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Abstract

Nymphaea tetragona Georgi (Nymphaceae) is traditionally used in Asia for the treatment of

diarrhea, dysentery and fever. The plant contains various active compounds, including

methyl gallate (MG) which are reported to inhibit bacterial virulence mechanisms. This study

aimed to evaluate the alterations on viability, membrane potential and integrity of Salmonella

enterica Serovar Typhimurium exposed to MG in combination with Tylosin (Ty), which is rel-

atively inactive against Gram-negative bacteria, but it is commonly used as a feed additive

in livestock. Besides, the effects of sub-inhibitory concentrations of the combination (MT) on

the interaction between S. Typhimurium and the host cell, as well as on the indirect host

responses, were characterized. Flow cytometry, confocal and electron microscopic exami-

nations were undertaken to determine the effects of MT on S. Typhimurium. The impacts of

sub-inhibitory concentrations of MT on biofilm formation, as well as on the adhesion, inva-

sion and intracellular survival of S. Typhimurium were assessed. The result demonstrated

significant damage to the bacterial membrane, leakage of cell contents and a reduction in

the membrane potential when treated with MT. Sub-inhibitory concentrations of MT signifi-

cantly reduced (P < 0.05) the biofilm-forming, adhesive and invasive abilities of S. Typhimur-

ium. Exposure to MT drastically reduced the bacterial count in macrophages. Up-regulation

of interleukin (IL)-6, IL-8 and IL-10 cytokine genes were detected in intestinal epithelial cells

pre-treated with MT. This report is the first to describe the effects of MT against S. Typhimur-

ium. The result indicates a synergistic interaction between MG and Ty against S. Typhimur-

ium. Therefore, the combination may be a promising option to combat S. Typhimurium in

swine and, indirectly, safeguard the health of the public.

Introduction

Salmonella enterica Serovar Typhimurium is one of the causative agents of food poisoning that

is transmitted to humans from food animals, such as pigs and chickens. Pigs and chicken are
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asymptomatic carriers that harbor S. Typhimurium mainly in the intestine. Consumption or

mishandling of contaminated pork and poultry products are the primary causes of gastroen-

teritis in human [1, 2]. Therefore, reduction of the intestinal bacterial load and fecal excretion

of the bacteria can be considered to reduce the prevalence of infection in swine and its associ-

ated risk in humans.

Despite modern antibiotic treatment, S. Typhimurium-related morbidity and mortality

remains unacceptably high. A significant proportion of Salmonella isolates from humans and

various species of animals, including swine, are multidrug-resistant and pose a major public

health concern [3]. S. Typhimurium is likely to acquire and retain anti-microbial resistance

genes following exposure to anti-microbial agents in animals [4]. In addition, the reluctance of

the pharmaceutical industry to develop new antibiotics has further intensified the problem.

Consequently, there has been considerable interest among researchers and clinicians in the

use of a combination of antibiotics with natural compounds, as an alternative method to con-

trol pathogenic microorganisms. A combination of antibiotics with natural compounds are

suggested to enhance the spectrum of activity, reduce the emergence of resistance, and provide

synergistic effects [5–7].

Tylosin (Ty) is a macrolide antibiotic, which inhibits protein synthesis in Gram-positive

pathogens and Mycoplasma species. In veterinary medicine, it is used primarily to control

respiratory diseases in swine and other farm animals [8]. The activity of Ty is limited against

Gram-negative bacteria, especially those of the Enterobacteriaceae, because of reduced pene-

tration of the outer membrane. Although it has been banned from most of the European coun-

tries, in other parts of the world, sub-therapeutic levels of antibiotics, including Ty, are

commonly used in livestock, especially in pigs, for growth promotion [9].

Nymphaea tetragona Georgi (family: Nymphaceae; English name: Water Lily; Korean

name: Su-ryeon) is widely distributed in Asia, Europe and North America [10, 11]. In Asian

traditional medicine, various parts of the plant are commonly applied to treat symptoms that

are directly associated with salmonellosis such as diarrhea, dysentery, enteritis and fever [12,

13]. The authors demonstrated that methanol extract of N. tetragona inhibited the quorum

sensing (QS) abilities of Chromobacterium violaceum and Pseudomonas aeruginosa [14]. Inter-

estingly, our study also confirmed a synergistic interaction between the ethyl acetate fraction

of N. tetragona (EFNTE) and Ty against S. Typhimurium. The major chemical compounds

detected in EFNTE were methyl gallate (MG = 70.44%) and 1,2,3-benzenetriol or pyrogallol

(PG = 20.61%) [15].

Therefore, the authors hypothesized the existence of synergy between Ty and the active

compounds present in EFNTE against S. Typhimurium. Given that one or both of these com-

pounds might be responsible for the activity of EFNTE, a screening test (minimum inhibitory

concentration [MIC]- and fractional inhibitory concentration index [FICI]-based) was con-

ducted on the anti-bacterial activities of the combination of MG with Ty (MT), and the combi-

nation of Ty with the active compound PG against S. Typhimurium (ATCC 14028). The result

demonstrated that only MT exhibited synergism against S. Typhimurium.

Earlier studies on MG have shown its activity against a wide range of bacteria, including

Salmonella when applied alone and in combination with antibiotics [16–18]. In addition,

Acharyya et al. [19] and Sánchez et al. [20] demonstrated the membrane-damaging activities

of MG on multidrug-resistant Shigella spp and Vibrio cholerae, respectively. The above studies

examined the anti-bacterial activity of MG alone and in combination with antibiotics that are

approved for the use in at least Gram-negative bacteria. However, in this study, Ty that is not a

drug of choice for treatment of Gram-negative bacteria, was combined with MG as described

above (MT) to evaluate the in vitro activity against S. Typhimurium. Additionally, unlike the

previous studies, the effects of sub-inhibitory concentrations of MT on the interaction between
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S. Typhimurium and the host cell, as well as on the indirect host responses, were

characterized.

Materials and methods

Chemicals and reagents

Unless specified, the chemicals and reagents used in the current study were purchased from

Sigma (St. Louis, MO, USA). Stock preparations of 30 mg/mL of MG, PG and Ty were pre-

pared in 50% ethanol and diluted in the appropriate medium (sterile distilled water and bacte-

rial or cell culture medium). The proportion of ethanol in the final diluent never exceeded

0.5% (v/v).

Salmonella strains and culture conditions

The study was conducted using S. Typhimurium (LVPP-STI15) from pigs, a strain that has

been described and used in our previous study [21], and S. Typhimurium (ATCC 14028). S.

Typhimurium was routinely cultured in Luria–Bertani (LB) agar (Difco, Sparks, MD, USA).

Prior to assays, it was grown overnight in LB broth at 37˚C.

Cell culture

Human colorectal cancer (Caco-2) and RAW 264.7 macrophage cells were obtained from the

Korean Cell Line Bank (Seoul, Korea). Caco-2 cells were maintained in minimum essential

medium (MEM; Gibco, Grand Island, NY, USA) supplemented with 1% penicillin–streptomy-

cin, 1% non-essential amino acids and 20% fetal bovine serum (FBS). RAW 264.7 macro-

phages were grown in Roswell Park Memorial Institute (RPMI) medium, containing 1%

penicillin–streptomycin and 10% FBS. Cells were grown at 37˚C in 5% CO2, and the medium

was changed every other day.

MIC and minimum bactericidal concentration (MBC)

The MICs of Ty, MG and PG against S. Typhimurium strains were determined using the

broth microdilution method [22], with an inoculum of approximately 1×105 colony-forming

units per milliliter (CFU/mL) in Mueller–Hinton broth (MHB) and antibiotic-free cell culture

medium. MIC was determined as the lowest concentration of the agent that inhibits visible

growth, which appeared as non-turbid as judged by the naked eye after incubation at 37˚C for

24 h. Aliquots from wells not showing visible growth were plated on LB agar medium. The

lowest dilution concentrations that killed the bacterial inoculum after a further incubation at

37˚C for 24 h were considered as the MBCs. MICs and MBCs were determined in triplicate in

five independent experiments.

Checkerboard assay

The anti-bacterial effects and interactions between Ty and both compounds (MG and PG)

were assessed by the checkerboard method. Serial dilutions of MG and PG (range, 1/32× MIC–

4× MIC) were diluted on separate plates and mixed with a similar MIC fold range of Ty. S.

Typhimurium (1×105 CFU/mL) was inoculated into the mixed solutions and incubated at

37˚C for 24 h. Control wells were free of S. Typhimurium or the test compounds. The assay

was performed three times in triplicate. Afterwards, the FICI was determined, as previously

described (FICI� 0.5, synergy; 0.5< FICI� 1.0, additivity; 1< FICI� 4.1–4.0, indifference;

FICI > 4.0, antagonism) [23].
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In vitro time–kill assay

Based on the results of the checkerboard assay, the concentration of the combination that

caused synergism (1× MT: 128 μg/mL MG and 256 μg/mL Ty), and two more concentrations

combinations below the 1× MT (1/4× MT and 1/2× MT), with their respective controls, were

assessed using the time–kill assay. S. Typhimurium (1×105 CFU/mL) in MHB was incubated

at 37˚C with MG (32, 64, and 128 μg/mL), Ty (64, 128 and 256 μg/mL) and MT (1/4×, 1/2× and

1×) in 10 mL MHB. After 0, 1, 2, 4, 8, 12 and 24 h from the time of incubation, 100 μL was

removed, and serial 10-fold dilutions were made in agar saline (0.1% agar in saline solution;

Difco, Sparks, MD, USA). Then, 20 μL of the dilutions were spread-plated on LB agar plates,

and the CFUs were determined after incubation at 37˚C for 24 h.

Bacterial membrane integrity

Membrane integrity was determined by using the LIVE/DEAD BacLight kit (Molecular

Probes, Eugene, OR, USA) with a slight modification of the manufacturer’s instructions. S.

Typhimurium (106 CFU/mL) was treated as described in the time–kill assay, for 4 h. Three

microliters of SYTO9 and a propidium iodide (PI) mixture (1:1) were added to 1 mL of pre-

treated bacterial cultures and incubated in the dark for 15 min. Samples were then visualized

using a Zeiss confocal microscope (LSM700, Carl-Zeiss, Jena, Germany) at excitation/emission

wavelengths of 480/500 and 490/635 nm for SYTO9 and PI stain, respectively.

Scanning electron microscope (SEM) analysis

The effect of MT on bacterial membrane integrity was further examined using an SEM, with a

slight modification of the method described by [24]. S. Typhimurium (107 CFU/mL) was

treated as described in the time–kill assay at 37˚C for 6 h. Bacteria were centrifuged (10,000 g
for 15 min) and washed twice with 0.9% saline solution, re-suspended in 2.5% glutaraldehyde

and maintained at –4˚C for 12 h. The resultant cells were centrifuged (10,000 g for 8 min) and

dehydrated in ethanol (30, 50, 70, 80, 90 and 100%) for 10 min. The samples were further

dried and examined under an SEM (SU8200 Hitachi, Tokyo, Japan).

Determination of membrane potential (MP)

The change in the differences in electric potential that exists across the intact bacterial cell

membrane (i.e., the MP) following MT treatment was determined using the BacLight bacterial

MP kit (Molecular Probes). S. Typhimurium (107 CFU/mL) was diluted in phosphate-buffered

saline (PBS) and treated similarly to the time–kill assay, for 2 h. Afterwards, 10 μL (3 mM) of

3,3-diethyloxacarbocyanine iodide was added to 1 mL of the bacterial suspension and mixed

well. Ten microliters of 500 μM carbonyl cyanide 3-chlorophenylhydrazone was added into

the control tube while an equal volume of PBS was added to the non-treated control. Following

incubation at room temperature for 15 min, the samples were analyzed using flow cytometry

(BD Biosciences, San Jose, CA, USA) at excitation and emission filters of 488 and 515 nm,

respectively. The MP was determined based on the ratio of the red-to-green fluorescence

intensity.

Biofilm inhibition and dispersion assay

The effect of sub-inhibitory concentrations of MG (2–128 μg/mL), Ty (2–256 μg/mL) and MT

(1/128× MT–1/4× MT) on S. Typhimurium biofilm was evaluated using a minor modification

of a previous method [25]. Overnight cultures of S. Typhimurium grown in tryptic soy broth

were normalized to an OD600 of 0.8. Two hundred microliters of a 1:100 dilution (in tryptic
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soy broth) of the normalized cultures was dispensed in 96-well plates, treated with different

concentrations of MG, Ty and MT, and incubated at 30˚C under static condition. Control

plates were not treated with any of the test substances. Following a 24-h incubation, the plank-

tonic bacteria growth was confirmed using a microplate reader (optical density at 600 nm).

The plates were then washed with sterile double-distilled water, fixed at 60˚C for 1 h and

stained with 0.1% crystal violet (CV) in water. After incubation at room temperature for 15

min, the CV was solubilized using 30% acetic acid in water, and the absorbance was deter-

mined at 550 nm against the blank (30% acetic acid in water). The concentrations of MG, Ty

and MT that resulted in 50% inhibition of the maximum biofilm formation (EC50) were deter-

mined. Furthermore, the impact of MT on biofilm dispersion was measured in cells treated

after 24 h of biofilm formation and incubated further for 24 h.

Cytotoxicity assay

The cytotoxic effects of MG, Ty and MT on Caco-2 and RAW 264.7 cells were determined

using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay

described by [26]. The absorbance was determined at 570 nm using a VersaMax microplate

reader (Molecular Devices, Sunnyvale, CA, USA), and the percentage viability of cells was

determined as follows.

Percentage viability = (OD value of treated cells/OD value of control cells) ×100

where OD is the optical density.

Adhesion and invasion assay

The gentamicin protection assay [27] was conducted to evaluate the impacts of different con-

centrations of MG, Ty and MT on the adhesion and invasion capacity of S. Typhimurium to

Caco-2 cells. Cells (105/mL) were grown in 24-well plates in antibiotic-free medium. Cells

were treated with 900 μL of MG (8, 16 and 32 μg/mL), Ty (16, 32 and 64 μg/mL), 1/16× MT

(8 μg/mL MG and 16 μg/mL Ty), 1/8× MT (16 μg/mL MG and 32 μg/mL Ty) and 1/4× MT

(32 μg/mL MG and 64 μg/mL Ty) for 45 min. Then, S. Typhimurium was recovered by centri-

fugation at 10,000 g for 15 min, washed twice with 1× PBS and re-suspended in antibiotic-free

MEM (107 CFU/mL). One hundred microliters of bacterial suspensions (MOI = 10:1) were

added to each wells, centrifuged at 1000 g for 2 min and incubated at 37˚C for 45 min. The

supernatant was discarded, and the cells were washed with 1× PBS to remove non-adhered

bacteria. Cells were disrupted with 1% Triton X-100. The lysates were serially diluted using

agar saline and plated on LB agar. The total number of adhering bacteria (CFU/mL) was deter-

mined after incubation at 37˚C for 16–18 h.

For the invasion assay, treated and infected cells were incubated at 37˚C for 60 min. The

supernatant was discarded, and non-adhered bacteria were removed by washing three times

with 1× PBS, followed by addition of 300 μL gentamicin (100 μg/mL) in MEM and further

incubation for 60 min to kill extracellular bacteria. Cell lysis and determination of the number

of invading bacteria were performed similarly to the procedure mentioned above in the adhe-

sion assay.

Intracellular survival assay

Survival of S. Typhimurium in macrophages pre-treated with MG, Ty and MT was determined

by slight modifications of the methods described by Lu et al. [28]. Cells (105/mL) grown with-

out antibiotics in 24-well plates were treated and infected, as described above in the invasion

assay. After incubation with gentamicin (100 μg/mL) at 37˚C for 60 min, cells were washed

with 1× PBS, and 25 μg/mL gentamicin in RPMI was added for the remaining incubation
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time. At 2, 4 and 8 h post-incubation, cells were lysed, and the total number of surviving bacte-

ria was determined as described above.

Detection of cytokine expression

Infection of intestinal epithelial cells with S. Typhimurium up-regulates the expression of

many cytokine genes [29]. The effects of MG, Ty and MT on S. Typhimurium (ATCC 14028)-

induced cytokine (tumor necrosis factor alpha [TNFα], and interleukin [IL]-1β, IL-6, IL-8 and

IL-10) gene expression in Caco-2 cells was evaluated using quantitative real-time reverse tran-

scription PCR (qRT–PCR). For this purpose, cells (105/mL) were treated and infected, as

described above in the adhesion assay. After 8-h incubation, total RNA was extracted using

TRIzol (Ambion Life Technologies, Carlsbad, CA, USA). The concentration and purity of

RNA were determined using Nanophotometer (Implen GmbH, Munich, Germany). An A260/

A280 ratio of 1.8 to 2.0 was considered as good quality RNA and a total of 1μg was taken for

cDNA synthesis. The cDNA was amplified, and qRT–PCR was performed in a CFX96 Touch

real-time PCR detection system (Bio-Rad, Hercules, CA, USA) using IQ SYBR Green Super-

mix (Bio-Rad Laboratories [Singapore] Pte. Ltd.). Three hundred Nano molars of both the for-

ward and reverse primers were used in 20 μL reaction mixture. The reaction conditions

included denaturation at 95˚C for 3 min, 40 cycles of amplification at 94˚C for 10 s, 60˚C for

30 s and melting from 65 to 90˚C. The housekeeping genes β-actin and GADPH were used to

normalize gene expression. The fold changes of cytokines gene expression were analysed using

the 2-ΔΔCT method and the statistical difference were determined using the Student’s t-test in

GraphPad Prism 6 (GraphPad Software, Inc., San Diego, CA, USA). The sequences of all prim-

ers used in this experiment are listed in S1 Table.

Data analysis

Data were analyzed using GraphPad Prism 6 (GraphPad Software, Inc., San Diego, CA, USA).

One-way and two-way analyses of variance (ANOVA) were conducted to compare the mean

values among treatment groups. P< 0.05 was considered statistically significant.

Results

MIC and MBC

The MICs of MG, Ty and PG against the two S. Typhimurium strains were 512, 1024 and

128 μg/mL, respectively. The MBCs of MG and PG were twice the MIC values in both strains;

however, the MBC of Ty exceeded 4 mg/mL. Similar MIC values were obtained for both of the

tested agents in RPMI and MEM.

Checkerboard assay

MT was effective, as confirmed by the reduced MICs of 128 and 256 μg/mL for MG and Ty,

respectively, for both strains. The FICI was calculated to be 0.5, indicating synergism between

Ty and MG. Furthermore, an additive effect (FICI = 0.56) was found between Ty and PG, in

which the MIC values were reduced to 64 μg/mL. Therefore, MT was chosen for subsequent

experiments.

Time–kill assay

To confirm the results of the checkerboard assay, the in vitro time–kill activities of MT were

performed for both strains (Fig 1). At 1× MT, a synergistic effect occurred that caused more

than 2 log10 CFU/mL reduction compared with Ty and MG alone. Conversely, the growth
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curves of S. Typhimurium treated with 64 and 128 μg/mL Ty were almost the same as those

treated with 256 μg/mL Ty. Likewise, the differences in the growth curves of S. Typhimurium

treated with 32, 64 and 128 μg/mL MG were not significant.

Bacterial membrane integrity

The confocal microscopic images of SYTO9/PI-stained S. Typhimurium exposed to MG, Ty

and MT for 4 h are illustrated in Fig 2. S. Typhimurium with a damaged membrane (red fluo-

rescent stain) were observed after 4-h exposure to 1/2× MT (5.8 ± 1.2%) and 1× MT

(21.2 ± 4.8%). In contrast, those grown in the presence of MG, Ty and 1/4× MT (green fluores-

cent stain) indicated that the cell membrane was intact.

Field emission scanning electron microscope (SEM) analysis

For both strains of S. Typhimurium, treatment with 1/2× MT and 1× MT caused a remarkable

modification in morphology, such as rough surface (red arrow), membrane blebbing (yellow

Fig 1. Time-kill curves of S. Typhimurium ATCC 14028 (A) and S. Typhimurium LVPP-STI15 (B) treated with methyl gallate (MG), tylosin (Ty) and various

concentrations of their combination (MT). Plotted values represent mean ± SEM of at least six independent experiments. Growth control: non-treated S.

Typhimurium. MG = 128 μg/mL; Ty = 256 μg/mL; ¼× MT = 32 μg/mL MG and 64 μg/mL Ty; ½× MT = 64 μg/mL MG and 128 μg/mL Ty; and 1× MT = 128 μg/mL MG

and 256 μg/mL Ty. Since there was no concentration-dependent difference in the killing activity of MG (32, 64 and 128 μg/mL) and Ty (64, 128 and 256 μg/mL), only

the growth curves of the bacteria treated with the maximum concentrations of each agent are displayed.

https://doi.org/10.1371/journal.pone.0221386.g001

Fig 2. Confocal laser scanning microscopy analysis of the membrane integrity of S. Typhimurium (ATCC 14028)

treated with methyl gallate (MG), tylosin (Ty) and various concentrations of their combination (MT). SYTO9/PI

staining was applied to differentiate cells with intact membranes (green) from those with damaged membranes (red).

Salmonella: non-treated S. Typhimurium. MG = 128 μg/mL; Ty = 256 μg/mL; ¼× MT = 32 μg/mL MG and 64 μg/mL

Ty; ½× MT = 64 μg/mL MG and 128 μg/mL Ty; and 1× MT = 128 μg/mL MG and 256 μg/mL Ty.

https://doi.org/10.1371/journal.pone.0221386.g002

Synergistic effects of methyl gallate and tylosin against Salmonella Typhimurium

PLOS ONE | https://doi.org/10.1371/journal.pone.0221386 September 6, 2019 7 / 18

https://doi.org/10.1371/journal.pone.0221386.g001
https://doi.org/10.1371/journal.pone.0221386.g002
https://doi.org/10.1371/journal.pone.0221386


arrow) and leakage of cellular contents (blue arrow) (Fig 3). Marked membrane disintegration

with leakage of cellular contents was evident in the 1× MT-treated S. Typhimurium compared

with the non-treated control, as well as those treated with MG and Ty alone.

Resting MP

The MP of S. Typhimurium (ATCC 14028) that had been incubated with different concentra-

tions of MT for 2 h was determined by measuring the ratio of red-to-green fluorescence inten-

sity (Fig 4). The ratio was decreased to 0.20 in S. Typhimurium treated with 1/2× MT and 1×
MT. The value was significantly (P< 0.001) lower when compared with fluorescence ratios of

0.80, 0.83 and 1.10 in MG-treated, Ty-treated and non-treated S. Typhimurium, respectively.

However, treatment with 1/4× MT did not produce a significant change in the fluorescence

ratio (P> 0.05).

Biofilm formation

The study demonstrated an insignificant difference (P> 0.05) in planktonic bacterial growth

(mean OD600) in the presence and absence of sub-inhibitory concentrations of MG, Ty and

MT. Particularly, MT reduced S. Typhimurium biofilm formation in a concentration-depen-

dent manner. Biofilm formation by S. Typhimurium (ATCC 14028) treated with 1/8× MT and
1/4× MT was decreased by 57.3 and 55.9%, respectively (Fig 5). The EC50 of MT was calculated

for both strains of S. Typhimurium, considering 0 and 100% as the minimal and maximal bio-

film inhibition, respectively. Accordingly, 1/10× MT (a combination of 12.8 μg/mL MG and

25.6 μg/mL Ty) could cause half of the maximum inhibition (EC50) of S. Typhimurium

Fig 3. Scanning electron microscopic analysis of S. Typhimurium (ATCC 14028) treated with methyl gallate (MG), tylosin (Ty) and

various concentrations of their combination (MT). Untreated control and Salmonella treated with MG, Ty and ¼× MT demonstrated intact

morphology. S. Typhimurium treated with 1x MT and ½x MT showed altered morphology and leakage of cellular contents. Salmonella: non-

treated S. Typhimurium. MG = 128 μg/mL; Ty = 256 μg/mL; ¼× MT = 32 μg/mL MG and 64 μg/mL Ty; ½× MT = 64 μg/mL MG and 128 μg/

mL Ty; and 1× MT = 128 μg/mL MG and 256 μg/mL Ty.

https://doi.org/10.1371/journal.pone.0221386.g003
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(LVPP-STI15) biofilms while the EC50 value for S. Typhimurium ATCC 14028 biofilms was
1/12.5× MT (a combination of 10.24 μg/mL MG and 20.5 μg/mL Ty). Conversely, the maximum

biofilm inhibitions caused by MG and Ty were 6.86 and 6.48%, respectively (S1 Fig). There

was no significant difference (P> 0.05) in the biofilm inhibition ability of MT between the

two strains. Besides, neither the combination nor each agent dispersed the pre-formed biofilms

of both strains.

Cytotoxicity assay

The effects of MG, Ty and MT on the viability of Caco-2 epithelial cells and RAW 264.7 mac-

rophages are shown in Fig 6. Treatment of cells with MG and Ty individually, at initial concen-

trations of 2 mg/mL, did not produce a significant toxic effect. Likewise, greater than 90% of

the cells were viable following 24 h of exposure to MT containing initial concentrations of 2

mg/mL MG and 2 mg/mL Ty.

Adhesion and invasion assay in Caco-2 cells

The effects of sub-inhibitory concentrations of MG, Ty and MT on the adhesion and invasion

of S. Typhimurium to Caco-2 epithelial cells are demonstrated in Fig 7. Adhesion of S. Typhi-

murium LVPP-STI15 and ATCC 14028 to Caco-2 cells was strongly decreased in cells pre-

treated with 1/16× MT (81.3 and 70.4%, respectively) (P< 0.05), 1/8× MT (53.7 and 55.8%,

respectively) (P< 0.0001) and 1/4× MT (38.5 and 48.7%, respectively) (P< 0.001) relative to

the infected and non-treated cells. The counts of adhered S. Typhimurium (ATCC 14028) in

cells pre-treated with 1/8× MT and 1/4× MT were significantly lower relative to those pre-

treated with MG (73.6%) (P< 0.01) and Ty (86.1%) (P< 0.001) alone. Moreover, the invasion

of S. Typhimurium strains LVPP-STI15 and ATCC 14028 to Caco-2 cells was reduced in a

concentration-dependent manner in cells pre-treated with 1/16× MT (57.1 and 60.2%, respec-

tively), 1/8× MT (53.7 and 49.4%, respectively) and 1/4× MT (50.0 and 40.4%, respectively)

when compared with the infected and non-treated cells (P< 0.0001). The counts of invaded

bacteria in cells treated with 1/4× MT and 1/8× MT was significantly reduced with respect to

Fig 4. Effect of treatment with methyl gallate (MG), tylosin (Ty) and various concentrations of their combination

(MT) on the membrane potential of S. Typhimurium (ATCC 14028). The flow cytometry depicts cells exhibiting

both fluorescence intensities (A). The membrane potential (red-to-green fluorescent ratio) of S. Typhimurium treated

with various agents, including the well-known depolarizing agent, carbonyl cyanide 3-chlorophenylhydrazone (CCCP)

(B). #P< 0.001 compared to both MG and Ty. Salmonella: non-treated S. Typhimurium. MG = 128 μg/mL;

Ty = 256 μg/mL; ¼× MT = 32 μg/mL MG and 64 μg/mL Ty; ½× MT = 64 μg/mL MG and 128 μg/mL Ty; and 1×
MT = 128 μg/mL MG and 256 μg/mL Ty.

https://doi.org/10.1371/journal.pone.0221386.g004
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Fig 5. Impacts of treatment on S. Typhimurium biofilms. The figures demonstrated a concentration-dependent

inhibition of S. Typhimurium (ATCC 14028) (A) and LVPP-STI15 (B) biofilm formation in the presence of a combination

of methyl gallate (MG) and tylosin (Ty) (MT) with an initial concentration of ¼× MT (32 μg/mL MG and 64 μg/mL Ty).

The EC50 of MT in S. Typhimurium (ATCC 14028) (C) and LVPP-STI15 (D) biofilms were calculated by considering 0%

and 100% as minimal and maximal biofilm inhibition, respectively. Values represent mean ± SEM of four independent

experiments.

https://doi.org/10.1371/journal.pone.0221386.g005

Fig 6. The viability of RAW 264.7 macrophages (A) and Caco-2 epithelial cells (B) exposed to different concentrations of methyl

gallate (MG), tylosin (Ty) and their combination (MT). Percentage viability was calculated relative to the non-treated control cells. The

initial 2000 μg/mL MT concentration represents a combination of 2000 μg/mL MG and 2000 μg/mL Ty. Values represent mean ± SEM of

three independent experiments.

https://doi.org/10.1371/journal.pone.0221386.g006
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Fig 7. Effects of methyl gallate (MG), tylosin (Ty) and various concentrations of their combination (MT) on the adhesion and

invasion of S. Typhimurium ATCC 14028 (A and C) and S. Typhimurium LVPP-STI15 (B and D) to CaCo-2 intestinal epithelial

cells. Cell: non-infected and non-treated control. Salmonella: S. Typhimurium infected, but non-treated cells. Values represent

mean ± SEM of six independent experiments. MG = 32 μg/mL; Ty = 64 μg/mL; 1/16× MT = 8 μg/mL MG and 16 μg/mL Ty; 1/8×
MT = 16 μg/mL MG and 32 μg/mL Ty; and ¼× MT = 32 μg/mL MG and 64 μg/mL Ty. �P< 0.05 compared to infected, but non-treated

cells; τP< 0.05 compared to Ty; πP< 0.05 compared to MG; and #P< 0.05 compared to both MG and Ty. The effects of MG (8, 16 and

32 μg/mL) and Ty (16, 32 and 64 μg/mL) were not concentration-dependent.

https://doi.org/10.1371/journal.pone.0221386.g007

Fig 8. Efficacy of methyl gallate (MG), tylosin (Ty) and various concentrations of their combination (MT) on the intracellular killing of S. Typhimurium ATCC

14028 (A) and S. Typhimurium LVPP-STI15 (B) in macrophages at 2, 4 and 8 h post-treatment and infection. Cell: non-infected and non-treated control.

Salmonella: S. Typhimurium infected, but non-treated cells. Values represent mean ± SEM of six independent experiments. MG = 32 μg/mL; Ty = 64 μg/mL; 1/16×
MT = 8 μg/mL MG and 16 μg/mL Ty; 1/8× MT = 16 μg/mL MG and 32 μg/mL Ty; and ¼× MT = 32 μg/mL MG and 64 μg/mL Ty. �P< 0.05 compared to infected, but

non-treated cells; τP< 0.05 compared to Ty; πP< 0.05 compared to MG; and #P< 0.05 compared to both MG and Ty.

https://doi.org/10.1371/journal.pone.0221386.g008
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those of MG (P< 0.05) and Ty (P< 0.001) alone. Interestingly, the total counts of adhered

(P< 0.05) and invaded (P< 0.01) bacteria reduced significantly in the presence of MG alone

in comparison to infected and untreated cells, but to a lesser extent compared to MT.

Effects of MT on intracellular bacterial survival

After incubation for 2 h, treatment did not produce a significant difference in the percentage

of surviving bacteria (Fig 8). However, a marked decrease in the percentage of intracellular S.

Typhimurium was observed after incubation with various concentrations of MT for 4 and 8 h

in comparison to MG and Ty alone. The bacterial load (ATCC 14028 and LVPP-STI15) in

cells incubated with 1/16× MT, 1/8× MT and 1/4× MT for 8 h was decreased significantly

(P< 0.001) by 79.14 and 88.6%, 79.1 and 81.99%, and 82.7 and 87.75%, respectively, compared

with the load in the infected and non-treated cells. Interestingly, MG significantly (P< 0.5)

decreased the intracellular S. Typhimurium count from 4 h of incubation, in contrast with Ty,

as well as the infected and non-treated cells.

Cytokine expression

S. Typhimurium induced the expression of IL-6, IL-8, IL-1β, TNFα and IL-10 genes in CaCo-2

cells after 8-h infection (Fig 9). A concentration-dependent up-regulation (P< 0.001) in the

IL-6 gene expression was detected when infected cells were incubated with 1/8× MT and 1/4×
MT compared to those of MG and Ty. The expression of IL-8 gene was significantly enhanced

(P< 0.01) in 1/4× MT-treated cells. Treatment by ¼ x MT up-regulated the gene expression of

IL-10 to a very moderate level (1.5X) by comparison to IL-6 (2.5X) and IL-8 (3X). However,

neither MG nor Ty modified the genes expressions of the tested cytokines in infected cells. In

addition, the effect of MT on S. Typhimurium-induced IL-1β and TNFα gene expression was

not significantly different from those of MG and Ty alone. Moreover, the results of genes

expressions of cytokines normalized to GADPH housekeeping gene exhibited similar patterns

as shown on supplementary file (S2 Fig).

Discussion

The high MIC value of Ty (1024 μg/mL) found in this study is not surprising because the outer

membrane of Enterobacteriaceae, such as Salmonella, has low permeability to macrolides,

including Ty, which limits the activities of these drugs [30]. The MIC of MG (512 μg/mL) was

comparable to the findings of Choi et al. [16] but much higher than the values (3.9–125 μg/

mL) reported by Choi et al. [17] and Choi et al. [18] on Salmonella isolates from chicken and

pig. The difference of bacterial strains used between these studies could contribute to their dif-

ference in susceptibility to MG.

The FICI and the time–kill assay confirmed in vitro synergy since more than a 2-log-fold

reduction in CFU/mL was found when MT was used against S. Typhimurium at concentra-

tions lower than the MICs of the individual components. The SYTO9/PI staining and SEM

analysis further supported these findings, in which bacterial death, membrane damage or dis-

integration and leakage of cellular contents were exhibited following MT treatment. Proteins

and small molecules are believed to cause anti-bacterial action by perforating the bacterial

membrane and causing leakage of cellular contents [31]. The ability of 1× MT to induce leak-

age of cellular contents indicates that it acts to cause bacterial membrane destabilization and

perforations. This could lead to a further influx of MG and Ty across the damaged membrane

to the intracellular target sites. Previous studies have confirmed the membrane-damaging

activity of MG when used alone against V. cholera [20] and multidrug-resistant Shigella spp.

[19] but at relatively higher concentrations (1× MBC–5× MBC).
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Reduction in the ratio of red-to-green fluorescent of S. Typhimurium following SYTO9/PI

staining is an indicator of an altered MP [32]. Studies on carvacrol and thymol confirmed that

agents that contain free hydroxyl groups could act as a protonophore [32–34], enhancing

insertion into the bacterial membrane and disrupting the physical, as well as chemical proper-

ties, of the membrane. The lipid layer becomes destabilized, resulting in an increase of passive

proton flux across the membrane and contributes to alteration in the MP [34, 35]. Therefore,

the free hydroxyl groups in MG could contribute to the membrane destabilization effects of

MT. In addition, MT-induced loss of S. Typhimurium membrane integrity could also lead to

leakage of protons and potassium, which results in the change in MP. Studies on various bacte-

rial species exhibited that natural products could alter the MP and ultimately lead to cell death

[33–35]. Therefore, the anti-bacterial activity of MT could involve disruption of the MP, as

well as membrane disintegration.

A number of studies have demonstrated the role played by biofilms in anti-microbial resis-

tance and persistence. S. Typhimurium is known to be able to produce biofilms on diverse sur-

faces, including the gallbladder, epithelial cells and various host tissue compartments [36, 37].

The CV staining demonstrated a concentration-dependent reduction of S. Typhimurium bio-

film formation. The activity of MT against S. Typhimurium biofilms was not a function of the

direct anti-bacterial activity, as it was confirmed in the time–kill and membrane integrity

assays. QS-ability is suggested to play a critical role in biofilm formation. Furthermore, exopo-

lysaccharides, such as cellulose, are one of the most important extracellular polymeric struc-

tures for biofilm formation in S. Typhimurium [37, 38]. Our previous studies demonstrated

Fig 9. Cytokine expression of IL-8 (A), IL-10 (B), IL-6 (C), IL-1β (D) and TNFα (E) in Caco-2 monolayers co-cultured with methyl gallate (MG), tylosin

(Ty) and various concentrations of their combination (MT) during 8 h infection with S. Typhimurium. Cell: non-infected and non-treated control.

Salmonella: infected, but non-treated cells. Results mean ± SEM of three independent experiments. MG = 32 μg/mL; Ty = 64 μg/mL; 1/16× MT = 8 μg/mL MG

and 16 μg/mL Ty; 1/8× MT = 16 μg/mL MG and 32 μg/mL Ty; and ¼× MT = 32 μg/mL MG and 64 μg/mL Ty. �P< 0.05 compared to infected, but non-treated

cells; τP< 0.05 compared to Ty; πP< 0.05 compared to MG; and #P< 0.05 compared to both MG and Ty.

https://doi.org/10.1371/journal.pone.0221386.g009
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that sub-MIC of MG reduced exopolysaccharide production and QS in P. aeruginosa biofilms

[39] and S. Typhimurium [40], respectively. In vitro studies have also indicated that macrolides

alter biofilm architecture through inhibition of polysaccharide synthesis in P. aeruginosa [41].

Moreover, the anti- QS [42] and biofilm inhibitory activities of sub-MIC concentrations of

macrolides [43] and MG [39] are reported in various bacterial species. Therefore, MG and Ty

could act synergistically to inhibit biofilm formation in S. Typhimurium.

The ability to adhere, invade and survive in intestinal epithelial cells and macrophages are

critical for the pathogenesis of Salmonella. Thus, agents that could interfere with the adherence

and invasion of S. Typhimurium to intestinal epithelial cells play a critical role to avoid the

establishment of infection [44]. In addition, the importance of motility for bacterial invasion

has already been confirmed [45]. In the current study, MT treatment reduced the adhesion,

invasion and intracellular survival of S. Typhimurium. Similar effects were also found follow-

ing treatment of cells with MG, but to a lesser extent compared with MT. Low levels of macro-

lides, such as erythromycin, are reported to reduce the adherence of P. aeruginosa to airway

epithelial cells [46]. Moreover, our recent study confirmed the inhibitory effects of MG on S.

Typhimurium motility and invasion into host cells [40]. Therefore, the synergistic interaction

between the two agents could contribute to the significant reduction in the adhesion, invasion

and survival of S. Typhimurium to the host cells.

The balance between the host response and the bacterial virulence mechanisms determines

the outcome of infection. The S. Typhimurium-induced release of cytokines by intestinal epi-

thelial cells are critical to initiate and orchestrate the inflammatory events that occur after

acute bacterial infection [24]. The cellular immune response following infection and treatment

was determined by measuring the gene expression of cytokines. Earlier studies confirmed the

expression of various cytokines in Salmonella-infected intestinal epithelial cells [24, 47]. Treat-

ment of infected cells with MT up-regulated the gene expressions of IL-6, IL-8 and IL-10. Acti-

vation of these cytokines is crucial for initiating the host-defense against S. Typhimurium.

Inflammatory bowel disease was observed in mice deficient with IL-10 [48]. The up-regulation

of IL-6 and IL-8 is critical for the host because of high biological significance. Indeed, IL-6

plays a critical role in regulation of hematopoiesis, inflammation and immunity [49]. It is also

correlated with the differentiation of B cells and macrophages. Likewise, IL-8 is a pro-inflam-

matory chemokine that attracts and activates neutrophils to the intestinal lumen [50].

Conclusions

Our findings suggest that MG enhances the membrane-destabilizing and biofilm inhibitory

effects of Ty in S. Typhimurium. Sub-inhibitory concentrations of MT were also effective in

reducing the adhesion and invasion of S. Typhimurium to intestinal epithelial cells. The direct

anti-bacterial activity and indirect stimulation of the host response could be the mechanism of

anti-Salmonella activity of MT. Therefore, co-administration of MG with Ty could be consid-

ered to reduce the fecal burden of S. Typhimurium in swine and thereby reduce transmission

of infection to humans. Future work will aim at evaluating the in vivo efficacy of MT in target

animal.
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