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Abstract

Purpose: We aimed to determine which early EEG features and feature combinations most 

accurately predicted short-term neurobehavioral outcomes and survival in children resuscitated 

after cardiac arrest.

Methods: This was a prospective single-center observational study of infants and children 

resuscitated from cardiac arrest who underwent conventional EEG monitoring with standardized 

EEG scoring. Logistic regression evaluated the marginal effect of each EEG variable or EEG 

variable combinations on the outcome. The primary outcome was neurobehavioral outcome 

(Pediatric Cerebral Performance Category score) and the secondary outcome was mortality. We 

identified the models with the highest areas under the receiver operating characteristic curve 

(AUC), evaluated the optimal models using a 5-fold cross-validation approach, and calculated test 

characteristics maximizing specificity.

Results: 89 infants and children were evaluated. Unfavorable neurologic outcome (Pediatric 

Cerebral Performance Category score 4–6) occurred in 44 subjects (49%) including mortality in 

30 subjects (34%). A model incorporating a four-level EEG Background Category (normal, slow-

disorganized, discontinuous or burst-suppression, or attenuated-flat), Stage 2 Sleep Transients 

(present or absent), and Reactivity-Variability (present or absent) had the highest AUC. Five-fold 

cross-validation for the optimal model predicting neurologic outcome indicated a mean AUC of 

0.75 (range 0.70–0.81) and for the optimal model predicting mortality indicated a mean AUC of 
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0.84 (range 0.76–0.97). The specificity for unfavorable neurologic outcome and mortality were 

95% and 97%, respectively. The positive predictive value for unfavorable neurologic outcome and 

mortality were both 86%.

Conclusions: The specificity of the optimal model using a combination of early EEG features 

was high for unfavorable neurologic outcome and mortality in critically ill children after cardiac 

arrest. However, the positive predictive value was only 86% for both outcomes. Therefore, EEG 

data must be considered together with the overall clinical context when used for 

neuroprognostication early after cardiac arrest.
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Introduction

In-hospital cardiac arrest (CA) occurs in over 10,000 children per year in the United States, 

and neurobehavioral morbidity is high among survivors.1–8 Early assessment of brain injury 

severity is important for neuroprognostication and potentially for subject stratification upon 

entry into neuroprotection trials. Studies in children after CA have elucidated several clinical 

variables and biomarkers correlated with mortality and unfavorable neurobehavioral 

outcomes.9–13 However, clinical and resuscitation variables do not directly assess brain 

function and therefore may not optimally predict neurobehavioral outcomes. In contrast, 

electroencephalographic (EEG) data assess cortical function, and EEG monitoring is 

commonly employed after CA resuscitation for seizure identification.14,15 Several early 

post-CA EEG features have been associated with neurologic outcome at hospital discharge.
15–27 However, many of these studies involved small retrospective cohorts, occurred prior to 

the era of contemporary critical care which may have changed outcomes, and used data 

collected from EEG reports rather than standardized assessment of the raw EEG tracing. 

Furthermore, EEG data comparison across studies is difficult since many of these studies 

evaluated variable EEG features using non-standardized EEG terminology.

In this study, we aimed to determine which early EEG features or feature combinations 

optimally predicted short-term neurobehavioral outcomes and survival in a large, 

contemporary, and consecutive cohort of children after resuscitation from CA. This work 

serves as a foundation for developing early, comprehensive, and evidence-based multi-modal 

prediction models of neurobehavioral outcome.

Methods

This was a prospective observational single-center study of consecutive infants and children 

treated in the Pediatric Intensive Care Unit of a single tertiary care hospital between 

September 2013 and February 2016. Informed consent was obtained from guardians of 

patients for data collection. Data were collected using the Research Electronic Data Capture 

(REDCap).28 and consisted of prospectively defined demographic, CA, resuscitation, post 

CA care, EEG, and outcome variables. This study was approved by the Institutional Review 

Board at the Children’s Hospital of Philadelphia.
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Consistent with recent guidelines29 and consensus statements,14 clinical practice at our 

institution is to perform EEG monitoring in all patients with encephalopathy following CA 

to identify seizures. EEG monitoring was initiated using portable Grass-Telefactor video-

EEG systems with 21 gold-over-silver scalp surface electrodes positioned according to the 

international 10–20 system and affixed with collodion adhesive using standard technical 

specifications.30 Full EEG tracings were saved for research purposes.

After clinical management, standardized EEG scoring was performed for this study by a 

pediatric electroencephalographer at the earliest available timepoint. The EEG variables 

(Table 2) were derived from the Standardized Critical Care EEG Terminology published by 

the American Clinical Neurophysiology Society.31 Electroencephalographic seizures were 

defined as paroxysmal events that were different from the background, lasted longer than 10 

seconds, had a temporal-spatial evolution in morphology, frequency, and amplitude, and had 

a plausible electrographic field. Electroencephalographic status epilepticus was defined as 

≥50% of a one-hour epoch containing electroencephalographic seizures. These seizure 

definitions are consistent with our prior critical care EEG studies.32–34 and published 

definitions.35 Most of these EEG features have good to substantial inter-rater agreement,
36,37 including among children after CA.38 In addition to the standardized terminology, the 

EEG Background Category was categorized as: (1) normal (including normal discontinuity 

in neonates); (2) slow-disorganized (including mild excessive discontinuity in neonates); (3) 

discontinuous (including substantial excessive discontinuity in neonates); (4) burst-

suppression; or (5) attenuated-featureless. This EEG categorization system was utilized in 

prior critical care EEG studies.17,32–34,39,40 Further, a study in which four pediatric 

electroencephalographers assessed EEGs from children post-CA demonstrated very-high 

(kappa 0.89) inter-rater agreement for the EEG Background Category.38

The primary outcome was neurobehavioral outcome, and the secondary outcome was 

mortality. Outcomes were assessed at discharge from the Pediatric Intensive Care Unit. 

Neurobehavioral outcome was assessed using the Pediatric Cerebral Performance Category 

(PCPC) score which is a validated six-point scale that categorizes functional impairment 

(1=normal, 2=mild disability, 3=moderate disability, 4=severe disability, 5=coma and 

vegetative state, and 6=death).41 Unfavorable neurobehavioral outcome was defined as 

discharge PCPC scores of 4–6. Like in prior studies,42 the mode of death was classified 

based on review of clinical notes into one of the following categories: brain death, 

withdrawal of technological support for poor neurologic prognosis, withdrawal of 

technologic support for refractory circulatory failure, or re-arrest without return of 

spontaneous circulation. Patients who were made “Do Not Attempt Resuscitate” were 

classified as withdrawal of technological support for poor neurologic prognosis or 

withdrawal of technologic support for refractory circulatory failure based on attending 

physician notes.

All statistical analyses were performed using Stata 15.0 (College Station, TX). We report 

summary statistics as medians and interquartile ranges for continuous variables and counts 

and proportions for categorical variables. For some EEG variables, only a small number of 

subjects had certain EEG features. Therefore, we grouped some EEG features to create 

fewer categories for analysis such that each category had adequate sample size, as shown in 
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Table 2. We performed the same analyses for unfavorable neurologic outcome and mortality. 

Logistic regression was used to evaluate the marginal effect of each EEG variable (or EEG 

variable combinations) on the outcome. Variables with p-value <0.1 were included in 

subsequent multivariable models. We compared areas under the receiver operating 

characteristic curves (AUC) between models. We assessed the collinearity between the 

variables in each model and excluded variables with a variation inflation factor greater than 

ten or less than 0.1.43 We identified the models with the highest AUC. The model with the 

fewest variables that had an AUC that did not differ significantly from the model with the 

highest AUC was chosen as the optimal model for further analysis. We evaluated the 

goodness of fit using the Hosmer-Lemeshow test. We evaluated the optimal model using a 5-

fold cross-validation approach. The full cohort was randomly divided into five subgroups 

with a similar prevalence of unfavorable outcomes as in the original sample. Each time, one 

subgroup was used as the validation sample and the other four subgroups were used for 

model development. We report the mean and range of the AUC for the five validation 

cohorts.

We calculated test characteristics (specificity, sensitivity, positive predictive value, and 

negative predictive value) for the optimal model where cutoffs were selected to maximize 

specificity. Optimal specificity was favored because the aim of our model was to minimize 

false positives which might incorrectly label a patient with unfavorable outcome when they 

might in fact have a favorable outcome.

Results

Eighty-nine infants and children were evaluated. Table 1 provides subject characteristics. 

The median age was 2.1 (IQR: 0.27, 9.1) years. Fourteen subjects were neonates (<1 month 

of age) at a median of 7 (IQR: 3, 14 days). Fifty-six (63%) of subjects were male. CA 

occurred in-hospital in 58 subjects (65%) and out-of-hospital in 31 subjects (35%). The most 

common CA causes were shock in 38 subjects (43%) and respiratory failure in 34 subjects 

(38%). The median initial lactate was 5.0 (IQR: 2.8, 8.4), and the median lowest initial pH 

was 7.20 (IQR: 7.03, 7.29).

All EEG recordings were initiated prior to or on the same day as the CA. The median time 

from return of spontaneous circulation to EEG initiation was 6.9 hours (IQR: 4.4, 11.5). A 

small number of patients who met other indications for EEG monitoring (i.e. 

encephalopathy of unknown etiology) were undergoing EEG monitoring prior to and during 

the CA. The median EEG duration was 48 hours (IQR: 20, 43). The EEG Background 

Category was normal in 9 subjects (10%), slow-disorganized in 44 subjects (49%), 

discontinuous in 18 subjects (20%), burst-suppression in 4 subjects (4%), and attenuated-

featureless in 14 subjects (16%).

Unfavorable neurobehavioral outcome occurred in 44 subjects (49%) including mortality in 

30 subjects (34%). The mode of death was brain death in 6 (20%) subjects, withdrawal of 

technological support for poor neurologic prognosis in 6 (20%) subjects, withdrawal of 

technologic support for refractory circulatory failure in 15 (50%) subjects, and re-arrest 

without return of spontaneous circulation in 3 (10%) subjects. Table 2 summarizes the 
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associations between EEG features and unfavorable neurobehavioral outcome or mortality. 

EEG variables with p-value <0.1 in the univariate logistic regression models included worse 

EEG background category, low level of faster frequencies, absence of continuity, lower 

voltage, absence of stage 2 sleep transients, absence of reactivity, absence of variability, and 

absence of reactivity and/or variability. Electroencephalographic seizures category was not 

associated with unfavorable neurobehavioral outcome or mortality. Seven subjects (8%) had 

an electroencephalographic seizure, and 6 of the subjects with seizures (86%) had 

electroencephalographic status epilepticus. Seizures during any epoch were not associated 

with unfavorable neurobehavioral outcome [2/43 (4.7%) with favorable outcome vs. 5/46 

(10.9%) with unfavorable outcome, p=0.44] or mortality [3/59 (5.1%) who did survive vs. 

4/30 (13.3%) who did not survive, p=0.22].

Table 3 provides the AUC for individual EEG features and combinatorial models and 

Supplemental Figure 1 shows the ROC curves for each of the models. We identified the 

same optimal model for neurologic outcome and mortality. This model included three 

variables [EEG Background Category (4-level) + Stage II Sleep Transients + Variability 

and/or Reactivity]. For unfavorable neurobehavioral outcome, the model provided an AUC 

of 0.77 (95% CI 0.67–0.86). The Hosmer-Lemeshow test yielded a p-value of 0.25 

indicating good model fit. For mortality, the model provided an AUC of 0.82 (95% CI 0.72–

0.92). The Hosmer-Lemeshow test yielded a p-value of 0.97 indicating good model fit. AUC 

for the three EEG variable model did not significantly differ from the model with the highest 

AUC that included more EEG variables for either neurologic outcome (p=0.33) or mortality 

(p=0.96). Figure 1 displays the ROC curves for the optimal model and the model with the 

highest AUC.

The optimal model was evaluated further. Table 4 provides the estimated odds ratios from 

the optimal model. Table 5 provides the predicted probabilities of unfavorable 

neurobehavioral outcome and mortality for each of the possible model combinations, and 

Supplemental Figure 2 shows the sensitivity and specificity for each probability cutoff.

Five-fold cross-validation for the optimal model predicting unfavorable neurobehavioral 

outcome indicated a mean AUC of 0.75 (range 0.70–0.81). Five-fold cross-validation for the 

optimal model predicting mortality indicated a mean AUCs of 0.84 (range 0.76–0.97). Table 

6 provides the test characteristics for the optimal model for prediction of unfavorable 

neurobehavioral outcome and mortality.

Discussion

This prospective study of infants and children resuscitated from CA who underwent EEG 

monitoring evaluated early and standardized EEG features which could be used to assess the 

severity of brain injury and predict outcome. We specifically focused on early EEG features 

since early data would be most beneficial in stratifying patients by brain injury severity for 

future neuroprotection studies. Many EEG features, used individually and in combination, 

had a high specificity for unfavorable neurobehavioral outcome and mortality. Interestingly, 

the specificity of a simple model using a four-level EEG Background Category (normal, 

slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), Stage 2 Sleep 
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Transients (present or absent), and Reactivity-Variability (present or absent) predicted 

outcome as well as or better than more complicated models comprised of combinations of 

several individual EEG variables, likely because many of the EEG features were colinear.

During prognostication, incorrectly predicting an unfavorable outcome leading to 

withdrawal of technological support in a patient who might have had a good outcome might 

have grave consequences. Thus, a model predicting unfavorable outcomes (mortality or 

unfavorable neurobehavioral outcome) should aim to minimize false positives, thereby 

achieving high specificity. In our dataset, specificity refers to the percentage of subjects with 

a favorable outcome who are correctly identified by a negative test result. Thus, in our 

analysis, we selected cutoffs that would favor optimal specificity over sensitivity. Even with 

this cutoff selection, the positive predictive value for both unfavorable neurobehavioral 

outcome and mortality is only 86%. Thus, early EEG features alone should not be used to 

predict unfavorable outcome when guiding clinical decision making. However, these data 

suggest that multi-model prediction models would likely be strengthened by inclusion of 

EEG data. Furthermore, early EEG data could be useful for stratifying patients by severity of 

initial brain injury for future neuroprotection trials.

EEG data can be obtained at bedside, either continuously or periodically, easily repeated, 

and provide functional information. Furthermore, EEG data is commonly obtained in 

critically ill patients including after CA to identify electroencephalographic seizures.14,29,44 

Several contemporary studies have evaluated associations between EEG features and 

neurologic outcomes in children after CA. A single-center retrospective study of 128 

consecutive children post-CA without therapeutic hypothermia who underwent EEG 

monitoring within one day of return of spontaneous circulation showed that the EEG 

background category was normal in 3%, slow-disorganized in 45%, discontinuous/burst-

suppression in 19%, and attenuated-featureless in 33% of subjects. After controlling for 

covariates including clinical, CA, and resuscitation characteristics, for each incrementally 

worse EEG background category, the odds of death was 3.63 (95%CI, 2.18–6.0; p < 0.001) 

and the odds of unfavorable neurologic outcome at discharge was 4.38 (95%CI, 2.51–7.17; p 
= 0.001).17 This was similarly shown in another single-center retrospective study of 73 

children post-CA with and without therapeutic hypothermia who underwent EEG 

monitoring within 72 hours of return of spontaneous circulation. After controlling for 

demographic and arrest characteristics, in the initial 12 hours, subjects with a normal or slow 

EEG backgrounds as opposed to burst-suppression or suppression backgrounds had more 

favorable outcomes. Subjects with normal EEG voltage, reactivity, or variability in the initial 

12 hours also had more favorable outcomes. EEG data from later timepoints (12–24 hours 

and >24 hours) were not predictive of outcome.45 A single-center retrospective study of 41 

children who had EEG data available after CA reported that EEG background suppression 

was associated with unfavorable outcome.27 A single-center retrospective study of 35 

consecutive children managed with therapeutic hypothermia after CA who underwent EEG 

monitoring demonstrated that EEG backgrounds scored as unreactive, discontinuous, burst-

suppression, or without discernable cerebral activity were associated with unfavorable 

outcomes, both during hypothermia and after return to normothermia.16 Another single-

center retrospective study evaluated 34 subjects who were resuscitated from an in-hospital 

CA and underwent a routine 20-minute EEG during the first seven days following 
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resuscitation. Although the patients in this study were influenced by clinician selection and 

were not managed with a standardized EEG monitoring pathway, the study identified 

associations between normal EEG background patterns and favorable outcome and between 

isoelectric EEG and unfavorable outcome.18 A single-center retrospective study of 34 

children who underwent EEG monitoring after CA evaluating outcome at 6 months 

demonstrated that the presence of sleep spindles (including poorly formed sleep spindles) 

during the initial 24 hours after return of spontaneous circulation was associated with 

favorable outcomes. Spindles were present in 80% of children with favorable outcomes and 

only 8% of children with unfavorable outcomes.26

Seizures are reported in about 5–45% of subjects after CA,15,17,26,27,45 and EEG monitoring 

is often performed after CA for seizure identification.14,29 In this study, we found that 

seizures occurred in a slightly higher percentage of patients with unfavorable outcomes or 

mortality, but these associations were not significant. Other groups have similarly attempted 

to explore the association between electrographic seizures and outcome and reported that 

seizures were more common in subjects with unfavorable outcomes, but the differences were 

not statistically different. In the Topjian study, neither seizures nor status epilepticus were 

associated with mortality. However, status epilepticus was associated with unfavorable 

neurologic outcomes (87% unfavorable vs. 13% favorable, p=0.008).17 In the Ostendorf 

study,100% of 7 subjects with seizures had unfavorable outcomes, but the difference was not 

statistically significant.45 In the Brooks study, 78% of 9 subjects with seizures, 100% of 2 

subjects with myoclonic status epilepticus, and 100% of 2 subjects with generalized periodic 

discharges had unfavorable outcomes, but the difference was not statistically significant.27 

Similarly, in the Ducharme-Crevier study, 75% of 8 subjects with seizures had unfavorable 

outcomes, but the difference was not statistically significant.26 Thus, the impact of seizures 

on outcome remains uncertain. In cohorts of more heterogeneous acute encephalopathy 

etiologies, higher electroencephalographic seizure exposure has been associated with less 

favorable neurologic outcomes.33,46–48 Importantly, in all of these studies, clinicians aimed 

to intervene upon and manage identified electroencephalographic seizures, so the impact of 

a potentially higher seizure exposure in the absence of anti-seizure treatment cannot be 

assessed. It may be that in some children with more moderate injury, a higher 

electroencephalographic seizure burden can induce secondary brain injury that leads to less 

favorable neurologic outcomes.49

Other clinical and examination data may also be used for neuro-prognostication in children 

after CA. For example, studies have identified associations between unfavorable discharge 

outcomes and early abnormal neurologic examination signs (absent pupillary and motor 

responses),13 early post-CA hypotension,11 early elevated serum lactate levels,10 early 

depressed myocardial function,12 and abnormal brain computerized tomography scans.9 

However, none of these measures predict outcomes independently.9–13 Importantly, when 

neurologists and intensivists predicted neurobehavioral outcomes from CA cases, the 

addition of early EEG data significantly improved prognostication accuracy.50 Our data 

support the idea that subsequent development of multi-modal models for neuro-

prognostication in children should include early EEG data.
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The study has several strengths when compared to the available literature. First, it 

prospectively evaluated a large, consecutive, and contemporary cohort of patients. Second, it 

used standardized scoring of the EEG tracing and did not rely solely on data obtained from 

clinical reports. Third, it assessed numerous EEG variables in addition to a categorical 

summary EEG variable. Fourth, although patients in this study underwent EEG monitoring, 

the early EEG variables evaluated could be obtained by a routine EEG. Fifth, the EEG 

scoring system used by the final model is relatively straight-forward and encompasses EEG 

features that have substantial inter-rater reliability.36,38

The study also has several limitations. First, we measured only short-term outcome using 

mortality and a simple outcome assessment tool (PCPC), and these outcomes may not reflect 

long-term patient-centered neurobehavioral outcomes. Studies utilizing longer-term and 

more detailed patient-centered neurobehavioral outcome assessments are needed. Second, 

EEG results were known to the clinical teams providing care which may have influenced 

goals of care decisions. To minimize the impact of this problem, we defined unfavorable 

neurobehavioral outcome in a broad manner (PCPC score 4–6) and not only death (PCPC 

score 6) to reduce the influence of family decisions regarding withdrawal of technological 

support on outcome categorization. A subject’s outcome would be categorized as 

unfavorable whether a family chose to withdraw or continue technological support of a child 

with severe disability, coma, or vegetative state (PCPC score 4–5). Third, we focused on the 

earliest available EEG after ROC given our aim of early prediction and early stratification of 

brain injury severity for future neuroprotective studies. However, assessing the EEG at later 

time points and evaluating for changes over time may be beneficial for prediction models of 

meaningful long-term neurobehavioral outcome. Fourth, although this was a large pediatric 

cardiac arrest cohort, the number of subjects could lead to model overfitting. Fifth, stage 2 

sleep transients were included in the model with encephalopathic subjects, but it would be 

unclear how to implement this model if the patient were awake and thereby absent stage 2 

sleep transient absence might be normal. Sixth, we included reactivity-variability in the final 

model, but further standardization of this assessment is needed51,52 as prior studies have 

shown limited inter-rater agreement for reactivity assessment.53–57 Future studies evaluating 

multi-modal prediction models will need to determine if inclusion of reactivity assessments 

add sufficient predictive value to be included despite these limitations.

In summary, many early EEG features, used individually and in combination, had a high 

specificity for unfavorable neurobehavioral outcome and mortality. Our model aimed for 

simplicity with the final model incorporating a four-level EEG Background Category 

(normal, slow-disorganized, discontinuous or burst-suppression, or attenuated-flat), Stage 2 

Sleep Transients (present or absent), and Reactivity-Variability (present or absent). Our 

model also aimed for maximum specificity to limit the number of false positives when 

predicting unfavorable neurobehavioral outcome. The specificity of the optimal model was 

high for unfavorable neurobehavioral outcome (95%) and death (97%). However, the 

positive predictive value was only 86% for both outcomes. Therefore, early EEG data must 

be considered together with the overall clinical context. Further work is needed 

incorporating early and standardized EEG data along with clinical and examination data into 

comprehensive multi-modal models for neuroprognostication.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Receiver operating characteristic curves for mortality (left) and unfavorable neurobehavioral 

outcome (right) showing the optimal (squares) and the model with the highest area under the 

receiver operating characteristic (AUROC) curve (circles).
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Table 1.

Clinical, cardiac arrest, and resuscitation characteristics.

Variable N (%)
Median [IQR]

Age (years) 2.1 [0.27, 9.1]

Male 56 (63%)

 Race

 White 46 (52%)

 Black 19 (21%)

 Other 24 (27%)

Hispanic 14 (16%)

Pre-Cardiac Arrest PCPC Score

 1 = Normal 57 (64%)

 2 = Mild Disability 12 (13%)

 3 = Moderate Disability 8 (9%)

 4 = Severe Disability 9 (10%)

 5 = Coma or Vegetative State 3 (3%)

Pre-Existing Condition 68 (76%)

 Pre-Cardiac Arrest Ventilation 34 (38%)

 Congenital Heart Disease 33 (37%)

 Respiratory Failure 23 (26%)

 Pre-Cardiac Arrest Vasoactive Infusions 18 (20%)

 Chronic Tracheostomy-Ventilator 16 (18%)

In-Hospital Cardiac Arrest 58 (65%)

In-Hospital Cardiac Arrest Location (N=58)

 Cardiac ICU 24 (41 %)

 Pediatric ICU 15 (26%)

 Emergency Department 8 (14%)

 Floor 8 (14%)

 Other 3 (5%)

Witnessed Cardiac Arrest 64 (72%)

Bystander CPR for Out-of-Hospital Cardiac Arrest (N=31) 25 (81 %)

CPR Duration (minutes) (N=70) 10 [4, 20]

Initial Rhythm

 Asystole 16 (18%)

 Pulseless Electrical Activity 10 (11%)

 Bradycardia 33 (37%)

 Ventricular Fibrillation or Tachycardia 11 (12%)

 Other/Unknown 19 (21%)

Cardiac Arrest Cause (may have >1)

 Sudden Infant Death Syndrome 5 (6%)

 Drowning 9 (10%)

 Shock 38 (43%)
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Variable N (%)
Median [IQR]

 Respiratory Failure 34 (38%)

 Trauma 8 (9%)

Epinephrine Doses

 0 14 (1 6%)

 1 15 (17%)

 2 10 (11%)

 3 18 (20%)

 4 7 (8%)

 ≥5 20 (22%)

Unknown 5 (6%)

Initial Lactate (N=82) 5.0 [2.8, 8.4]

Lowest pH Initial 24 Hours After Cardiac Arrest (N=88) 7.20 [7.03, 7.29]

Intubated 67 (76%)

Induced Hypothermia 10 (11%)

Pentobarbital Infusion 3 (3%)

Benzodiazepine Infusion 69 (78%)

Benzodiazepine Bolus 56 (63%)

Glasgow Coma Scale - Eye Opening (N=77)

 Spontaneously 12 (16%)

 To Speech 5 (6%)

 To Pain 4 (5%)

 No Response 56 (73%)

Glasgow Coma Scale - Best Verbal Response (N=77)

 Oriented 0 (0%)

 Confused 2 (3%)

 Inappropriate Words 0 (0%)

 Incomprehensible Sounds 1 (1%)

 No Response 74 (96%)

Glasgow Coma Scale - Best Motor Score (N=76)

 Obeys Commands 6 (8%)

 Moves to Localized Pain 3 (4%)

 Flexion Withdrawal from Pain 15 (20%)

 Abnormal Flexion 2 (3%)

 Abnormal Extension 0 (0%)

 No Response 50 (65%)

Mortality 30 (34%)

Unfavorable Neurobehavioral Outcome 44 (49%)

CPR: cardiopulmonary resuscitation, ICU: intensive care unit, IQR: interquartile range, PCPC: pediatric cerebral performance category.
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Table 2.

EEG characteristics and outcomes. Data are presented as N (%). White rows display EEG variables using 

standardized critical care EEG variables from the American Clinical Neurophysiology Society. Gray rows 

display EEG variables using combined response categories created in this study.

Totals Neurobehavioral Outcome Mortality

Unfavorable Favorable p-value Die Survive p-value

89 46 (52%) 43 (48%) 30 (34%) 59 (66%)

EEG Background Category (5-level) 0.001 0.000

 Normal 9 (10%) 1 (2%) 8 (19%) 1 (3%) 8 (14%)

 Slow-Disorganized 44 (49%) 19 (41%) 25 (58%) 7 (23%) 37 (63%)

 Discontinuous 18 (20%) 10 (21%) 8 (19%) 6 (20%) 12 (20%)

 Burst-Suppression 4 (4%) 4 (9%) 0 (0%) 4 (13%) 0 (0%)

 Attenuated-Featureless 14 (16%) 12 (26%) 2 (5%) 12 (40%) 2 (3%)

EEG Background Category (4-level) 0.001 0.000

 Normal 9 (10%) 1 (2%) 8 (19%) 1 (3%) 8 (14%)

 Slow-Disorganized 44 (49%) 19 (41%) 25 (58%) 7 (23%) 37 (63%)

 Discontinuous or Burst Suppression 22 (25) 14 (30%) 8 (19%) 10 (33%) 12 (20%)

 Attenuated-Featureless 14 (16%) 12 (26%) 2 (5%) 12 (40%) 2 (3%)

Electrographic Seizures 0.678 0.248

 None 82 (92%) 41 (89%) 41 (95%) 26 (87%) 56 (95%)

 Seizure(s) 1 (1%) 1 (2%) 0 (0%) 1 (3%) 0 (0%)

 Status Epilepticus 6 (7%) 4 (9%) 2 (5%) 3 (10%) 3 (5%)

Symmetric 88 (99%) 46 (100%) 42 (98%) 0.483 30 (100%) 58 (98%) 1.000

Fastest Frequency (4-level) 0.078 0.001

 Attenuated 11 (12%) 9 (20%) 2 (5%) 9 (30%) 2 (3%)

 Delta 52 (58%) 26 (57%) 26 (60%) 17 (57%) 35 (59%)

 Delta + Theta 24 27%) 11 (24%) 13 (30%) 4 (13%) 20 (34%)

 Delta + Theta + Alpha 2 (2%) 0 (0%) 2 (5%) 0 (0%) 2 (3%)

Fastest Frequency (3-level) 0.083 0.001

 Attenuated 11 (12%) 9 (20%) 2 (5%) 9 (30%) 2 (3%)

 Delta 52 (58%) 26 (57%) 26 (60%) 17 (57%) 35 (59%)

 Delta + Theta and/or Alpha 26 (29%) 11 (24%) 15 (35%) 4 (13%) 22 (37%)

Continuity (8-level) 0.002 0.000

 Continuous 49 (55%) 20 (43%) 29 (67%) 8 (27%) 41 (69%)

 Nearly continuous with attenuation 4 (4%) 0 (0%) 4 (9%) 0 (0%) 4 (7%)

 Nearly continuous with suppression 1 (1%) 1 (2%) 0 (0%) 1 (3%) 0 (0%)

 Discontinuous with attenuation 5 (6%) 3 (7%) 2 (5%) 1 (3%) 4 (7%)

 Discontinuous with suppression 12 (13%) 6 (13%) 6 (14%) 4 (13%) 8 (14%)

 Burst-attenuation 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

 Burst-suppression 4 (4%) 4 (9%) 0 (0%) 4 (13%) 0 (0%)

 Suppression 14 (16%) 12 (26%) 2 (5%) 12 (40%) 2 (3%)

Continuity (4-level) 0.002 0.000
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Totals Neurobehavioral Outcome Mortality

Unfavorable Favorable p-value Die Survive p-value

89 46 (52%) 43 (48%) 30 (34%) 59 (66%)

 Continuous or Nearly Continuous 54 (60%) 21 (46%) 33 (76%) 9 (30%) 45 (76%)

 Discontinuous with attenuation/suppression 17 (19%) 9 (20%) 8 (19%) 5 (17%) 12 (20%)

 Burst-attenuation/suppression 4 (4%) 4 (9%) 0 (0%) 4 (13%) 0 (0%)

 Suppression 14 (16%) 12 (26%) 2 (5%) 12 (40%) 2 (3%)

Voltage 0.001 0.000

 Normal 44 (49%) 18 (39%) 26 (60%) 10 (33%) 34 (58%)

 Low 27 (30%) 12 (26%) 15 (35%) 5 (17%) 22 (37%)

 Suppressed 18 (20%) 16 (35%) 2 (5%) 15 (50%) 3 (5%)

Stage II Transients (4-level) 0.000 0.001

 Present and normal 14 (16%) 1 (2%) 13 (30%) 0 (0%) 14 (24%)

 Present but abnormal 9 (10%) 2 (4%) 7 (16%) 1 (3%) 8 (14%)

 Absent 65 (73%) 43 (93%) 22 (51%) 29 (97%) 36 (61%)

 Awake only 1 (1%) 0 (0%) 1 (2%) 0 (0%) 1 (2%)

Stage II Transients (2-level) 0.000 0.000

 Present (normal or abnormal) 23 (26%) 3 (7%) 20 (47%) 1 (3%) 22 (37%)

 Absent 66 (74%) 43 (93%) 23 (53%) 29 (97%) 37 (63%)

Reactivity Present 35 (39%) 11 (24%) 24 (56%) 0.003 6 (20%) 29 (49%) 0.011

Variability Present 38 (43%) 13 (28%) 25 (58%) 0.006 7 (23%) 31 (53%) 0.012

Variability or Reactivity Present 41 (46%) 14 (30%) 27 (63%) 0.003 7 (23%) 34 (58%) 0.003

Sporadic Epileptiform Discharges Present 8 (9%) 6 (13%) 2 (5%) 0.268 4 (13%) 4 (7%) 0.435

Ictal-Interictal Continuum Patterns Present 6 (7%) 5 (11%) 1 (2%) 0.204 3 (10%) 3 (5%) 0.401
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Table 3.

Area under the receiver operating characteristic curve (AUC) for models using EEG features in varying 

combinations for predicting unfavorable neurologic outcome and mortality.

Model Unfavorable Neurobehavioral Outcome
AUC

(95% CI)

Mortality
AUC

(95% CI)

EEG Background Category (4-level) 0.72 (0.62–0.81) 0.79 (0.69–0.89)

Fastest Frequency (3-level) 0.60 (0.50–0.70) 0.70 (0.60–0.80)

Continuity (4-level) 0.66 (0.56–0.76) 0.75 (0.64–0.87)

Voltage 0.66 (0.56–0.77) 0.74 (0.63–0.85)

Sleep Transients (2-level) 0.70 (0.62–0.78) 0.67 (0.60–0.74)

Variability or Reactivity 0.66 (0.56–0.76) 0.67 (0.57–0.77)

Continuity (4-level) + Voltage 0.69 (0.58–0.79) 0.77 (0.65–0.89)

Continuity (4-level) + Voltage + Fastest Frequency 0.69 (0.58–0.80) 0.77 (0.64–0.89)

Continuity (4-level) + Voltage + Fastest Frequency + Stage II Sleep 
Transients

0.80 (0.72–0.90) 0.81 (0.72–0.91)

Continuity (4-level) + Voltage + Fastest Frequency + Variability and/or 
Reactivity

0.72 (0.61–0.83) 0.76 (0.64–0.89)

Continuity (4-level) + Voltage + Fastest Frequency + Stage II Sleep 
Transients + Variability and/or Reactivity

0.80 (0.71–0.89) 0.82 (0.72–0.93)

EEG Background Category (4-level) + Stage II Sleep Transients 0.77 (0.68–0.87) 0.83 (0/74–0.92)

EEG Background Category (4-level) + Variability and/or Reactivity 0.74 (0.64–0.84) 0.80 (0.69–0.90)

EEG Background Category (4-level) + Stage II Sleep Transients + 
Variability and/or Reactivity

0.78 (0.68–0.87) 0.83 (0.74–0.93)
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Table 4.

Logistic regression for the model incorporating EEG Background Category, sleep transients, and reactivity-

variability for predicting unfavorable neurobehavioral outcome and mortality.

EEG Variable Unfavorable Neurobehavioral Outcome Mortality

OR (95% CI) p-value OR (95% CI) p-value

EEG Category

 Normal - - - -

 Slow-Disorganized 2.68 (0.26–27.62) 0.41 0.54 (0.04–7.02) 0.64

 Discontinuous or Burst Suppression 3.64 (0.30–43.43) 0.31 1.62 (0.11–22.79) 0.72

 Attenuated-Featureless 9.62 (0.55–169.36) 0.12 9.42 (0.44–200.02) 0.15

Stage 2 Sleep Transients

 Present - - - -

 Absent 6.46 (1.55–26.98) 0.01 7.61 (0.76–75.9) 0.08

Reactivity-Variability

 Present - - - -

 Absent 1.58 (0.55–4.56) 0.40 1.48 (0.44–4.96) 0.53
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Table 5.

Predicted probabilities of unfavorable neurobehavioral outcome and mortality for each of the possible model 

combinations organized by low to high probability of unfavorable neurobehavioral outcome.

EEG Features Probability (95% CI)

Background Category Reactivity Sleep Unfavorable Neurobehavioral Outcome Mortality

Normal + + 0.06 (−0.07, 0.18) 0.05 (−0.07, 0.18)

Normal − + 0.09 (−0.11, 0.29) 0.08 (−0.12, 0.27)

Slow-Disorganized + + 0.14 (−0.02, 0.30) 0.03 (−0.04, 0.10)

Discontinuous or Burst-Suppression + + 0.18 (−0.07, 0.43) 0.08 (−0.11, 0.28)

Slow-Disorganized − + 0.21 (−0.03, 0.44) 0.04 (−0.05, 0.14)

Discontinuous or Burst-Suppression − + 0.26 (−0.07, 0.59) 0.12 (−0.14, 0.38)

Normal + − 0.28 (−0.18, 0.75) 0.30 (−0.22, 0.82)

Attenuated-Featureless + + 0.37 (−0.15, 0.89) 0.35 (−0.32, 1.02)

Normal − − 0.38 (−0.19, 0.96) 0.39 (−0.24, 1.02)

Attenuated-Featureless − + 0.48 (−0.04, 1.00) 0.44 (−0.24, 1.12)

Slow-Disorganized + − 0.51 (0.29, 0.74) 0.19 (0.02, 0.36)

Discontinuous or Burst-Suppression + − 0.59 (0.32, 0.86) 0.41 (0.13, 0.69)

Slow-Disorganized − − 0.63 (0.42, 0.83) 0.25 (0.07, 0.44)

Discontinuous or Burst-Suppression − − 0.69 (0.49, 0.90) 0.51 (0.26, 0.77)

Attenuated-Featureless + − 0.79 (0.49, 1.10) 0.80 (0.50, 1.11)

Attenuated-Featureless − − 0.86 (0.67, 1.04) 0.86 (0.67, 1.04)
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Table 6.

Test Characteristics for the model incorporating EEG Background Category, sleep transients, and reactivity-

variability for predicting unfavorable neurobehavioral outcome and mortality.

Outcome Outcome Prevalence
(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

Positive Predictive 
Value

(95% CI)

Negative Predictive 
Value

(95% CI)

Unfavorable 
Neurobehavioral 
Outcome

51.7 (40.8–62.4) 95.3 (84.2–99.4) 26.1 (14.3–41.1) 85.7 (57.2–98.2) 54.7 (42.7–66.2)

Mortality 33.7 (24.0–44.5) 96.6 (88.3–99.6) 40.0 (22.7–59.4) 85.7 (57.2–98.2) 76.0 (64.7–85.1)
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