpC enzymes, while tazobactam
targets class A serine �-lactamases and ESBLs. Ceftolozane also acts against non-ESBL
class D oxacillinases, but it lacks activity against carbapenemases (268).

In a number of studies, MDR/XDR P. aeruginosa susceptibility to ceftolozane-
tazobactam has been shown to be variable, with rates varying between 55% and 96.6%
depending on the series and countries (31, 67, 150, 245, 246, 269–274). The data from
these studies are shown in Table 5.

With respect to its PK/PD indices, the bactericidal efficacy of ceftolozane-
tazobactam, as with other cephalosporins, is correlated with the percentage of time the
plasma drug concentration is above the MIC for the target organism (%T � MIC) (151).
Monte Carlo simulations have been performed to study ceftolozane-tazobactam dosing
regimens and to define the optimal dose of this drug against infections caused by MDR
P. aeruginosa with MIC values of between 4 and 32 mg/liter, testing different doses,
infusion times, and renal function statuses (275). The multiple scenarios simulated
identified the current ceftolozane-tazobactam dose of 1/0.5 g as optimal for MICs of
�32 mg/liter (creatinine clearance [CLCR], 15 to 50 ml/min), �16 mg/liter (CLCR, 51 to
120 ml/min), and �8 mg/liter (CLCR, 121 to 180 ml/min). In simulations of augmented
renal clearance across infections with MICs of 4 to 32 mg/liter, extended infusions of 4
to 5 h had a higher probability of target attainment (PTA) than shorter and continuous
infusions (275). Another study simulated four ceftolozane-tazobactam doses ranging
from 250/125 mg to 2/1 g every 8 h, with infusion durations of 1 to 7 h and continuous
infusions. The PTA target was defined as 40% fT� MIC (276). The results showed that
the current dose of 1/0.5 g was optimal for MICs of �32 mg/liter and different renal
function values. In patients with augmented renal clearance, however, extended infu-
sions of 4 to 5 h provided higher PTAs than intermittent infusions. On the other hand,
another population PK study in patients with pneumonia, which included kinetics in the
ELF, also simulated different dosage regimens and concluded that a dose of 2 g/1g was
necessary to achieve a �90% PTA (actual, 98%) in ELF against pathogens with MICs of
�8 mg/liter (277). As with other �-lactam antibiotics, administration of the drug over a
prolonged period by extended or continuous infusion is a potential strategy for
improving the probability of attaining the PK/PD target. Until recently, however, very
little evidence of evaluations of extended or continuous infusion of ceftolozane-
tazobactam has been available. One case report described a patient with urinary tract
infection caused by MDR P. aeruginosa who was successfully treated with no adverse
events in an outpatient setting with a 4/0.5-g dose of ceftolozane-tazobactam every
24 h given as continuous infusion (278). Another case report evaluated the pharmaco-
kinetics of this antibiotic in a critically ill patient with an MDR P. aeruginosa prosthetic
hip joint infection receiving continuous venovenous hemofiltration who was treated
with a 1/0.5-g dose of ceftolozane-tazobactam every 8 h administered as extended
infusion over 4 h (279). An outpatient with a lung abscess caused by carbapenem-
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resistant P. aeruginosa with a ceftolozane-tazobactam MIC90 of 2 mg/liter obtained
favorable clinical results after 3 g/1.5 g of ceftolozane-tazobactam administered in
continuous infusion (280). In these last two cases, the serum concentration analysis
confirmed that these dosing regimens were adequate for the achievement of the
desired PK/PD target (279, 280).

Some series of clinical experience with ceftolozane-tazobactam in MDR/XDR P.
aeruginosa infections have been published (Table 4). These studies are mainly retro-
spective, with short series of patients, except for a study of 205 patients (281). The main
indication in these series was respiratory tract infection, and different doses of
ceftolozane-tazobactam were used, sometimes in combination therapy. Cure rates
were close to 70%, with emergence of resistance of 4 to 14% in some studies and
mortality rates, measured at different times, ranging from 0% (in small series of cases)
to 27% (26, 62, 165, 281–288).

In summary, ceftolozane-tazobactam might be a good option for the treatment of
MDR/XDR P. aeruginosa infections that are susceptible to this drug, but it should be
used with caution and with optimization of dosing and, probably, infusion times.
Combination therapy could be considered for high-inoculum infections in order to
prevent selection of resistance in vivo (Table 6). However, more clinical studies are
needed to fully confirm these statements. Specifically, observational studies on the use
of this drug and on the possible selection of resistant mutants in the real world, clinical
trials comparing monotherapy with combination therapy, and larger series of MDR/XDR
P. aeruginosa infections would be useful in the near future.

Ceftazidime-Avibactam

Avibactam contains a diazabicyclooctane nucleus and acts as a broad-spectrum
inhibitor that is effective against enzymes with a nucleophilic serine residue (289). It has
no activity against MBL-producing strains (290). The addition of avibactam to ceftazi-
dime protects the cephalosporin from enzymatic degradation caused by P. aeruginosa
strains (mainly due to Amp-C enzymes but also due to ESBLs and class A carbapen-
emases such as GES enzymes) and leads to decreased MICs of ceftazidime, which is
more marked when combined with higher doses of avibactam (291).

Several in vitro studies have demonstrated that ceftazidime-avibactam displays
good activity against large collections of MDR/XDR P. aeruginosa strains collected in
different parts of the world and at different times, with inhibition rates varying between
66.1% and 86.5% (162, 292–295) (Table 7). In another series including 5,716 strains of
P. aeruginosa collected in the INFORM study, ceftazidime-avibactam showed 92.4%
activity against all the strains tested (296). Although its activity was low against
MBL-positive strains, it was the second most active agent after colistin. Likewise, in
another in vitro study, several P. aeruginosa strains with different levels of resistance
were exposed to �-lactam antibiotics and 74.1% of pan-�-lactam-resistant isolates were
susceptible to ceftazidime-avibactam with an MIC90 of 16 mg/liter (59). Similarly, activ-
ity against strains of P. aeruginosa from patients with urinary tract infections in U.S.

TABLE 6 Suggested antimicrobial therapy options for the most prevalent resistance profiles of MDR/XDR P. aeruginosaa

Resistance profile Resistance mechanism(s)
High-risk clones where
they are more frequent Treatment optionsb

PTZ R, CAZ R, ATM R, MER R, TOL/TZ S,
CAZ/AVI S, AMK S COL S

AmpC overexpression � OprD deficiency ST175 COL, POLY-B, TOL/TZ,
CAZ/AVI, AMK

PTZ R, CAZ R, ATM S, MER R, TOL/TZ R,
CAZ/AVI R, AMK S COL S

MBL production ST235, ST111 (ST175) COL, POLY-B, ATM, AMK

PTZ R, CAZ R, ATM R, MER R, TOL/TZ R,
CAZ/AVI S, AMK S COL S

Class A carbapenemase (such as GES enzymes) or
combinations of certain ESBLs with OprD deficiency

ST235 COL, POLY-B, CAZ/AVI

aAbbreviations: PTZ, piperacillin-tazobactam; CAZ, ceftazidime; ATM, aztreonam; MER, meropenem; TOL/TZ, ceftolozane-tazobactam; CAZ/AVI, ceftazidime-avibactam;
AMK, amikacin; COL, colistin; POLY-B, polymyxin B.

bAdministration of �-lactams in extended or continuous infusion and/or combination with intravenous colistin, polymyxin B, or amikacin should be considered in
severe infections. Amikacin or colistin in monotherapy is acceptable for urinary tract infection. Therapeutic drug monitoring of colistin or amikacin is recommended.
Nebulized colistin (2 to 5 MU/8 h) as adjunctive therapy in lower respiratory tract infections should be considered.
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hospitals showed a MIC90 of 32 mg/liter for strains resistant to ceftazidime, meropenem,
or piperacillin-tazobactam (297). The INFORM 2012–2014 study analyzed the activity of
ceftazidime-avibactam against 7,062 strains of P. aeruginosa and found that 563 (8%) of
them showed resistance to this antibiotic. Half of these were explained as due to
possession of genes encoding MBLs (298). Another study assessed ceftazidime-
avibactam activity against clinical isolates, 41 of them P. aeruginosa, in a phase III trial
of complicated urinary tract infections. The range of MICs for these strains was 4 to
16 mg/liter (299).

In order to analyze the emergence of P. aeruginosa resistance to ceftazidime-
avibactam, a study was developed to assess the evolution of this microorganism after
exposure to the antibiotic. Interestingly, the studied strains developed mutants resis-
tant to ceftazidime-avibactam, mainly through the efflux pumps PA14_45890 and
PA14_45910 (60).

Regarding PK/PD parameters, after multiple doses of ceftazidime-avibactam at
2 g/0.5g, the Cmax was 113.0/15.0 mg/ml and the area under the curve (AUC) was
348.2/42.2 mg · h/liter. With respect to the PK/PD properties of ceftazidime-avibactam,
a new ratio has been proposed that can be calculated in vitro or in vivo, defined as
%fT � CT, with CT being the “concentration threshold” for avibactam (300). In an HFIM,
several CT values were tested to determine which one best correlated with efficacy
against ceftazidime-resistant P. aeruginosa strains (MICs of 32 to 128 mg/liter for
ceftazidime and 2 to 16 mg/liter for ceftazidime-avibactam) (301).

A PK/PD study was designed to evaluate the predictive performance of the suscep-
tibility cutoff points established by the regulatory agencies for ceftazidime-avibactam
against different bacteria (161). The results were consistent in the case of susceptible P.
aeruginosa strains, but the cutoff points were challenged when strains resistant to
several antibiotics included in clinical trials were considered. The model was considered
unreliable for the analysis of ceftazidime-avibactam activity against resistant P. aerugi-
nosa, probably because these strains had mechanisms of resistance that could not be
reversed by adding avibactam to ceftazidime.

Various in vitro and in vivo PK studies have evaluated the PK/PD parameters of
ceftazidime-avibactam against different Gram-negative microorganisms. An fT � MIC
for at least 50% of the dosing interval has been shown to achieve the maximum
bacterial kill (302). For avibactam, which does not have antibacterial activity at clinically
relevant concentrations, a minimum free avibactam concentration (threshold concen-
tration [fCT]) needed to achieve sufficient �-lactamase inhibition to restore the activity
of ceftazidime was defined. The estimated critical concentration threshold (CT) was

TABLE 7 Ceftazidime-avibactam activity against MDR and XDR P. aeruginosa

Authors (journal, yr,
reference)a

Total no. of centers
(country or
continents)b

Total no.
of strains

MDR strains XDR strains

CommentsNo. %
MIC90

(mg/liter) No. %
MIC90

(mg/liter)

Sader et al. (IJAA, 2015 292) 71 (USA) 3,082 436 80.7 �8 247 74.5 �8 Susceptibility rates for ceftazidime,
piperacillin-tazobactam and
meropenem, 8.5%–22.9% (MDR
strains) and 2.0%–13.4% (XDR
strains)

Sader et al. (AAC, 2015, 293) 75 (USA) 3,902 338 81.0 16 338 73.7 32 Colistin efficacy against MDR and
XDR strains (EUCAST), 99.7%

Stone et al. (JAC, 2018, 162) ? (Europe, North
and South
America, Asia,
and Africa)

565 56 66.1 64 Data from adult phase III clinical
trials

Sader et al. (AAC, 2017, 295) INFORM study (USA) 7.868 1,562 86.5 16 717 75.9 32 Amikacin efficacy, 87.1% (MDR
strains) and 80.8% (XDR strains);
colistin efficacy, �99% (both
types of strains)

Sader et al. (AAC, 2017, 294) ? (USA) 3,402 613 82.7 16 365 76.2 32 Colistin was the most active
antibiotic (99.6% susceptibility)

aJAC, Journal of Antimicrobial Chemotherapy; AAC, Antimicrobial Agents and Chemotherapy; IJAA, International Journal of Antimicrobial Agents.
bA question mark indicates that the total number of centers was not given in the indicated article.
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�0.15 mg/liter (303). In a neutropenic mouse lung and thigh infection model of
ceftazidime-resistant P. aeruginosa expressing AmpC and/or TEM-24 �-lactamase,
achievement of a free T � CT of 40% to 50% and an fCT of 1 mg/liter for avibactam
exceeded the exposures associated with stasis, 1-log10 kill, and 2-log10 kill of P.
aeruginosa (300). Another in vitro study evaluated the bactericidal activity of
ceftazidime-avibactam against 18 P. aeruginosa isolates and 15 Enterobacteriaceae iso-
lates, including wild-type isolates and ESBL, KPC, and/or AmpC producers (304). At 6 h,
the authors observed time-dependent and bactericidal activity against all Enterobacte-
riaceae isolates and a lower degree of initial killing against all P. aeruginosa isolates. At
24 h, ceftazidime-avibactam did not have any bactericidal activity, and bacterial re-
growth was detected in both species.

Based on this PK/PD target, the optimal dose for its achievement has been evaluated
in population PK models, and a dose of 2/0.5 g ceftazidime-avibactam every 8 h
administered intravenously over 2 h has been recommended for patients with normal
renal function. This selected dose allows the PK/PD target to be achieved against
Enterobacteriaceae and P. aeruginosa isolates using the ceftazidime-avibactam break-
points of �8/4 mg/liter (305). These population PK models of ceftazidime-avibactam
were built using PK data from five phase III trials in patients with complicated intra-
abdominal infections, complicated urinary tract infections, and nosocomial (including
ventilator-associated) pneumonia (306). This clinical dose was further validated in an
HFIM and in neutropenic and immunocompetent mouse thigh infection models against
different P. aeruginosa isolates with ceftazidime-avibactam MICs of 4 to 16 mg/liter
(307).

Clinical studies with ceftazidime-avibactam in MDR/XDR P. aeruginosa infections are
scarce and contain low numbers of patients. Doses used were 2/0.5 g/8 h, sometimes
prescribed in combination. The cure rates were close to 80%, and most failures
occurred in respiratory tract infections. There is limited information on mortality,
microbiological eradication, recurrence, or the emergence of resistance (163, 308).
Related to this, and rather worryingly, ceftazidime-avibactam-resistant P. aeruginosa
isolates were identified in 9/355 (2.5%) of microbiologically evaluable patients in a
phase III clinical trial that compared ceftazidime-avibactam with meropenem in noso-
comial pneumonia (309).

In summary, in vitro studies have shown that ceftazidime-avibactam might be a
good option for the treatment of MDR/XDR P. aeruginosa infections, but clinical
experience is currently limited. Depending on the underlying mechanisms of resistance,
ceftazidime-avibactam could be the best option for some MDR/XDR P. aeruginosa
strains, such as those harboring Class A carbapenemases (such as GES enzymes) or
combinations of certain ESBLs with OprD deficiency (Table 6). Larger series of MDR/XDR
P. aeruginosa infections treated with ceftazidime-avibactam are needed.

CRITICAL EVALUATION OF CLINICAL STUDIES PROVIDING INFORMATION ON
OUTCOMES OF INFECTIONS DUE TO MDR/XDR P. AERUGINOSA

Table 4 provides a summary of clinical studies including 5 or more patients that have
analyzed the outcomes for patients with MDR/XDR P. aeruginosa infections treated with
different systemic antibiotic regimens. Although some studies addressed only MDR/
XDR P. aeruginosa infections, many others considered them jointly with other MDR GNB
infections, including those caused by A. baumannii and/or Enterobacteriaceae. Among
these, only those that specifically detail any outcome for patients with MDR/XDR P.
aeruginosa infections are included here. The design and quality of the studies were
evaluated according to the Scottish Intercollegiate Guidelines Network (SIGN) method
(https://www.sign.ac.uk/methodology.html).

Most publications have analyzed patients treated with colistin (180–188, 299, 300)
and, more recently, with ceftolozane-tazobactam (26, 62, 165, 281–287). There are some
articles about patients treated with polymyxin B (207–209), ceftazidime-avibactam (163,
308), and aminoglycosides (250) or with different combinations of antimicrobials (203,
204, 206, 258). Overall, the number of studies is limited. Most are retrospective studies
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of case series or cohorts and have all the limitations inherent to this type of design, as
well as small sample sizes. At the same time, most studies have other significant
limitations. First, they include patients with heterogeneous baseline characteristics
(age, comorbidities, and immunocompetence), infection sites, percentages of polymi-
crobial infections (often not provided), and severity at presentation, differences in
pathogen susceptibility (MDR and XDR P. aeruginosa) and MICs of the antimicrobials
(frequently not provided), use of different antimicrobial doses or dose adjustments
according to the patient’s degree of renal dysfunction (especially in the case of colistin),
delays in time to effective therapy, use of different antimicrobial combinations in an
unplanned way, use of the antibiotic being studied after failure of initial (empirical
and/or directed) antimicrobial therapy, a variety of treatment durations, and different
amounts of information, or none at all, about source control. Despite this heterogene-
ity, outcomes are usually presented in aggregated form, making them difficult to
interpret. Furthermore, in the few studies comparing different antibiotics, doses, or
antimicrobial combinations, the invariably small sample sizes make it difficult to adjust
for all other variables affecting the outcomes. Second, the included studies do not use
a unanimous definition of multidrug-resistant P. aeruginosa. Third, the outcomes
considered in different studies (clinical and microbiological responses and mortality)
are frequently defined in different ways and/or are evaluated at different time points
during clinical evolution. In the particular case of colistin and ceftolozane-tazobactam,
an additional problem is that different studies have used different doses, with a
tendency to increase them over time, which makes it difficult to compare results
between publications.

As previously mentioned, until very recently, colistin was the only alternative for
many cases of MDR P. aeruginosa infection. The use of this drug is complicated due to
its narrow therapeutic window and frequent nephrotoxicity and by the fact that an
adequate dosage has not yet been properly determined. More recently, the availability
of ceftolozane-tazobactam and ceftazidime-avibactam represents a major step forward,
mainly because they are active against several MDR/XDR P. aeruginosa strains, with
limited side effects. However, it is difficult to use published data as a basis for
comparing outcomes with these antimicrobials against those with colistin. There is
a lack of clinical studies with ceftazidime-avibactam. In the case of ceftolozane-
tazobactam, some clinical studies allow for some comparisons. With respect to 28- to
30-day all-cause mortality, a 32% to 47% rate was reported for colistin in 3 studies (181,
183, 192) and a 10% to 28% rate for ceftolozane-tazobactam in 4 studies (26, 62, 281,
282). As a result of the limitations of the studies that have been mentioned already,
these apparent differences should be interpreted with caution. The emergence of
resistant P. aeruginosa mutants during treatment with ceftolozane-tazobactam is of
particular concern. This fact supports the use of ceftolozane-tazobactam at high doses,
preferably in extended or continuous infusion, and also raises the question of the
possible advantages of combining antibiotics in difficult-to-treat and high-inoculum
infections, at least in the first days of treatment. Several studies have addressed the
potential advantages of combination therapy (203, 204, 206, 258) and suggested
possible alternatives: the use of �-lactams in extended or continuous infusion (in the
case of MICs classified as intermediate) combined with colistin, as well as different dual
therapies of combinations including doripenem (with intermediate MICs) in extended
infusion, fosfomycin, or colistin. In 3 studies, the combinations showed better results
than monotherapy (203, 204, 206). Nevertheless, the limitations of these studies
prevent definitive conclusions from being drawn. Only one well-designed clinical trial
has addressed this issue, with a comparison of the colistin-plus-meropenem combina-
tion versus colistin alone (187). Unfortunately, the study lacked enough power to reach
conclusions in the case of MDR P. aeruginosa.

Another aspect that has led to several publications is the possible usefulness or
advantage of administration of inhaled versus intravenous colistin or of a combination
of both of them in the case of respiratory infections. Two recent meta-analyses
addressed this question in patients with MDR GNB (214, 215), although the studies do
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not provide specific results for MDR/XDR P. aeruginosa infections. Only studies that
explicitly detail the outcomes for patients with MDR P. aeruginosa respiratory infections
are included here (199, 217). No definitive conclusions can be reached from these
studies. This is another of the many questions in the treatment of these complex
infections that remain unresolved. However, based on data on other MDR GNB infec-
tions, nebulized colistin seems acceptable as adjuvant therapy when treating MDR/XDR
P. aeruginosa respiratory infections.

Considering all of the reviewed studies and data, we have defined some general
therapeutic recommendations based on the most prevalent resistance profiles of
MDR/XDR P. aeruginosa (Table 6).

INVESTIGATIONAL AGENTS WITH ACTIVITY AGAINST MDR/XDR P. AERUGINOSA
Imipenem-Relebactam

Relebactam is an active �-lactamase inhibitor of class A and class C �-lactamases (310),
and in combination with imipenem (plus cilastatin), it can restore imipenem activity against
resistant strains, including AmpC-producing P. aeruginosa (311). One study set out to assess
the in vitro activity of imipenem-relebactam against 3,143 clinical strains of non-Proteus
Enterobacteriaceae and P. aeruginosa collected at 21 U.S. hospitals participating in the
SMART program (312). Of all P. aeruginosa strains tested, 94.4% (846/896) were susceptible
to this antibiotic, compared with 74.7% (669/896) that were susceptible to imipenem. The
in vitro activities of the imipenem-relebactam combination were 78% against imipenem-
resistant P. aeruginosa strains and 82.2% against MDR P. aeruginosa strains. Only colistin and
amikacin showed activity similar or superior to that of imipenem-relebactam. Another study
evaluated its in vitro activity against strains in the ESKAPE (Enterococcus faecium, Staphylo-
coccus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) group, which includes MDR P. aeruginosa (313). Imipenem-
relebactam showed activity against 94% (796/845) of P. aeruginosa strains, in contrast to
70.3% (594/845) in the case of imipenem. Additionally, 80.5% of the strains of these
imipenem-resistant microorganisms (MIC90, 16 �g/ml) were susceptible to imipenem-
relebactam with a MIC90 of 2 �g/ml. Only amikacin showed activity comparable to that of
imipenem-relebactam, with 95.6% susceptibility.

A double-blind, phase I clinical trial evaluated the pharmacokinetics and safety of
relebactam, administered alone or in combination with imipenem-cilastatin (314).
Administration of a single dose of relebactam over a dose range of 25 to 1,150 mg
showed a terminal half-life (t1/2) of between 1.3 and 1.8 h, with pharmacokinetics
similar to those of imipenem, which supports combination with this antibiotic given
with the same frequency of infusion. The AUC and Cmax increased exponentially with
the dose. The AUC target of 13.1 mg · h/liter was obtained with a 125-mg dose of
relebactam administered with imipenem, but the AUC reached higher values when
relebactam was administered as the sole drug. The pharmacokinetics of imipenem-
cilastatin were similar when administered as standard combination therapy or together
with relebactam. Administration of a single 125-mg dose of relebactam with 500 mg
imipenem showed AUC values for relebactam that were 22% and 25% higher in adult
and elderly women, respectively, than in men in each age group. Both elderly men and
women had 41% and 45% higher mean plasma concentrations than the corresponding
group of adult men. Relebactam was excreted almost completely in the urine, with the
percentages ranging between 94.7% and 100% in the 24 h after administration of a
single dose. The PK parameters for imipenem were comparable across all the groups
studied. Tolerability was good, with drowsiness being the most frequently observed
adverse effect. In study 2, 7-day administration of multiple doses of 125 mg of rele-
bactam with 500 mg of imipenem showed similar t1/2 values on days 1 and 7, and
accumulation of relebactam did not occur. The AUC target of 13.1 mg · h/liter was again
reached with the same doses of relebactam. Again, when the compounds were
administered at the described doses, the drug was generally well tolerated.

A phase II clinical trial evaluated different doses of relebactam combined with
imipenem-cilastatin in patients with complicated intra-abdominal infections (315). Both
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the 125-mg and 250-mg doses of relebactam combined with 500 mg of imipenem
showed 100% microbiological eradication in patients with P. aeruginosa infections. Of a
total of 5 strains of imipenem-resistant P. aeruginosa, 3 showed susceptibility to
the combination with relebactam. To date, no clinical experiences with imipenem-
relebactam and MDR/XDR P. aeruginosa infections have been published. However,
considering its characteristics and antimicrobial activity, this drug could play an im-
portant role in the near future in therapy against MDR/XDR P. aeruginosa.

Cefiderocol

Cefiderocol is a siderophore cephalosporin with activity against multiple Gram-
negative organisms, including strains that are resistant to other antibiotics (316).
Cefiderocol acts by binding to ferric iron, which enables it to use bacterial iron
transporters to penetrate the external bacterial membrane. It also has high stability
against �-lactamases, including serine-dependent �-lactamases and MBLs (317, 318).
The ability of cefiderocol to neutralize AmpC overproduction, its stability against these
enzymes, and its ability to induce AmpC in Enterobacter cloacae and P. aeruginosa have
been studied (318). While the MICs of ceftazidime and cefepime for the P. aeruginosa
PAO1 strain increased 4- to 16-fold due to the inactivation of AmpD and DacB,
cefiderocol MICs were only slightly affected. The effect of AmpC inactivation on the
MICs of these antibiotics was very limited. Similar results were observed when the effect
on AmpC overproduction was studied. Hence, cefiderocol was found to be a very stable
cephalosporin against these enzymes.

Another in vitro experiment evaluated the activity of cefiderocol against 1,873
clinical isolates of Gram-negative organisms from 52 countries (319). A total of 262
strains of MDR P. aeruginosa were exposed to various antibiotics; the MIC90 values
of colistin and cefiderocol were 1 mg/liter, versus �8 mg/liter for ciprofloxacin and
�64 mg/liter for meropenem, cefepime, ceftazidime-avibactam, and ceftolozane-
tazobactam. The same finding was also observed when the activities of several antibi-
otics against 100 strains of imipenem-resistant P. aeruginosa were studied (320). The
MIC90 of cefiderocol was 1 mg/liter, and this drug was the most active of all the
antipseudomonal antibiotics studied.

A mouse model of infection was used to determine the PK/PD characteristics of this
antibiotic against different strains of P. aeruginosa with cefiderocol MICs in the range of
0.063 to 0.5 mg/liter (321). When the %fT� MIC was calculated for the different strains,
it was observed that the probability of achieving the therapeutic target was 100%
against all strains tested at a dose of 166 mg/kg/8 h. While the results of ongoing
clinical trials and other clinical studies are awaited, this drug holds great promise for the
treatment of MDR/XDR P. aeruginosa infections.

Murepavadin

The need to find antibiotics with new mechanisms of action has given rise to certain
agents that are able to interact with external bacterial membranes composed of
phospholipids and lipopolysaccharides (322). Murepavadin is able to interact with the
membrane protein LptD of P. aeruginosa as a peptidomimetic antibiotic with specific
activity against this microorganism. It would therefore be the first microorganism-
specific antimicrobial molecule (323). The activity of murepavadin against 785 strains of
XDR P. aeruginosa has been studied and compared with those of other antibiotics, such
as colistin, ceftolozane-tazobactam, and tobramycin (324). The activity of this antibiotic
was excellent, since it inhibited 97.8% of isolates studied at concentrations of �2 mg/
liter and showed 8 times higher activity than colistin.

A phase I study aimed to assess the PK behavior of murepavadin in healthy
volunteers after a single dose ranging from 0.05 mg/kg to 4.5 mg/kg and after multiple
doses ranging from 1 mg/kg to 5 mg/kg every 12 h (325). The AUCs ranged between
12,500 ng · h/ml for the lowest multiple dose and 74,500 ng · h/ml for the highest, with
a mean t1/2 of between 6.17 h and 7.15 h, respectively. A further study compared the
PKs of this antibiotic in patients with different degrees of renal function (326). The mean
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values ranged between 71.13 and 27.52 ng · h/ml for AUC, between 2.4 and 7 liters/h
for clearance, between 1.4 and 7.8 h for t1/2, and between 80.9 and 76.3 liters for the
volume of distribution in patients with the worst renal function (mean creatinine
clearance of 25.5 ml/min) versus healthy volunteers, respectively. In healthy volunteers,
the ELF/plasma ratio for this antibiotic was practically 1.

In a phase II study in patients with ventilator-associated pneumonia, murepavadin
showed a clinical cure in 10 of the 12 patients with confirmed P. aeruginosa infection
(327). Likewise, the mortality rate was 8%, a value that should be interpreted with
caution due to the low number of patients included in the study. Murepavadin, the first
microorganism-specific antipseudomonal molecule, is a promising therapeutic alterna-
tive due to its excellent antimicrobial activity and PK data.

Cefepime-Zidebactam

Zidebactam, like avibactam, is a non-�-lactam drug belonging to the diazabicy-
clooctane group and has a high affinity for the PBP2 locus of Gram-negative microor-
ganisms as well as a high capacity for �-lactamase inhibition (328). A study assessed the
activity of zidebactam alone or combined with cefepime against several species of
Gram-negative microorganisms, including 50 strains of P. aeruginosa (329). Zidebactam
showed activity against two strains of NDM-positive P. aeruginosa at concentrations of
8 and 32 mg/liter. An analysis of the in vitro behavior of this drug against 1,291 strains
of P. aeruginosa was performed, which included 43 strains of MDR P. aeruginosa: 10
strains that are susceptible to cefepime, 21 strains with overexpression of AmpC or
efflux pumps, and 12 MBL-producing strains (330). The MIC90 of the combination
against cefepime-susceptible strains was 2 mg/liter, versus 4 mg/liter for cefepime. For
strains with overexpression of AmpC or efflux pumps, the 1:1 combination had a
cefepime-zidebactam MIC of 8 mg/liter, versus 16 mg/liter for the 2:1 combination and
64 mg/liter and 32 mg/liter for cefepime and zidebactam alone, respectively. Finally, for
the MBL-producing strains, the MICs of the 1:1 and 2:1 combinations were 8 mg/liter
and 16 mg/liter, respectively. These values show the very high in vitro activity of this
new antibiotic against MDR/XDR P. aeruginosa.

A study evaluated the plasma and intrapulmonary pharmacokinetics of multiple
doses of 2 g cefepime and 1 g zidebactam administered to healthy volunteers and also
carried out a safety analysis (331). After the seventh dose, the mean plasma PK values
of cefepime were a Cmax of 139.5 �g/ml and an AUC of 327.0 mg · h/liter, while those
of zidebactam were a Cmax of 60.0 mg/liter and an AUC of 139.5 mg · h/liter. The mean
concentrations of cefepime and zidebactam in ELF were reached at 1.25 h after
administration, with values of 35.24 mg/liter and 14.61 mg/liter, respectively, and a
plasma/ELF ratio of 2.41. In the case of alveolar macrophages, the highest mean
concentrations of cefepime and zidebactam were 16.99 mg/liter at 8 h and 2.06 mg/liter
at 6 h, respectively. One volunteer presented a moderate hypersensitivity reaction that
was drug related. These data, together with the very high in vitro activity of this new
antibiotic against MDR/XDR P. aeruginosa, define it as an excellent future option for
these infections.

Bacteriophages

Bacteriophages were developed more than a century ago but were superseded by
antibiotics, largely because phage activity is frequently limited to particular strains;
now, however, they are being reinvestigated due to their activity against difficult-to-
treat strains (332). Phage therapy has a special place in Eastern Europe, notably Russia,
Georgia, and Poland. There is limited experience regarding the effectiveness of phage
use. They have mostly been used in phage mixtures with activity against different
resistant strains of P. aeruginosa for the treatment of infections and have shown
promising results, some of them pending publication.

A review showed that the number of studies with phages for the treatment or
prevention of P. aeruginosa infection is limited, and most or all have been developed
in patients with cystic fibrosis and used as inhaled therapy (333). Given that some
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infections in this population are produced by mucoid strains of MDR P. aeruginosa, the
phages used should have activity against both biofilm-producing and non-biofilm-
producing strains. Combination therapy with active antibiotics and phages could be a
possible option that should be evaluated in future studies. One study used an in vitro
model and two mouse models to determine the activity of a combination of 6 phages
against biofilm-producing MDR P. aeruginosa strains in patients with cystic fibrosis
(334). The results with the bacteriophage cocktail used were encouraging and showed
good capacity of the phages in reducing bacterial load and biofilm formation. This
could be a useful strategy for local treatment of deep infections, such as bone and joint
infections caused by XDR P. aeruginosa (335). Another study was based on the isolation
of different P. aeruginosa phages from hospital sewage samples, specifically SL1, SL2,
and SL4 (336). The 5 strains of MDR P. aeruginosa were affected by at least one of the
phages studied, and no bacterial regrowth was observed. Phage SL2 showed the
highest activity against planktonic strains, while SL4 was the best against the biofilm
model. The highest survival rate was achieved with SL1. However, the activity of the
phage cocktail was not better than that of the most active phage used individually.

The use of inhaled antibiotics is currently spreading, and one study set out to
evaluate three different types of nebulizer for administering bacteriophage PEV44,
which is active against P. aeruginosa (337). The authors concluded that the Omron NE22
nebulizer best maintained phage viability. The efficacy and safety of inhaled adminis-
tration of P. aeruginosa phage therapy were evaluated in a mouse model of pulmonary
infection caused by MDR P. aeruginosa (338). The results demonstrated that intratra-
cheal administration of dry phage powder significantly reduced the bacterial load of
MDR P. aeruginosa in the lungs of the mice and resulted in minimal damage to the lung
tissue.

Another strategy that has been studied for the treatment of infections caused by
resistant microorganisms is the use of phages combined with antibiotics (339). Phage-
drug combination therapy has been shown to be superior to the activity of each agent
separately. Phage-antibiotic synergy (PAS) was studied in an in vitro model in which
phages of the family Myoviridae, genus Pbunavirus, showed synergy with multiple
antibiotics, and in the case of the phage active against P. aeruginosa, with piperacillin
and ceftazidime (340).

Bacteriocins

Bacteriocins are substances with antimicrobial activity that are produced by some
bacteria. It has been proposed that they could be used clinically for the treatment for
infections caused by multidrug-resistant microorganisms (341). One study assessed the
activity of three R-type pyocins produced by strains of P. aeruginosa against clinical
isolates of this microorganism in patients with cystic fibrosis (342). These substances
showed potential therapeutic activity that should be considered in future clinical
studies.

Anti-Quorum-Sensing Strategies

Quorum-sensing molecules are regulators of virulence mechanisms that are present
in diverse microorganisms, including MDR/XDR P. aeruginosa (343, 344). These regula-
tors are also involved in the formation of biofilm and in the regulation of gene
expression that underlies collective behaviors in cellular populations. Interfering with
these molecules has been proposed as an alternative or complementary tool against
MDR bacteria by inhibiting their pathogenicity and biofilm formation (345). The strat-
egies to interfere with quorum sensing are directed against the biosynthesis, accumu-
lation, and detection of the signals derived from small molecules that act as self-
inductors of the propagation of quorum sensing (346). Among the strategies to inhibit
quorum sensing are the interference with transcriptional factors related to DNA tran-
scription and signal interference of the quorum sensing once it has been detected, as
has been applied successfully with P. aeruginosa (347), as well as the inhibition of
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bacterial enzymes related to this process in different bacteria, including P. aeruginosa
(348).

Vaccines and Monoclonal Antibodies

One of the strategies for combating infections caused by MDR/XDR microorganisms
involves the use of vaccines or monoclonal antibodies, which are emerging as novel
tools for preventing the acquisition of MDR P. aeruginosa infections in high-risk patients
(349). Some vaccines, namely IC43, KB001-A, and KBPA-101, have already been tested
in critically ill patients (350). A study performed in ventilated critically ill patients
confirmed the immunogenicity of IC43 vaccination in this population (351).

With respect to antibodies, new active targets aimed at neutralizing virulence factors
such as the P. aeruginosa type III secretion system (TTSS) are under development as
monoclonal antibodies and vaccines (352). PcrV is an essential protein for TTSS activity
and the one that has been used mostly as a target. The aim of one study was to develop
monoclonal antibodies that neutralize the virulence of the TTSS by acting on the PcrV
protein (353). In a clinical study, KB001-A, a pegylated antibody that inhibits the
function of the PcrV protein, was administered to cystic fibrosis patients infected with
P. aeruginosa. Although the endpoint of clinical efficacy was not achieved, possible
benefits in the regulation of infection and inflammation in these patients were ob-
served (354). KBPA-101 is another human monoclonal antibody obtained from healthy
volunteers who were given a polysaccharide conjugate vaccine with P. aeruginosa toxin
A (355). This antibody showed linear pharmacokinetics in healthy volunteers and no
adverse effects. Consequently, it has been proposed for future use as an alternative for
the prevention of P. aeruginosa infections (356). Another monoclonal antibody
(V2L2MD) showed very good prophylactic protection in several mouse models of P.
aeruginosa infection. In a rabbit model of pneumonia, MEDI3902, a selective monoclo-
nal antibody against PcrV proteins, and Psl exopolysaccharide showed a highly pro-
tective effect against a highly virulent P. aeruginosa strain (357). This protective activity
was observed in another experiment that demonstrated the high specificity of this
monoclonal antibody against the PcrV epitopes of most of the P. aeruginosa strains
studied, as well as maintenance of its protective effect (358). These results led to a
phase I study in healthy volunteers (359) that demonstrated the efficacy and tolerability
of this drug. At present, this antibody has been included in a phase II proof-of-concept
trial for evaluating the prevention of nosocomial pneumonia in patients colonized by
P. aeruginosa (360).
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