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Abstract

Recent advances in biotechnology, such as Hi-C, CRISPR/Cas9, and ribosome display, have place 

nucleoprotein complexes at center stage. Understanding the structural dynamics of these 

complexes aids in optimizing protocols and interpreting data for these new technologies. The 

integration of simulation and experiment has helped advance mechanistic understanding of these 

systems. Coarse-grained simulations, reduced-description models and explicit solvent molecular 

dynamics simulations yield useful complementary perspectives on nucleoprotein complex 

structural dynamics. When combined with Hi-C, cryo-EM, and single molecule measurements, 

these simulations integrate disparate forms of experimental data into a coherent mechanism.

Introduction

Due to the large size of the nucleoprotein complexes (e.g., ~3 million atoms in for the 

ribosome in explicit solvent) and long time scales involved (~seconds), computational 

studies must use various approximations, often requiring compromises between force field 

accuracy and the time scale sampled. One is reminded, however, that simplified models can 

sometimes be powerful. For example, in the case of the orbits of the planets around the Sun, 

the Earth and every organism on it are approximated by a single point particle; yet the 

resulting model produces highly accurate predictions for the Earth’s orbit. As often occurs in 

molecular dynamics simulations, high levels of detail in the force field are typically attained 

at the cost of the time scale sampled, and in turn, accuracy of the entropic contribution to the 

free energy. Similarly, enhanced sampling techniques that produce exhaustive sampling 

either (1) reduce the level of detail in the force field or (2) simulate portions of the 

macromolecular complex. Each technique, however, is quite useful on its own right and 

provides new insight and new perspectives into dynamics that were previously unexplored 

experimentally. In many cases, the beginning and end states of conformational changes are 

known from cryo-EM, along with rates determined by single molecule FRET. Molecular 

simulation provides a powerful way to merge available experimental data into a single, 

integrated movie, yielding a highly useful perspective unavailable from experimental data 

alone. In this review, we summarize many of the various computational techniques used to 
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study nucleoprotein complexes. While the review is by no means entirely comprehensive, it 

serves as a starting point for researchers in the field.

Structural modeling of the ribosome

Early computational studies of the ribosome concentrated on structural modeling of the 

bacterial ribosome, before higher resolution x-ray crystallography structures were solved [1–

6]. RNA homology methods were used to construct predictive models of the E. coli 30S 

ribosomal subunit and the T. thermophilus 70S ribosome highly consistent with cryo-EM 

data and used for phasing x-ray crystals [7,8]. After X-ray crystallographic structures of 

ribosomal subunits were solved, it was possible to perform molecular dynamics simulations 

of important functional regions [9,10], normal mode calculations [11] and Poisson-

Boltzmann analysis on the intact ribosome[12]. In a very interesting use of explicit solvent 

molecular dynamics simulation, Frank and co-workers performed simulations of the tRNA 

in solution and selected conformations with very close correlations to their tRNA cryo-EM 

density inside the ribosome [13].

Computational studies of intact ribosomes: coarse-grained and reduced 

description simulations

Normal mode analysis and elastic network models have described overall global motions of 

the ribosome at nucleotide resolution [11,14,15]. These studies reproduced intersubunit 

rotation, movement of the small subunit head and large-scale motions of the L1 stalk and 

L7/L12 stalk in bacteria. This technique was also used to perform some of the first 

automated molecular fitting of cryo-EM reconstructions [16,17]. Further elastic network 

models have depicted the coupled motions of tRNA and mobile domains of the ribosome 

[18]. Jernigan and co-workers also examined dynamics of the mRNA channel on the 

ribosome, a key player in tRNA translocation through the ribosome, suggesting that the 

entry clamp may assist in base recognition to ensure proper selection of the incoming tRNA 

[19]. In addition to elastic network models, early electrostatic calculations determined 

charged regions on the ribosome [12], showing the surface of the ribosome to be mostly 

negative with scattered positively charged regions corresponding to ribosome proteins.

Reduced-model molecular dynamics simulations have explored larger regions of 

configurational space and longer time scales. Trylska and co-workers performed coarse-

grained molecular dynamics of the entire ribosome on a half a microsecond time scale, 

accounting for large-scale motions by implementing a Morse potential function, observing 

intersubunit rotation and stalk motion[20]**. Here, large-scale collective motions such as the 

rotation of the subunits were produced. In addition, the anti-correlated movement of the 

ribosomal stalks positioned on the opposite sides of the large subunit was observed. Studies 

performed by Trylska et al. also enabled the investigation of large-scale conformational 

changes coupled with electrostatic effects.

All-atom reduced model simulations based on a structure-based potential have enabled 

systematic studies of spontaneous large-scale conformational changes with atomistic detail 

[21]. Here, reversible excursions of tRNAs into and out of ribosomal binding sites were 

Sanbonmatsu Page 2

Curr Opin Struct Biol. Author manuscript; available in PMC 2020 May 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed, consistent with recent single molecule FRET experiments. These simulations 

produced sampling on the order of ~200 milliseconds for the ribosomal complex in atomistic 

detail.

In studies of intersubunit rotation of the entire ribosome, Whitford and co-workers, by 

accounting for molecular flexibility, demonstrated that rotation likely involves asynchronous 

movement of the bridges, where the transition state is associated with partial rotation and the 

full displacement of bridge B8 [22].

Noller and co-workers have performed a very interesting computational study on ribosome 

dynamics, where they use translation-libration-screw (TLS) constraints to refine atomistic 

models based on x-ray diffraction data [23]. Here, they examine the mobilities of the 

peptidyl transferase center, the Shine-Dalgarno helix, as well as the 30S rotation relative to 

the 50S subunit. This was followed by an innovative study placing the head swivel 

movement in the context of nearly every structural study of translocation, showing that a 

two-hinge mechanism enables head-swivel [24].

In the first molecular simulations of the eukaryotic ribosome, experimentally determined 

SHAPE chemical probing data was integrated into a structure-based force field to determine 

conformational hotspots during translocation [25,26].

Computational studies of intact ribosomes: explicit solvent molecular 

dynamics simulations

Explicit solvent molecular dynamics simulations of the entire ribosome have examined 

large-scale conformational changes of the ribosomal complex. One of the more tractable 

conformational changes is movement (accommodation) of tRNA from its partially bound 

state (A/T) to its fully bound state (A/A) that occurs during tRNA selection. Targeted 

molecular dynamics simulations correctly predicted the regions of the large subunit that 

interact with the tRNA during this conformational change (accommodation corridor) [27]. 

These simulations are consistent with snoRNA deletion studies in yeast, producing 

ribosomes with unmodified nucleotides in the accommodation corridor[28,29]. The resulting 

ribosomes displayed fidelity phenotypes including defects in −1 frameshifting, peptide bond 

formation and misreading [29]. Mutational studies by the same group demonstrated that 

mutations of the predicted three-dimensional gate (A2556, 2492 and 2483) are viable for 

normal ribosomes, but dramatically effect growth when treated by antimicrobials [30]. The 

Dontsova lab also performed mutations on the same three nucleotides [31,32], finding that 

two of the nucleotides impair peptide release while the third is lethal and acts to block 

peptide bond formation, presumably by impeding tRNA accommodation into the fully 

bound (A/A) conformation. Simulation molecular simulation studies delineated the corridor 

(hybrid corridor) that facilitates movement of tRNAs from the classical state (A/A, P/P) to 

the hybrid state (A/P, P/E) [33] [34]. Molecular dynamics simulations of the intact ribosome 

have also examined dynamics of the L1 stalk and the ribosome exit tunnel in the large 

subunit of the ribosome [35–37]. Explicit solvent simulations of the 70S ribosome have 

connected measured kinetic rates of accommodation, intersubunit and head swivel motions 

to free energy barriers [38] [39]*. These microsecond simulations of the ribosome (3.2 
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million atoms) measure the diffusion of tRNA inside the ribosome, intersubunit rotation and 

head swivel, producing an estimate of the pre-factor in the Ahrenius equation for this 

process. The first simulations of ribosome-EF-P interactions, combined with cryo-EM, 

showed that EF-P modification and absence of EF-P protein result in the peptidyl-tRNA 

moving away from the A-site tRNA, generating a geometry that is incompatible with peptide 

bond formation [40]. A similar study of ErmBL-stalled ribosomes also examined movement 

in the peptidyl transferase center [41]. The studies nicely integrated simulations of the 

peptidyl transferase center with simulations of the full ribosome.

Computational studies of functional regions of the ribosome:

Another class of ribosome simulations focuses on localized regions of the ribosome that are 

critical for protein synthesis. Quantum mechanical studies of the peptidyl transferase center 

have explored reaction mechanisms [42,43]. Warshel an co-workers examined the 

mechanism of GTP hydrolysis by EF-Tu during tRNA selection, concluding that the critical 

residue H84 contributes to an allosteric effect [44]. Wieden and co-workers have performed 

extensive studies on the mechanism of EF-Tu, including one very interesting investigation 

that combines molecular dynamics simulations with rapid kinetics studies [45]. Aqvist and 

co-workers have also examined the mechanism of the peptidyl transferase reaction, combing 

an empirical valence bond description with molecular dynamics simulations, concluding that 

an acid-base catalysis method is unlikely, favoring a proton-shuttling mechanism that does 

include the P-site adenine O2’ oxygen [42,46]. Aqvist and co-workers have also applied 

quantum chemical methods to termination [47].

Short time scale simulations of the decoding center complexed with mRNA and tRNA 

anticodon stem loops have examined the stability of the decoding center hydrogen bond 

network for a wide range of cognate, near-cognate and non-cognate mRNA-tRNA 

combinations [48], suggesting that ribosomal RNA had a stabilizing effect on cognate 

codon-anticodon interactions and a destabilizing effect on certain non-cognate combinations. 

Aqvist and co-workers performed a similar study with longer aggregate sampling, estimating 

binding free energies [49]. They applied a similar method to study stop-codon recognition 

[46] and studied the interaction between the L7/L12 stalk, showing that complementary 

charge-based interaction between L12-CTD and IF2 is important for fast subunit association 

[50]. Aqvist and Green studied the mechanism of peptide release, finding that the 2’ OH of 

the P-site substrate is critical for orienting the nucleophile in a hydrogen-bonding network 

productive for catalysis [51].

Several studies investigated the dynamics of the decoding center helix [52–55]. Explicit 

solvent simulations of the decoding center complexed with antibiotics examined the stability 

of the drug-ribosome interactions [53]. Exhaustive sampling simulations (replica exchange 

molecular dynamics simulations) show a high degree of convergence after one microsecond 

in the absence of antibiotics and 15 microseconds the presence of gentamicin. These studies 

show the decoding center bases (A1492 and A1493) flipping in and out of helix 44 in 

absence of drug [52,53], while in the presence, the equilibrium shifts towards the flipped out 

state with time scales consistent with 2-aminopurine fluorescence studies of the decoding 

helix. The studies produced the first energy landscapes of the ribosome, and suggest that an 
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entropy shuttling mechanism may move the drug from local minimum to local minimum 

until the binding site is reached. Brooks and co-workers performed studies suggesting that 

flipping of the decoding bases can distinguish between cognate and near-cognate tRNAs 

[51].

Trylska and co-workers performed explicit solvent molecular dynamics simulations of 

decoding introducing various mutations, finding differences in the internal mobility of the 

A-site, as well as in ion and water density distributions inside the binding cleft, between the 

prokaryotic and mutated RNA [54]. They also examined the effect of A2058G on 

clindamycin activity[56]. In an important study, Trylska and co-workers used Brownian 

dynamics simulations to examine antibiotic binding to the 30S subunit, showing that 

electrostatic steering is not the sole factor directing the aminoglycosidic antibiotic toward 

the binding site on the 30S ribosomal subunit. The simulations explain why paromomycin 

overstabilizes the 70S ribosome complex and precludes its dissociation into 30S and 50S 

subunits. The study unveiled other binding clefts in ribosomal RNA and explained the 

physical mechanisms of aminoglycoside diffusion and binding to the ribosomal RNA [57]*. 

A number of additional studies of localized ribosomal regions have focused on drug-

ribosome interactions [53–55,58].

Sponer and co-workers have explicit solvent simulations of three-way junctions present in 

the ribosome, demonstrating that the junctions contribute to functional fluctuations of the 

ribosome, including 5S rRNA, A-site finger, and L7/L12 stalk RNA [59]*. Sponer, Frank 

and co-workers performed studies of the A-site finger [60]. Several groups have used 

molecular simulations to study dynamics and peptide folding within the exit tunnel of the 

large subunit of the ribosome [61–66]. O’Brien an co-workers identified a new source of 

mechanical force acting on the ribosome by combining experimental measurements of 

changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and 

coarse-grained simulations, observing that the route of force transmission is shown to be 

through the nascent polypeptide’s backbone, not through the wall of the ribosome’s exit 

tunnel [67].

Nucleosomes, di-nucleosomes, tri-nucleosomes, and tetra-nucleosomes

A wide range of single and multiple nucleosome simulations have been performed, both at 

atomistic and coarse-grained levels of detail. Simulations of single nucleosomes have 

studied the flexibility of DNA and histone tails in the context of nucleosomes[68]. In the 

context of a comprehensive multiscale study, multimicrosecond explicit solvent molecular 

dynamics simulations of dinucleosome, including histone tails were performed with three 

different state-of-the-art force fields and validated by experimental NMR measurements. 

Takada and co-workers have examined the effect of histone acetylation on trinucleosome 

dynamics [69]. Coarse-grained simulations of unrolling have been studied by Langowski 

and co-workers [70]. The SIRAH force field extension for protein-DNA complexes has been 

used to perform coarse-grained simulations of tetranucleosomes to study DNA dynamics 

within the context of this system[71]. Many coarse-grained models of DNA itself have been 

described previously[72].
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Coarse-grained simulations of chromatin: nucleosome arrays and intact 

gene loci

Schlick and co-workers have developed a coarse-grained model for polynucleosome systems 

over the past 15 years, that captures the physics of nucleosome-nucleosome interactions and 

sterics, electrostatics, flexible DNA and histone tails, consistent with many forms of 

experimental data [73–76]. Because the model has much more detail than full chromosome 

bead polymer models, but less detail than atomistic models, the model is referred to as 

mesoscale. The model includes different coarse-grained representations for linker DNA, 

flexible histone tails, linker histone, and nucleosomes [74–79]. The mesoscale model [80–

86] has reproduced properties related to internucleosome distances, entry/exit angles, 

sedimentation coefficients, diffusion contacts, fiber curvature, force versus extension 

measurements, and cross linking data [73,74,84,87–89]. More recently tools related to 

electrostatics, Langevin dynamics, Monte Carle and enhanced sampling have been added 

[82,84,90–92] [87,93,94]. Recently, the mesoscale model was used to study HOXC, 

producing the first folded gene structure that was defined from first principles (nucleosome 

positions, epigenetic marks, linker histones) [95]. A second mesoscale model uses a globular 

histone core and flexible histone tails described by one particle per each amino acid, taking 

into account their net charge. DNA wrapped around the histone core is approximated at the 

level of two base pairs represented by one bead (bases and sugar) plus four beads of charged 

phosphate groups. Simulations of this model reproduced experimental results and the 

structure of the nucleosome-nucleosome contacts [96].

Intact gene loci: explicit solvent simulations

Recently, the first explicit solvent molecular dynamics simulations of an intact gene locus 

were performed (GATA4), consisting of 427 nucleosomes and 83 kb of DNA, requiring 

approximately one billion atoms [97]. Here coarse-grained models of GATA4 from Schlick 

and co-workers [97,98] were remodeled to construct an all-atom model. This was solvated 

with water and ion excess ions, minimized and run in molecular dynamics mode with 

particle mesh Ewald using the GENESIS molecular dynamics code. Scaling past 500,000 

processor cores was achieved.

Coarse-grained simulations of intact chromosomes and genomes

The advent of high resolution chromatin capture technology (Hi-C) has produced intense 

interest in 3-D modeling of chromosomes. By crosslinking distal regions of chromosomes 

and sequencing them at high resolution, Hi-C allows one to map interactions between 

chromosome regions, enabling approximate 3-D reconstructions of chromosomes. A 

working model of chromatin architecture resembling a fractal globule has been proposed 

[99,100]. Early Hi-C studies demonstrated that chromosomes tend to be organized into 

large-scale (~5 Mb) A/B compartments and smaller topologically associating domains 

(TADs) within the compartments (0.3–0.8 Mb). While the TADs entail modular, locally 

isolated interactions, the compartments form a checker board pattern in the contact map, 

depicting longer-range interactions that segregate active, A/T rich regions from less active, 

G/C rich regions [99,100]. The A/B compartments can be extracted by Eigen-vector analysis 
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(i.e., principal component analysis). Interestingly, in the X chromosome in females, one of 

two X chromosomes is inactivated, whereby a long non-coding RNA (Xist RNA) effectively 

coats the chromosome, ultimately resulting in a massive reorganization of the chromosome 

architecture: A/B compartments are replaced by a different set of compartments (S1/S2) 

[101–103]. Here, the interactions are segregated according to their interactions with the Xist 

RNA. That is, during X chromosome inactivation, the inactive X chromosome is partitioned 

into Xist-rich S1 and Xist-poor S2 compartments, which are eventually merged into a single 

compartment by the SMC protein, SMCHD1[101–103].

Using a very coarse-grained (typically 1 bead > 50 kB) homopolymer model, one can use 

Monte Carlo [100,104–108] or Langevin dynamics simulations [109–115] to mimic the 

structure and dynamics of chromatin. These and other simulations often display raindrop 

shaped features analogous to the topologically associating domains (TADs) characteristic of 

Hi-C maps [112–116]. More recently, knowledge-based potential terms directly incorporate 

Hi-C and other data to obtain contact maps quite similar to experimentally measured Hi-C 

maps [107,109–111,113–115]. Regarding Langevin dynamics, Onuchic and Wolynes have 

constructed a quasi-equilibrium homopolymer model (MiChroM) including 

interchromosomal interactions, loop extrusion factors (e.g., CTCF and cohesion), and a 

maximum entropy term to incorporate interactions observed in Hi-C experiments [114,115]. 

Their quasi-equilibrium energy landscape studies were used to demonstrate that the 

confinement of crowding effectively slows diffusion, consistent with experimentally 

observed diffusion, viscoelasticity and spatial confinement. The model is highly extensible, 

allowing the authors to construct an excellent model incorporating ChIP-seq data, enabling 

the study of a variety of epigenetics marks [113].

Innovative coarse-grained methods

Several interesting coarse-grained methods have been developed recently that can be applied 

to interesting aspects of nucleoprotein complex mechanism. Wu and co-workers developed a 

Monte Carlo simulation algorithm which incorporates both molecular factors including 

conformational changes of cellular adhesion molecules and cellular factors including 

fluctuations of plasma membranes to approach the physical process of adhesion [117]. A 

highly effective method that combines molecular simulation with SAXS and hydroxyl-

radical probing experiments has been developed by Yang and co-workers [118]. Zheng and 

co-workers developed an interpolated elastic network model (iENM) protocol to construct a 

transition pathway for large macromolecular complexes such as SNARE [119]. Several other 

methods are described in a comprehensive review by Kolinski and co-workers [120].

Molecular simulations of the CRISPR-Cas9 and related complexes.

In terms of biotechnology, one of the most exciting areas of molecular simulations of 

nucleoprotein complexes is the CRISPR-Cas9 system used in gene editing. McCammon and 

co-workers have performed a number of pioneering studies, incorporating the latest 

experimental data to shed light on the mechanism of CRISPR-Cas9 [121,122]. Using 

Gaussian-accelerated molecular dynamics, they reveal the conformational dynamics of Cas9 

during activation toward catalysis and find the conformational transition of Cas9 from its 
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apo form to the RNA-bound form. Interesting coarse-grained studies of CRISPR mechanism 

have been recently performed by Zheng [123].

Single molecule and other in vitro studies

Single molecule studies often reveal the dynamics of a system, connecting structural studies 

to computer simulations. As a result, a comprehensive picture of mechanism is constructed 

that integrates multiple experimental perspectives of the same phenomena. For ribosomes, 

nucleosomes and chromatin, single molecule experiments have played key roles in 

advancing mechanism.

Regarding larger regions of chromatin, a number of interesting studies have produced new 

insight into the compaction of chromatin architecture within a rigorous, in vitro setting. 

Nordenskiold and co-workers recently performed single molecule studies of a 165 kb mimic 

of chromatin, reconstituting chromatin from T4 phage DNA (165 kb) and recombinant 

human histone octamers. In this exciting study, the authors probed the compaction of 

chromatin as a function of magnesium and spermine ions using single molecule fluorescence 

microscopy and dynamic light scattering, identifying ~250–400 nm condensates, 

comparable to the compaction observed in vivo. In addition, the authors performed 

transmission electron microscopy (TEM) and atomic force microscopy to clearly identify 

single nucleosomes, beads-on-a-string formations and aggregrated nucleosomes [124]. Fierz 

and co-workers use single molecule FRET to measure the time scales of nucleosome-

nucleosome stacking, revealing that even tightly packed nucleosomes undergo reshuffling of 

configurations, exhibiting a hierarchy of dynamics of micro- to milliseconds [125]. 

Specifically, they examine an array of twelve nucleosomes organized into three 

tetranucleosome units, where Alexa 568 donors and Alexa 647 acceptors are placed on the 

DNA of neighboring nucleosomes, directly measuring nucleosome-nucleosome stacking. 

Discrete tetranucleosome units exchange nucleosome stacking partners (register 

interconversion) on the order of hundreds of microseconds. Distorted and open 

configurations are also sampled. They examine compaction caused by HP1a, a factor that 

cross bridges H3K9me3-modified nucleosomes. When HP1α is added, causing even more 

compaction, significant dynamics persist. Dekker and co-workers used flow through 

microfluidic chambers to dynamically image the process of DNA loop extrusion by yeast 

condensing, extruding ~10kb of DNA at 1.5 kb/s using ATP hydrolysis[126]. Bulk FRET 

studies of show that the chromatin architectural factors, linker histone (H1) and MeCP2 

(Rett Syndrome) produce compaction by trapping the nucleosomes in more tightly wrapped 

states[127]. In combination with restriction enzyme accessibility studies for 17-mer 

nucleosome arrays, the study suggests that linker histone and MeCP2 may create higher-

order chromatin structure susceptible to remodeling by ISWI. In small angle X-ray 

scattering studies (SAXS), Luger and co-workers show that nucleosomes with extra-

nucleosomal DNA engage additional binding sites in MeCP2, resulting in a compact higher-

order complex[128]. Time resolved SAXS experiments by Pollack and co-workers examined 

salt-induced disassembly of nucleosome particles, demonstrating that histone protein dimers 

are released sequentially, with the first H2A-H2B dimer released only after the DNA has 

formed a teardrop-shaped conformer[129]. Lastly, a large number of single molecule studies 
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of nucleosomes have been performed, gaining insight into nucleosome wrapping, sliding, 

and dynamics, among other aspects of nucleosome function[130–133].

Conclusions: Outstanding issues and future outlook:

A wide variety of computational techniques have been used to capture the dynamics and 

mechanisms of nucleoprotein complexes, ranging from the highly detailed explicit solvent 

molecular dynamics simulations of nucleosomes and ribosomes to coarse-grained polymer 

bead models used to visualize Hi-C data for entire chromosomes. While the ribosome 

represents one of the most well-studied biophysical systems, where workers are computing 

free energies of transitions, chromosomes represent the next frontier, where emerging 

fundamental questions are arising. The vast array of diverse techniques provides one with a 

myriad of perspectives, whether it be global motions on long time scales or conformational 

changes of single residues that are crucial for biological function. Overall, computational 

methods allow one to synthesize a wide range of different experiments into a more coherent 

mechanism of the nucleoprotein complex. In one sense, movies generated by molecular 

simulation produce a more realistic view of macromolecular function because they include 

the constant background of small and large thermal fluctuations that give rise to 

conformational changes, painting a vivid picture of, for example, the stochastic Brownian 

motion required for ribosome conformational changes [134]. In contrast, movies 

accompanying X-ray crystallography or cryo-EM studies can sometimes be over simplified, 

showing (i) tractor-beam like behavior of one protein being mysteriously guided in a bee line 

to its target on a macromolecular complex, (ii) linear morphing between states with no 

fluctuations whatsoever, or (iii) flashing between two single snapshots. Inexpensive 

simulators, such as SMOG and others, provide a convenient method to visualize stochastic 

conformational changes [135].
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Figure 1. 
Explicit solvent simulations of the GATA4 gene locus, including 427 nucleosomes, 83 kb 

and 1 billion atoms. Magenta, DNA; blue, proteins (histone octamers).
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