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Abstract

While causal mediation analysis has seen considerable recent development for a single measured 

mediator (M) and final outcome (Y), less attention has been given to repeatedly measured M and 

Y. Previous methods have typically involved discrete-time models that limit inference to the 

particular measurement times used, and do not recognize the continuous nature of the mediation 

process over time. To overcome such limitations, we present a new continuous time approach to 

causal mediation analysis that uses a differential equations model in a potential outcomes 

framework to describe the causal relationships among model variables over time. A connection 

between the differential equations models and standard repeated measures models is made to 

provide convenient model formulation and fitting. A continuous time extension of the sequential 

ignorability assumption allows for identifiable natural direct and indirect effects as functions of 

time, with estimation based on a two-step approach to model fitting in conjunction with a 

continuous time mediation formula. Novel features include a measure of an overall mediation 

effect based on the ‘area between the curves’, and an approach for predicting the effects of new 

interventions. Simulation studies show good properties of estimators and the new methodology is 

applied to data from a cohort study to investigate sugary drink consumption as a mediator of the 

effect of socioeconomic status on dental caries in children.
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1. INTRODUCTION

Mediation analysis seeks to determine the extent to which the effect of an exposure or 

intervention on a health outcome is due to its effect on one or more causally intermediate 

variables (or mediators). A goal of such an analysis is to illuminate the mechanisms through 

which the exposure or treatment affects the health outcome. An important related application 

is in the development of more effective, acceptable, and cost-effective interventions.

Recently, mediation analysis has been formulated using a potential outcome (causal model) 

framework. The resulting methodology, referred to as causal mediation analysis, provides, 

and elucidates the basis for, causally interpretable mediation (direct and indirect) effects. 

Causal mediation analysis for a single mediator has been addressed, for example, by Robins 

and Greenland (1992)1, Albert (2008)2, and Imai et al. (2010)3. Recent developments have 

involved more complex situations, including multiple (non-causally-ordered) mediators4,5, 

causally ordered mediators6–8, and a repeatedly measured mediator9. Most of these methods 

involve versions of the mediation formula10 or the G formula11; an alternative approach uses 

a natural effect model in conjunction with inverse weighting12. In addition, though not based 

on a potential outcomes framework, structural equation model13,14 and related (e.g., cross-

lagged model15; and state space model16) methods for mediation analysis, possibly utilizing 

repeated measures, have been offered. An approach using linear mixed effects model has 

also been proposed17.

Causal mediation analysis, and causal modelling in general, has predominantly relied on 

discrete time models. The prototypical mediation model is represented by the causal diagram 

(technically, a directed acyclic graph, or DAG18) given in Figure 1 (left). Here, we suppose 

that the exposure (X), mediator (M) and final outcome (Y) are measured at times t1, t2, and 

t3, respectively, with t1 < t2 < t3. For example, this model might describe the direct effect of 

a behavioral intervention on body mass index (BMI) in children and its indirect effect via 

diet change19. A discrete causal mediation model for longitudinal data (repeated measures of 

X, M, and Y, with the subscript indicating the time point) is represented in Figure 1 (right).

There has been increasing recognition that conventional (discrete time) mediation models 

are inadequate for explaining, or providing predictions related to, many social/behavioral 

and biological processes in health, which may often be seen as evolving in continuous 

time20. Aalen et al. (2014)21, for example, showed in simulation studies that the use of a 

discrete mediation model, when the true model is continuous, can seriously distort estimates 

of mediation effects, thus, imply a null or small mediation effect, when in fact a large effect 

is present, or vice versa. In contrast to discrete time models, continuous time models (as 

represented in Figure 2) represent the underlying processes which are considered as existing 

prior to the selection of measurement times.

Aside from the possible distortion induced, discrete time models for mediation/path analysis 

involving continuous time processes have a number of other shortcomings. One is that 

inferences are restricted to the particular measurement times used, a consequence being that 

different measurement times imply different questions and are apt to produce different 

conclusions. In addition, discrete time models are generally ill–equipped to handle 
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longitudinal data with unbalanced measurement times, that is, where subjects have different 

measurements times. A further limitation is that discrete time models become increasingly 

cumbersome as the number of repeated measures increases. Some work to address these 

issues within the SEM framework, for example, using latent trend variables, has been 

done22.

Unfortunately, there has been little development of causal models for the continuous time 

context. Most of this work has been directed at determining the causal effect of a treatment 

varying over time rather than mediation analysis per se23–26. Recently proposed methods for 

mediation analysis in continuous time have been based on ordinary differential equations 

models21,27. However, these methods are not based on a causal (in particular, potential 

outcomes) model and thus do not provide clear implications for causal inference. Also, they 

deal with contexts in which a differential equations model can be directly specified. This 

may not be the case in many health areas, including those involving psychosocial factors, in 

which continuous time mediation analysis may be of interest.

In this paper, we develop a novel causal approach to mediation analysis that recognizes 

model variables as continuous processes over time. We begin by presenting a new causal 

differential equations (CDE) model. Using differential equations involving potential 

outcomes, the model is flexible in allowing a variety of variable types. We relate this model 

to standard regression models for longitudinal data, thus allowing intuitive and familiar 

approaches to data fitting as part of a continuous time mediation analysis. We further show 

how this approach allows one to extend the notion of mediation to that of ‘partial mediation’ 

whereby the mediator is activated over part, but not all, of the time range of interest. We 

apply the new approach to a longitudinal cohort study of dental caries in early childhood and 

conclude with a discussion of its advantages and limitations along with directions for future 

research.

2. CONTINUOUS TIME MEDIATION MODEL

2.1 Model

We introduce what we refer to as the causal differential equation (CDE) model, beginning 

with the following general form:

dV t
k A /dt = gk t, Vt A (1)

where Vt
(k)(A) is the potential outcome of the kth response variable (k=1,…,K) at time t ∈ 

[0, T] under (possibly time-varying) intervention A; V−t A = V−t A−t  is the history of 

V = V 1 …, V K ′, a column vector of the model variables, under intervention A, up to time 

t; and gk is a specified function for the kth variable. Note that the V(k) may be expected or 

latent versions of the corresponding observed variables. This model may be supplemented 

by assumed probability distribution functions for the variables.
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The CDE model yields an (instantaneous) causal effect of an intervention, A1, versus 

another intervention, A0, at some time t, expressed as the following difference in potential 

outcomes for some variable, V (dropping the superscript (k) for now),

dV t A1

dt −
dV t A0  

dt = limΔ 0 V t + Δ A−t + Δ
1 − V t A−t

1 − V t + Δ A−t + Δ
0 − V t A−t

0 /Δ(2)

In other words, expression (2) represents the difference in the instantaneous change in the 

potential outcome of variable V at time t, due to intervention A1 versus intervention A0.

For concreteness, and applicability to our later causal mediation problem (in our dental data 

example), we will focus on the following special case of the CDE model:

dMt A
dt = gM t, Xt

M,  LM; α (3)

dY t A
dt = gY t,  Xt

Y, Mt A , LY; β (4)

where Y t and Mt denote individual-level expected values of the outcome and the mediator, 

respectively, at time t; Xt
Y and Xt

M are functions indicating the exposure level (affecting Y 

and M, respectively) at t; A is the ‘intervention’ (effectively defined by Xt
Y and Xt

M); LM and 

LY are vectors of baseline covariates, possibly including latent variables (e.g., random 

effects) predicting M and Y, respectively; and α and β are vectors of unknown parameters 

(which may sometimes be dropped in the notation).

By integrating both sides of the above differential equation, we obtain the following integral 

equations:

Mt A   = M0 A0 + ∫
0

t
gM s, Xs

M, LM ds (5)

Y t A = Y0 A0 + ∫
0

t
gY s, Xs

Y, Ms A , LY ds (6)

Since Xt
M,  Xt

Y, and Mt A  are generally functions of time, t, it will be helpful to define the 

following composite functions:
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hA
M t ≡ gM t, X

t
M, LM ,  hA

Y t ≡ gY t, Xt
Y, Mt Xt

M , LY . (7)

If hA
M t  and hA

Y t  are continuous over t ∈ [0, T], we obtain the models,

Mt A = HA
M t = GM t, Xt

M, LM (8)

Y t A =  HA
Y t = GY t, Xt

Y, Mt A , LY (9)

where HA
M t  and HA

Y t  are the antiderivatives of hA
M t  and hA

Y t , respectively, and GM and 

GY are functions (of the indicated arguments) yielding the composite functions (HA
M and 

HA
Y).

As a simple example, the differential equations,

dMt A

dt = α2exp α0 + α1x′ + α2t  

dYt A

dt = β2 + β3α2exp α0 + α1x′ + α2t ⋅ exp β0 + β1x + β2t + β3Mt A

with Xt
Y = x and Xt

M = x′ (i.e., both fixed over time), correspond to the integral equations,

Mt A = exp α0 + α1x′ + α2t]

Yt A = exp β0 + β1x + β2t + β3Mt A .

We may wish to directly model the integral, as opposed to the differential, equations, that is, 

GM and GY rather than gM and gY. Particularly for health and behavioral data, it may be 

easier to specify a model of the expected values rather than derivatives of the expected 

values. This will be the emphasis of the present paper, in which we use suitable longitudinal 

models for the GM and GY functions. However, the integral equations ((5) and (6)) motivate 

a new class of longitudinal models that handles certain extensions such as that of the next 

section. In other contexts, available scientific theory may allow direct specification of the 

CDE (i.e., gM and gY functions).
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2.2 Extension for Treatment Discontinuities

We wish to extend (8) and (9) to allow for hA
M t  and/or hA

Y t  being discontinuous. Such 

discontinuities may result from discontinuous changes in exposure or treatment over time. In 

fact, we will focus on the case of discontinuities in Xt
Y and/or Xt

M while the functions gY and 

gM are continuous. For mediation analysis, this extension will enable, for example, an 

assessment of mediation through a treatment implemented over part - but not all - of the time 

range. Thus, we now make the relaxed assumption that hA
M t  and hA

Y t  are piecewise 

continuous over [0,T] (thus, HA
M t  and HA

Y t  piecewise differentiable) and construct models 

based on (5) and (6). Supposing that hA
Y t  has d discontinuity points, t1,..,td in (0,T) (so that 

HA
Y t , the piecewise antiderivative of hA

Y t , is piecewise differentiable for the resulting 

intervals) we write,

Y t A = Y0 A + ∑ j = 0
d I(t > t j)GY s, Xs

Y, Ms A , LY
t j

 t j + 1*
(10)

where t0 ≡ 0, td+1 ≡ T, t j* = min t,  t j , I(t > tj) =1 if t > tj, I(t > tj) =0 otherwise, and 

GY t, Xt
Y, Mt A , LY = hA

Y t  is the antiderivative of gY t, Xt
Y, Mt Xt

M , LY  for any constant Xt
Y

and Xt
M.

Each Mt A  term would be expressed in a similar way using the piecewise differentiable 

function HA
Y t  and a partition based on discontinuities in hA

M t . Namely, when hA
M t  has r 

discontinuity points, tM,1,…, tM,r in (0,T), we would have,

Mt A = M0 A + ∑ j = 0
r I(t > tM, j)GM s, Xs

M, LM
tM, j

 tM, j + 1*
(11)

where tM,0 ≡ 0, tM,r+1 ≡ T, tM, j* = min t,  tM, j , and GM t, Xt
M, LM = hA

M t  is the 

antiderivative of gM t, Xt
M, LM  for any constant Xt

M.

To illustrate the above expressions, we consider a couple of simple examples also of interest 

for our later application.

Example 1. Suppose a person is exposed but the mediator set as if not exposed over the 

entire time interval, [0,T]. This intervention, denoted as A1,0, can be described in previous 

notation as follows:

A1,0 ≡ Xt
Y = 1,  Xt

M = 0;  t ∈ 0, T ≡ XY = 1,  XM = 0
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resulting in potential outcomes, Y t A1,0 = Y t XY = 1,  XM = 0 , for t ∈ [0, T]; note that we 

may drop the subscript t in the notation in the case of a constant exposure status.

Because there are no discontinuities for this intervention, we can use expression (9) (a 

special case of (10)) along with (8) (a special case of (11) to get,

Yt A1,0 = GY  t, XY = 1, Mt XM = 0 , LY

for t ∈ [0, T], with

Mt XM = 0 = GM t,  XM = 0, LM

Example 2. Consider a person who is exposed but whose mediator is set as if exposed until 

time t1 < T, and then as if not exposed starting at time t1. This intervention will be denoted 

as A
1, t1 ≡ Xt

Y = 1,  Xt
M = 1 0, t1 ,  0 t1, T .

As there is no discontinuity in Xt
Y we have,

Yt A
1, t1 = GY t, Xt

Y , Mt A
1, t1 , LY

for t ∈ [0, T]. However, there is a discontinuity in Xt
M, so we use (11) to get,

Mt A
1, t1 = GM t*, Xt*

M = 0,   LM + I(t > t1)GM s, Xs
M = 1, LM

t1
t

where t* = min(t, t1), t ∈ [0, T].

We note that the theory up to this point allows exposure processes, Xt
Y and Xt

M, to be 

continuous in each interval. However, our focus will generally be on the case of a binary 

exposure as is applicable in our data example.

2.3 Mediation Estimands

Mediation (that is, natural direct and indirect) effects may be formulated as appropriate 

contrasts (for example, differences or ratios) of expected potential outcomes of Y. For 

example, the natural indirect effect of Xt on Y t through Mt could be expressed as the 

difference in expected potential outcomes of Y t under the two interventions, 

A1 = Xt
Y = 1,  Xt

M = 1;  t ∈ 0, T  and A1,0 = Xt
Y = 1,  Xt

M = 0;  t ∈ 0, T  respectively, 

keeping in mind that the relevant part of an intervention for the outcome Y t occurs up to time 

t. This contrast may be written as,
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It A1,0 = E Y
t

A1 − E Yt A1,0

= ∫
l

Y t A1 − Y t A1,0 f L l dμL l (12)

where fL denotes the joint density function of the baseline covariate vector, L, obtained as 

the union of LY and LM. The estimand It(A1,0) thus represents an indirect effect of exposure 

X (continuously maintained at level 1 versus level 0) on Y at time t though mediator M, 

considered as a process, up to time t.

The corresponding natural direct effect, which also involves the intervention 

A0 ≡ Xt
Y = 0,  Xt

M = 0;  t ∈ 0, T , is,

Dt A1,0 = E Y
t

A1,0 − E Yt A0

= ∫
l

Y t A1,0 − Y t A0 f L l dμL l . (13)

The preceding two effects yield the decomposition, Tt = Dt(A1,0) + It(A1,0), where 

T t = E Y t A1 − E Y t A0  is the total exposure effect at time t.

Alternative versions of these effects are obtained by defining the intervention, 

A0,1 = Xt
Y = 0,  Xt

M = 1;  t ∈ 0, T . We then have It A0,1 = E Y t A0,1 − E Y t A0  and 

Dt A0,1 = E Y t A1 − E Y
t

A0,1 , which comprise the alternative decomposition, Tt = 

Dt(A1,0) + It(A1,0). The discussion in Albert et al. (2018)8 is relevant to the choice of 

estimands/decomposition.

As an extension alluded to in the previous section, we may wish to consider the indirect 

effect of exposure through the mediator over a reduced portion of the time period, thus a 

‘partial’ indirect effect. For example, the intervention A
1, t1 involves exposed individuals 

where the effect of the exposure on the mediator is removed starting at some time t1. A 

corresponding indirect effect may be defined as,

It A
1, t1 = E Y

t
A1 − E Y t A

1, t1 . (14)
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This estimand is relevant to contexts, such as in our data example, where the start of the 

(future) intervention would correspond to stopping the exposure. An alternative estimand 

may be of interest when the intervention would involve initiation of exposure or treatment. 

Another possibility is an intervention that stops (rather than starts) at some time t1.

The above estimands at any given time t have a cross-sectional interpretation. We may also 

wish to assess the overall direct and indirect effects over the time range of interest. A useful 

summary measure is the ‘area between the curves’ (ABC). Specifically, this is the area 

between the curves given by the plots of the expected value of Y versus time for the two 

interventions implied by an indirect effect of interest. For example, the ABC for the total 

indirect effect (that is, corresponding to an intervention affecting M over the whole time 

range) is given by

ABC A1,0 = ∫
0

T
E Y t A1 − E Y t A1,0 dt . (15)

Alternative versions are defined in an obvious manner, for example, 

ABC A0,1 = ∫ 0
T E Y t A0,1 − E Y t A0 dt. The ABC measure is easily generalized for 

‘partial’ indirect effects using (14); namely, we define, 

ABC A
1, t1 = ∫ 0

T E Y t A1 − E Y t A
1, t1 dt.

Alternative scales for natural direct and indirect effects may be used. A popular alternative to 

the mean difference scale given above is the mean ratio scale. For example, ratio-scale 

analogs to the mediation estimands, (12) and (13), are as follows:

It
r A1,0 = E Y

t
A1 /E Yt A1,0

Dt
r A1,0 = E Y

t
A1,0 /E Yt A0

and we obtain a decomposition of the total (ratio scale) effect at time t as 

T t
r ≡ E Y

t
A1 /E Y t A0 = It

r A1,0 ∙ Dt
r A1,0 . The alternative versions for the ratio scale are 

denoted in obvious notation as It
r A0,1  and Dt

r A0,1  and provide the alternative 

decomposition, T t
r = It

r A0,1 ∙ Dt
r A0,1 . In models in which the alternative forms are equal we 

may write, for example, It
r = It

r A1,0 = It
r A0,1 ; further, we may drop the subscript when the 

effect is constant over time, for example, Dr = Dr(A1,0) = Dr(A0,1).

For the area between the curves, a natural definition corresponding to the ratio scale, while 

maintaining the interpretation as an area, is based on the log-transformed expected values, 

for example, ABCr A1,0 = ∫ 0
T log E Y t A1 − log E Y t A1,0 dt, and similarly for the 
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alternative version denoted as ABCr(A0,1). These definitions are readily generalized to the 

interventions starting at time t1, for example,

 ABCr A
1, t1 = ∫ 0

T log E Y t A1 − log E Y t A
1, t1 dt. In the case where It

r A1,0 = It
r A0,1  for t 

∈ [0, T], we use the abbreviated notation, ABCr = ABCr(A1,0) = ABCr(A0,1).

For the indirect effects (including ABCs) for either scale we may also define mediation (or 

indirect effect) proportions. For instance, the indirect effect proportions (for intervention A 
and at time t) for the difference and ratio scales are defined as It(A)(prop) ≡ It(A)/(Dt(A) + 

It(A)) and It
r A prop ≡ log It

r A / log It
r A + log Dt

r A , respectively. Similarly, for areas 

between the curves we define proportions on the difference and ratio scales as, for example, 

ABC A
1, t1 prop = ABC A

1, t1 /ABC A0  and ABCr A
1, t1 prop = ABCr A

1, t1 /ABCr A0 , 

where ABC A0 ≡ ∫ 0
T E Y t A1 − E Y t A0 dt and 

ABCr A0 ≡ ∫ 0
T log E Y t A1 − log E Y t A0 dt.

2.4 Identification and Inference

The estimands given above involve expected values of Y t A  for various interventions, that is, 

particular specifications of A. We will demonstrate the identifiability of these expected 

potential outcomes by showing that they can be written as functions of (estimable) 

association model parameters under certain assumptions. Our approach is an extension of 

the mediation formula approaches of Pearl (2001)28 and Imai et al., 20103 (see also Albert 

and Nelson, 20116, and Daniel et al., 20157).

Our assumptions are as follows, starting with a continuous version of the standard 

consistency assumption:

Assumption 1. Consistency:

Yt x, m = Yt if Xt = x and Mt = m,  and
Mt x′ = Mt if Xt = x′

for all x, x′, m and t ∈ [0, T]. That is, the potential outcomes for Y t and Mt where the levels 

of the causal variables are set to those observed (for a given individual), are equal to the 

observed (or actual latent) values for Y t and Mt, respectively.

We also assume a continuous time version of the sequential ignorability assumption:

Assumption 2. Sequential ignorability in continuous time:

Y t(x, m), Mt(x′) ∐Xt L = l (16)
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Y t(x, m)∐Mt(x′) Xt = x′, L = l . (17)

for all x, x′, m, and l, and any t ∈ [0, T].

Expression (16) states that potential outcomes for Y and M at a given time, t, are independent 

of the observed exposure (X) at time t, given the baseline variables L; similarly, (17) states 

that potential outcomes for Y and M at time t are independent given Xt and L. In other 

words, it is assumed that there are no unobserved confounders among the model variables 

(X, M, and Y) at any time. An accompanying assumption is that of positivity, that is, P(Xt = 

x|L = l) > 0 and P Mt x = m|Xt = x,   L = l > 0, for x = 0, 1, and m and l in their respective 

support sets. While this sequential ignorability assumption may appear to be strong (as it 

often is considered to be in the discrete time case), we note that the vector of baseline 

confounders (L) may include latent variables, as utilized in our data example discussed later.

In Web Appendix A, we show, given the above assumptions, that the expected potential 

outcome for a constant intervention can be expressed using the following version of the 

mediation formula:

E Y t x, Mt x′ = ∫
l

 ∫
m

 
E Y t X = x, Mt = m, L = l f

Mt  X = x′,  L = l
m x′, l f L l dμMt

m

dμL l

(18)

for t ∈ [0, T]. More general (including discontinuous) intervention functions require 

additional assumptions. Web Appendix A also shows for such cases that expected potential 

outcomes for Y can be identified under the causal differential equations model, that is, (5)-

(9).

Estimation of the expected potential outcomes using the continuous time mediation formula 

(18) is done in conjunction with association models for M and Y. As a concrete example, we 

consider the following model used for the dental data described in the next section:

Mi j ≡ E{Mi j | ti j, xi, ci, ui
M} =

exp[α0 + α1xi + α2ci+ui
M]

1 + exp{ − α3ti j}
1/νM

(19)
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Y i j ≡ E{Y i j | ti j, xi, ci, Mi j, u
i
Y} =

exp[β0 + β1xi + β2ci + β3log(Mi j) + ui
Y]

1 + exp{ − (β4ti j + β5ti j ∙ log(Mi j))}
1/ν (20)

Equations (19) and (20) are nonlinear regression models based on the generalized logistic 

function29; for convenience, we refer to them as generalized logistic models. Although (19) 

and (20) have specific forms pertaining to our data example, variations (for example, 

including other interaction terms, a time-dependent exposure, X, and different measurement 

times for Y and M) are possible. We also utilize natural continuous-time extensions of 

models (19) and (20). Thus we write Mit and Y it to refer to expected values for M and Y, 

respectively, for individual i at any given time t.

Note the important role of the random effects in (19) and (20) in increasing the plausibility 

of the sequential ignorability assumptions (in particular, (17)). From the DAG on the right-

hand side of Figure 1, it is apparent that previous observations of the mediator (M) represent 

confounders of the relationship between M and Y at a later time. We assume that the random 

effects explain any associations (further, any casual relationships) among the repeated 

measures for M, and likewise for Y. The assumed causal model is thus represented in Figure 

S1 (Supporting Information, Appendix A). We see for this DAG (under the nonparametric 

structural equation model (NPSEM) interpretation18) that assumptions (16) and (17), with 

uM and uY included in L, are satisfied.

The association models for M and Y may be fit jointly, but we consider a computationally 

faster two-step approach, making the additional assumption of independent ui
M and ui

Y. A 

Monte Carlo approach is used in lieu of integration over Mt in the mediation formula. Note, 

as indicated above, that the baseline covariate vector, L, is considered to include both the 

observable baseline variables and random effects; that is, L = (c, uM, uY). The algorithm for 

estimation of expected potential outcomes is as follows:

1. Fit association models for M and Y.

a. Step 1: Fit (e.g., via maximum likelihood) the M model (19) based on 

an assumed distribution for M and the data: repeated responses, Mij, the 

observed exposure (xi) and baseline covariates (ci) for i = 1 ,…,N, j = 1,

…,ni. Obtain predicted values for the ui
M yielding predicted values for 

log Mi j  (denoted as Mi j) for each individual i and time tij.

b. Step 2. Fit the Y model (20) under an assumed distribution for Y using 

Yij (the repeated measures) xi, ci and Mi j for i = 1 ,…,N, j = 1,…,ni.

We thus obtain estimates of regression parameters (the α’s and β’s from 

(19) and (20), respectively) as well as the random effects variances, 

with estimates denoted with hats (e.g., σM
2 ).
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2. For a given intervention, compute estimated expected potential outcomes via the 

mediation formula.

Do the following over a grid of values of time, t ∈ [0, T], by some small interval 

size δ:

For a specified intervention, A (say with Xt
Y = x, X

t
M = x′), and time, t, do the 

following independently for each person i = 1 to N (with covariate vector ci):

a. draw ui
M from N 0, σM

2  and (independently) ui
Y from N 0, σY

2 ;

b. compute predicted value (denoted as Mit A ) of log Mit A  given ui
M and 

ci with xi = x′ and time t using continuous time version of (19) with 

estimates plugged in for parameters;

c. compute predicted value (denoted as Y it A ) of Y it A  given ui
Y,  Mit A , 

and ci, with xi = x and time t using continuous time version of (20) with 

estimates plugged in for parameters;

d. An estimate of the marginal effect is obtained by summing over i; 

namely, E Y t A = ∑i = 1
N Y it A .

To reduce Monte Carlo error, one may ‘clone’ the sample (or other ‘reference group’) using 

a chosen multiplier as suggested in previous work7,8. The above describes the approach for 

fixed Xt
M and Xt

Y (which would be similar for continuous but not fixed exposures). For 

discontinuous Xt
M and Xt

Y the above steps can also be implemented where the appropriate 

Y it A  and Mit A  are used based on expressions (10) and (11). Web Appendix B provides an 

illustrative derivation of formulae for expected potential outcomes for a discontinuous 

intervention, namely, A
1, t1 (defined in Section 2.2), in the context of the generalized logistic 

model.

The estimated potential outcomes are then used to obtain estimated mediation effects for a 

chosen scale. We note that for the ratio scale, in contrast to the difference scale, we have 

Dt
r A0,1 = Dt

r A1,0  and It
r A0,1 = It

r A1,0 , which obtains when there is not an X by M 

interaction in the Y model. Further, in the present model, the ratio-scale direct effect is fixed 

over time (and given by exp(β1)), thus, denoted simply as Dr, while the indirect effect 

(written as It
r) varies over time due to the inclusion of the M by t interaction term. Once 

indirect effects are computed over a grid of times, the area between the curves (ABC) 

corresponding to a given type of indirect effect of interest may be obtained using the 

trapezoid method.

Confidence intervals for the specified direct and indirect effects (at any given time) can be 

obtained via bootstrap resampling. In particular, we use the bootstrap percentile method to 

obtain 95 percent confidence intervals.
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3. SIMULATION STUDY

We conducted a simulation study to evaluate properties of our mediation effect estimates. 

Our main scenario roughly mimics the dental data (to be presented and analyzed in Section 

4) based on the generalized logistic model described above. However, using the same model 

we also wish to learn the implications of varying the number of observed measurements per 

person.

We simulated data using models (19) and (20), with both Y and M as negative binomial, X 
as Bernoulli, and a single baseline covariate C as normally distributed. As C represents a 

confounder it is involved in the generation of X (using a logistic regression model). Random 

effects for M and Y (namely, uM and uY) were generated independently from normal 

distributions. A time variable, t, was also included. Models (19) and (20) were then used to 

generate M (as a function of specified t and generated x, c, and uM) and Y (as a function of t, 
x, c, uM, and uY). A total sample size of 200 was used. The number of measurements per 

person (equally spaced in the time interval [0, 40]) were 3, 6, and 11. The parameter values 

used in the simulations are provided in Web Appendix C, Table S1. Five hundred 

independent replicates (datasets) were generated and analyzed as described below.

We included both ratio and difference scale mediation effect estimators. The method and 

formulae are given in Section 2. A multiplier of 10 (‘cloning’ the sample) was used to 

reduce Monte Carlo error. Bootstrap (percentile method) 95 percent confidence intervals 

were obtained using 300 bootstrap samples (sampling data vectors corresponding to subjects 

in each dataset). Occasionally, generated values (usually in combination with extreme 

estimates from certain bootstrap samples) would result in a large (nonevaluable) argument 

for the exponential function or power operation, which we remedied through truncation of 

the relevant argument. In addition, some datasets resulting in non-convergence in the fit of 

either the M or Y model resulting in exclusions. From the 500 replicates minus the 

exclusions (the numbers of which were recorded), the statistics listed below were computed.

The true values for each estimand were obtained by applying the continuous time mediation 

formula (18) using the true values for the regression parameters, the empirical distribution of 

the covariates for the given dataset, and drawing random effects (in a Monte Carlo approach) 

from their true distributions (yielding generated log Mit A  for given A, ci, and t). Note that 

the generated (empirical) covariate distribution for a dataset was considered as the true 

covariate distribution and dataset-specific true values were used in computing the biases and 

coverage probabilities. For each scenario, we computed (averaging over replications): bias 

(average estimate minus the true value), relative bias (average ratio of the bias and the true 

value), standard error of the bias, coverage (percent of 95% confidence intervals that cover 

the true value) and power (percent of 95% confidence intervals that do not cover 0).

Tables 1 and 2 provides the simulation results for the ratio-scale estimands. Note that on the 

ratio scale the (natural) direct effect is constant over time and the two versions for each 

effect (e.g., D(A1,0) and D(A1,0) are equal.
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From Table 1, we see that relative biases are low (less than 6%) for direct and indirect effect 

(including ABC) estimates even with as few as 3 time points. Proportions (including that for 

the ABC) tend to be less stable and have high (simulation estimated) relative biases (up to 

65%) and high standard error of bias at m=3. However, these biases are reduced 

considerably with higher m. The estimated relative biases for the ABC proportion are 10.2% 

and 5.5% for 6 and 11 time points, respectively.

Table 2 provides simulation results for coverage and power for the same (ratio-scale) 

estimands. Coverage is found to be good (at least 92%) even for m = 3, though coverage for 

indirect effect proportions are somewhat conservative for smaller m. Closer to nominal 

(95%) coverage is found for m = 6 and this is closer still for m=11. Power for all estimands 

is seen to increase with increasing m, particularly in going from 3 to 6 time points.

The equalities noted above for the alternative versions for the ratio-scale estimands do not 

hold on the difference scale; consequently, there are a greater number of distinct difference-

scale estimands. Nevertheless, the overall conclusion for these (see results provided in Web 

Appendix C, Tables S2, S3) are generally consistent with those of the ratio scale.

4. DATA EXAMPLE

The data for the present example are from a longitudinal study of dental caries in a cohort of 

very low birth weight (VLBW) and normal birth weight (NBW) children followed from 

birth30. In this study 468 child-caregiver dyads (234 VLBW; 234 NBW) were enrolled and 

assessed at child ages 8, 18, and 36 months on oral health outcomes, as well as behavioral 

and demographic variables, including socioeconomic status (SES).

A secondary finding of this study was that there is a relationship between SES and dental 

caries as measured by the number of decayed, filled and missing teeth (DMFT). As an 

exploratory question, we sought to learn the extent to which the effect of SES (considered as 

a fixed binary variable, 1 for low SES, 0 for high SES) on DMFT is mediated by the child’s 

consumption of sugary drinks. The latter was obtained via a caregiver questionnaire which 

included questions about frequency of the child’s consumption of such sugary drinks as soft 

drinks and juice. The caregiver was asked to respond to each question on a five-level Likert 

scale (1=none to 5=very often). We calculated a sugary drink score (denoted as SDRK) as 

the mean score over the relevant questions. A table of descriptive statistics for the model 

variables is provided in Web Appendix D (Table S4). The analysis was based on 440 child-

caregiver dyads that had complete data for the included covariates (noted below) and at least 

one measurement (over the three time points) each of SDRK and DMFT. Similar results (not 

shown) were obtained using the complete cases (n=195).

Although SDRK and DMFT were measured at only three time points, these measurements 

are considered as realizations of underlying (latent) continuous time processes. We therefore 

wished to determination the extent of mediation as a function of age and to assess the overall 

mediational effect over the age range of interest.

For the longitudinal association models for M (SDRK) and Y (DMFT) we used the 

generalized exponential models given by (19) and (20), respectively. For both models, the 
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vector of baseline covariates, c, included birth group (1 for very low birth weight group, 2 

for normal birth weight group), and sex (1 for male, 0 for female). Both Y and M were 

assumed to be distributed as negative binomial.

The generalized logistic model is appropriate for the dental data in part because it describes 

the means for M and Y (conditional on the covariates and random effects) as monotonically 

increasing over time, as would be expected for sugary drink use and DMFT in young 

children. Initial models for M and Y included time by SES (t × X) interactions in the 

numerator; however, these terms did not appear to improve the model fit based on AIC (and 

were not found to be statistically significant) and were dropped from the models.

The estimates (with standard errors) for the M and Y model parameters are given in Table 3. 

Figure 3 shows the predicted means of potential outcomes for DMFT, including those 

corresponding to the total indirect and partial indirect effects as a function of time (t, age in 

months). The natural direct and indirect effects were computed on both the difference and 

ratio scales. Estimates and 95% confidence intervals for mediation effects on the ratio scale 

are provided in Table 4. Bootstrap percentile confidence intervals were based on 499 

bootstrap samples, with possible exclusions due to non-convergence. A multiplier of 10 

(‘cloning’ the sample) was used to reduce Monte Carlo error in the mediation formula 

computations. Results on the mean difference scale (for which there a larger number of 

estimands) are provided in Web Appendix D (Table S5).

As an example, we see from Table 4 that the (time independent) ratio-scale estimate of the 

natural direct effect (and 95% confidence interval (CI)) is 2.05 (1.02, 4.19). Thus, at any 

given time over the observed time range, there is an estimated factor increase of 2.1 in mean 

DMFT for low SES versus high SES when the mediator, SDRK, takes values as if everyone 

were high (or low) SES. The ratio-scale estimates of the natural indirect effect (and 95% CI), 

at 18 and 36 months, respectively, are 0.91 (0.72, 1.76) and 1.31 (1.04, 2.11). The latter 

result indicates an estimated 1.3 factor increase in mean DMFT at 36 months of age if 

everyone were high (equivalently, low) SES, and SDRK (over the whole time range) were at 

the level each person would have if low SES versus the level each person would have if high 

SES. The corresponding estimated mediation proportions (95% CIs) are −0.14 (−0.88, 0.85) 

and 0.27 (0.03, 0.93) for 18 and 36 months respectively. Thus, an estimated 27 percent of the 

effect of SES on DMFT at 36 months is through SDRK (considered continuously up to that 

time); from the 95% confidence interval this is seen to be nominally statistically significant 

at the 0.05 α level.

The estimated mediation proportions on the difference scale (see Web Supporting 

Information, Appendix D, Table S5) are similar overall, and the conclusions regarding 

statistical significance are the same for both scales. Our contention is that the ABCs based 

on the difference scale are more meaningful than those of the ratio scale as the former 

corresponds to areas based on means (as in Figure 3) rather than log means. For the ABC on 

the difference scale, in particular ABC(A1,0), corresponding to a total mediation effect, the 

estimated proportion (95% CI) is 0.19 (−0.16, 0.94). The lack of statistically significance for 

the ABC, in contrast to the indirect effect at 36 months, may be due to the greater variability 
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of the former; also the proportion is lower (for A1,0, 0.19 versus 0.37 (difference scale)), 

presumably due to the lower (and even negative) estimated indirect effects at younger ages.

For partial mediation where the mediator is affected (by a future intervention) starting at 8 

months, the estimated overall mediation proportion (ABC – difference scale, 95% CI) is 

0.11 (−0.16, 0.70). If instead the intervention begins at 18 months the estimated ABC 

proportion (95% CI) is 0.01 (−0.053, 0.18). Thus an estimated 11% (1%) of the effect of 

SES on DMFT up to age 36 months is due to SDRK at 8 (18) months and later. As expected, 

these proportions are smaller than that of the complete mediation situation (where an 

intervention affecting SDRK starts at birth) and are also not statistically significant. 

However, it is interesting that starting the intervention affecting SDRK at 18 months (to a 

lesser extent, 8 months) provides a dramatic reduction in the predicted mediation proportion 

relative to starting the intervention at time 0 (birth).

For comparison, we also analyzed these data using a roughly analogous discrete time 

approach (Bind et. al., 2016).31 Note that this approach provides estimates of overall natural 

direct and indirect effects, assumed as constant over the measurement times. This is in 

contrast to our continuous time approach which considers natural direct and indirect effects 

as functions of time. We found that results from the discrete time approach are consistent 

with those of the continuous time approach, in the sense that the former gives estimates that 

are similar to those found from the continuous time approach at around the midpoint of the 

time range for the data. Details and further discussion are given in the Web Supporting 

Information, Appendix F.

To critically evaluate a particular data analysis using the proposed continuous time 

mediation analysis approach, it will be important to carefully consider the assumptions of 

the method. In the Web Supporting Information, Appendix E, we provide an elaborated 

discussion of key assumptions, both causal and for the association model, and discuss their 

plausibility for the dental data. For the untestable continuous time sequential ignorability 

assumption, just as with the established discrete version, it will be desirable in practice to 

perform a sensitivity analysis. Unfortunately, a sensitivity analysis expressly designed for 

the continuous time mediation model is not yet available. However, a rough approach is 

possible using a recently developed sensitivity analysis method for a discrete time causal 

mediation analysis with outcomes (Y and M) following generalized linear models.32 The 

results of the sensitivity analysis suggest that the conclusion of a statistically significant 

natural direct effect is sustained, while conclusions regarding natural indirect effects change, 

over a plausible range of sensitivity parameter values. Further details are provided in the 

Web Supporting Information, Appendix G.

5. DISCUSSION

In this paper we present an approach to causal mediation analysis for longitudinal data using 

continuous time models. In particular, we introduce a causal (potential outcome based) 

differential equations (CDE) model to account for underlying mediator (M) and final 

outcome (Y) processes that are continuous over time. We consider an easily integrable class 

of functions so that expected outcomes can be related to standard (albeit nonlinear) 
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longitudinal regression models. Extension to wider classes of functions for differential 

equations models will be of interest for the future.

Our methodology is in the spirit of the mediation formula approach for estimation of natural 

direct and indirect effects; identification of these effects is obtained under a continuous time 

version of the commonly used sequential ignorability assumption. We specified nonlinear 

longitudinal regression (association) models based on the generalized logistic function for 

both the mediator (M) and final outcome (Y). A two-step approach to estimation of the 

association model parameters is proposed for computational ease. Alternative association 

models may be considered and it is possible that results will be sensitive to model 

misspecification. Thus, the use of model diagnostics and criticism is an important 

preliminary step. Nonparametric or semiparametric models will be of interest to better 

assure robustness of results.

While it may appear that the CDE model is not involved in the constant exposure case once 

the longitudinal models (such as (19) and (20)) are specified, in fact this model still provides 

the underpinning for the mediation process and resulting inference (which becomes clearer 

in the discontinuous exposure case). For example, the predicted values for Y at some time t 
are not entirely determined by the current values for X and M (that is, log M ) as seems to be 

specified by (19) and (20); rather those predicted values are dependent on the exposure 

history (in the present case, exposure being constant at the indicated levels, x and x′ for Y 
and M, respectively) from time 0, as revealed by the CDE (or its integral form).

As elaborated in Section 2.4, using the ratio scale in the context of the generalized logistic 

model, provides intuitive estimators of natural direct and indirect effects, in which time-

independence (or dependence) follows directly from the specification of the corresponding 

association models (that is, the inclusion or not of certain interaction terms). Thus, a recently 

expressed criticism of the mediation formula methodology33, namely the complicated and 

unintuitive nature of interaction effects, is circumvented in this case.

In addition, the selected association models use random effects to explain correlations 

among repeated measures. The random effects for the mediator and final outcome are 

assumed to be independent in our two-stage modelling approach. Another limitation is that 

individual trajectories are fixed conditional on the random effects, constraining the dynamic 

potential of the model. Thus, while our use of random effects allows for some randomness in 

outcome trajectories, the current model may not be adequate for certain types of causal 

relationships, for example, where there are lagged effects. On the other hand, at least in our 

example, we believe that the lack of a lag is plausible as we are describing the relationship 

among the underlying processes; for example, average (smoothed) sugary drink usage may 

have an immediate, albeit infinitesimal, effect on the underlying dental caries process. In 

future work, we will seek to expand the flexibility of the approach by employing stochastic 

differential equations to describe mediation in the context of dynamic changes over time.

Our simulation studies showed good properties of the estimators, indicating that the two-step 

approach works reasonably well. This is true despite the approach not accounting for 

measurement error due to the use of estimated log Mit A  in the Y model. There is the 
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potential for more refined approaches, for example, using joint modeling, though 

computational challenges would need to be overcome. Our simulations also show the 

potential for gains in precision with increasing numbers of (equally spaced) measurements. 

We found the method to be useful in a dental data example despite the relatively small 

number of (three) time points. The data used in our example and a SAS macro to implement 

the method are provided in the Web Supplementary Information.

Novel features of our continuous time method include the use of the ‘area between the 

curves’ (ABC) as a measure of the overall mediation effect. In addition, we are able to 

consider alternative (‘partial’) mediation effects corresponding to interventions that affect 

the mediator starting (or stopping) at selected post-baseline times. In this way, the 

continuous time methodology allows for prediction of effects of more refined and realistic 

future interventions. Further variations of conceived interventions, for example, with 

additional starts and/or pauses of treatment, may be readily implemented.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Discrete mediation models (left: single measurement, right: repeated measures)
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Figure 2. 
Mediation in continuous time
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Figure 3. 
Plot of mean predicted DMFT by age of child (t) using the generalized logistic model, (18) 

and (19), for alternative interventions (indicated by different A’s).
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Table 1.

Simulation estimated bias, relative bias, and standard error of bias (based on 500 replicates mimicking the 

dental data, n=200) for mediation (natural direct (D) and indirect (I)) effects on ratio scale; subscripts (20 and 

40) indicate times for indirect effects; m indicates the number of (equally spaced) measurements for simulated 

data. Note: all 500 replicates were used for m = 6 and 11; one resulted in non-convergence (499 were used) for 

m = 3

Bias Rel Bias SE Bias

Estimand True╲ m = 3 6 11 m = 3 6 11 m = 3 6 11

Dr 1.350 0.068 0.036 0.022 0.051 0.026 0.017 0.021 0.015 0.012

I20
r

1.653 −0.033 0.003 −0.018 −0.018 0.003 −0.009 0.013 0.012 0.011

I40
r

1.279 0.060 0.053 0.038 0.048 0.042 0.031 0.009 0.008 0.007

ABCr 13.403 −0.480 −0.821 −0.578 −0.030 −0.057 −0.037 0.237 0.189 0.175

I20
r

(prop)
0.625 0.107 0.028 0.027 0.174 0.047 0.045 0.056 0.034 0.010

I40
r

(prop)
0.449 0.220 0.140 0.065 0.445 0.315 0.157 0.321 0.051 0.026

ABCr (prop) 0.598 −0.368 0.060 0.032 −0.650 0.102 0.055 0.483 0.021 0.011
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Table 2.

Simulation estimated coverage and power (based on 500 replicates mimicking the dental data, n=200, from 

percentile method 95% confidence intervals, 300 bootstrap samples) for mediation (natural direct (D) and 

indirect (I)) effects on ratio scale; subscripts (20 and 40) indicate time points for indirect effects; m indicates 

the number of measurements. All 500 replicates used for m = 6 and 11; 499 used for m = 3

Coverage (%) Power (%)

Estimand╲ m = 3 6 11 m = 3 6 11

Dr 0.954 0.948 0.952 0.164 0.254 0.286

I20
r

0.948 0.924 0.942 0.862 0.978 0.982

I40
r

0.948 0.932 0.932 0.808 0.958 0.978

ABCr 0.920 0.916 0.942 0.794 0.916 0.972

I20
r

(prop)
0.970 0.958 0.946 0.575 0.864 0.952

I40
r

(prop)
0.990 0.972 0.958 0.415 0.654 0.782

ABCr(prop) 0.972 0.958 0.946 0.589 0.826 0.918
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Table 3.

Estimates, standard errors, and p-values (Wald test) of parameters in generalized logistic models for M 
(SDRK) and Y (DMFT) fit to dental data

M Model Y Model

Parameter Estimate SE p-value Parameter Estimate SE p-value

α0 (Int) 0.18 0.28 0.53 β0 (Int) −2.50 0.81 0.002

α1 (SES) 0.77 0.15 <0.001 β1 (SES) 0.69 0.46 0.13

α21 (Birth) 0.22 0.14 0.12 β21 (Birth) 0.29 0.37 0.44

a22 (Sex) −0.077 0.14 0.59 β22 (Sex) −0.046 0.37 0.90

a3 (Time) 0.17 0.027 <0.001 β3 (SDRK) 1.15 0.38 0.003

kM (Disp) 0.38 0.080 <0.001 β4 (Time(t)) 0.21 0.057 <0.001

νM (Damp) 0.12 0.023 <0.001 β5 (t × SDRK) −0.057 0.022 0.012

σM (SD) 0.57 0.11 <0.001 k (Disp) 1.64 0.67 0.015

ν (Damp) 0.047 0.023 0.047

σY (SD) 2.85 0.92 0.002
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Table 4.

Results for analysis of dental data – inference for mediation (natural direct (D) and indirect (I)) estimands on 

mean ratio scale. Estimates and, for indirect effects, proportions are given along with bootstrap percentile 

method 95% confidence intervals (499 bootstrap samples generated, 489 used). Subscripts indicate time (age 

in months) for (cross-sectional) indirect effects. ABC (area between the curves) provides overall indirect effect 

for specified intervention (starting at indicated time)

Estimand Est 95% CI Prop. 95% CI

Dr 2.05 (1.02, 4.19) - -

I8
r

0.98 (0.53, 1.61) −0.03 (−4.35, 1.87)

I18
r

0.91 (0.72, 1.76) −0.14 (−0.88, 0.85)

I36
r

1.31 (1.04, 2.11) 0.27 (0.03, 0.93)

ABCr(A1,0) 0.64 (−6.27, 16.39) 0.03 (−0.38, 0.89)

ABCr(A1,8) 0.01 (−4.40, 11.83) 0.0007 (−0.26, 0.56)

ABCr(A1,18) −0.03 (−0.63, 1.58) −0.002 (−0.03, 0.08)
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