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Abstract

Metabolic models containing kinetic information can answer unique questions about cellular 

metabolism that are useful to metabolic engineering. Several kinetic modeling frameworks have 

recently been developed or improved. In addition, techniques for systematic identification of 

model structure, including regulatory interactions, have been reported. Each framework has 

advantages and limitations, which can make it difficult to choose the most appropriate framework. 

Common limitations are data availability and computational time, especially in large-scale 

modeling efforts. However, recently developed experimental techniques, parameter identification 

algorithms, as well as model reduction techniques help alleviate these computational bottlenecks. 

Opportunities for additional improvements may come from the rich literature in catalysis and 

chemical networks. In all, kinetic models are positioned to make significant impact in cellular 

engineering.

Introduction

Metabolic networks are highly integrated networks that are regulated in sophisticated ways. 

Because of this complexity, strategies for metabolic engineering are often non-intuitive, and 

engineering questions are often best addressed by metabolic models. Constraint-based 

models (CBMs), based on stoichiometry, have been widely successful over the last 15 years 

at guiding engineering efforts without the need for mechanistic detail [1]. However, CBMs 

cannot capture the relationship between flux, enzyme expression, metabolite levels, and 

regulation that is possible with kinetic models (Box 1) [2•]. Although computationally 

costly, kinetic models are more predictive and are especially appropriate when there is not an 

obvious objective function for optimization or when exploring dynamic effects [3]. 

However, within kinetic modeling, it can be difficult to determine where to start due to the 

great wealth of published frameworks. Here we highlight the questions that are well suited 

for kinetic models and the various hurdles to their use.
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Questions addressed by recent kinetic modeling frameworks

Recent kinetic modeling frameworks primarily seek to answer four types of questions: those 

involving (1) metabolic state prediction and engineering strategies, (2) identification of 

unmodeled phenomena, (3) metabolic stability, and (4) kinetic variation. The relative 

strengths of each framework are shown in Table 1.

Metabolic state prediction and engineering strategies

Most kinetic modeling frameworks are designed to address questions involving prediction of 

metabolic states or rate-limiting steps, as these questions are central to metabolic 

engineering efforts. As kinetic parameters of individual enzymes are rarely known or are 

uncertain, many frameworks rely on exploring a range of parameters and selecting a subset 

that are consistent with experimental observations. Using the parameters derived from model 

training, network kinetics can be analyzed and predictions made for potential engineering 

strategies. The Ensemble Modeling (EM) paradigm is widely used because it requires 

minimal data and can accommodate large uncertainties in kinetic parameters [4]. EM 

explores parameters that are thermodynamically consistent with models that collectively 

describe dynamic and steadystate behavior. Because many parameters might be equally 

consistent with experimental data, the range of parameters effectively captures prediction 

uncertainty (i.e. a small range means low uncertainty, and a large range means high 

uncertainty). ABC-GRASP is similar in concept to EM but uses a wider range of kinetics 

and uses probability distributions, rather than discrete parameter sets [5]. However, these 

features can add a large computational cost relative to EM.

The ORACLE framework incorporates Metabolic Control Analysis (MCA) to succinctly 

characterize steady-state behavior and predict rate-limiting steps [6]. Recently, two 

extensions to the ORACLE framework were developed that significantly expand its utility. 

iSCHRUNK uses machine learning tools on the final set of kinetic parameters to further 

reduce uncertainty [7]. In another work, inverse MCA (IMCA) was integrated into ORACLE 

to incorporate the effects of transcriptional regulation on enzyme expression, which affects 

steady-state behavior [8]. However, validating predicted enzyme expression rate against 

measured mRNA concentration changes was challenging, potentially due to the low 

correlation between mRNA and enzyme expression levels [9].

Regulatory structure inference

While kinetic modeling can be used to test the presence/absence of structures in the network 

and regulation [5,8], only a small fraction of the possibilities can typically be explored due 

to computational limitations. Two notable exceptions include a method where dynamic 

metabolite data were used to systematically test a large set of putative allosteric interactions 

[10] and another method where Michaelis–Menten rate laws with variable allosteric terms 

were fit to an -omics dataset on a reaction-by-reaction basis [11].

Recently, however, numerous untargeted experimental strategies which do not require 

kinetic modeling have also been developed [12••,13,14•]. For example, LiP-SMap detects 

allosteric interactions by analyzing the difference in the protease cleavage sites of proteins 
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when bound to a given metabolite [12••]. Another study used high-throughput metabolomics 

data from a single-gene knockout library to infer gene-metabolite relationships [13]. Finally, 

a library of fluorescent transcriptional reporters was used to quantify the activity of 

metabolic promoters in Escherichia coli, and their activity was correlated with metabolome 

response to identify metabolites involved in transcriptional regulation [14•]. These 

experimental methods can be used to identify regulatory mechanisms that can be 

incorporated into kinetic models.

Metabolic stability

Metabolic pathways are stabilized during evolution, so cells are typically robust to 

perturbations to native enzyme concentrations. However, the addition of heterologous 

pathways may not result in similar steady-state stability. While frameworks predicting 

metabolic states can assess steady-state stability indirectly, Ensemble Modeling for 

Robustness Analysis (EMRA) directly calculates the likelihood of a perturbation causing 

metabolic instability [15]. Recently, EMRA was used to assess the stability of cell-free 

systems, which are not optimized via evolution [16]. EMRA was also used to show how 

incorporation of kinetics and stability constraints further constrains the Maximum 

Theoretical Yield as predicted by FBA [17•].

Kinetic variation

While there is variability in the metabolome and proteome among cell strains, it is thought 

that variation in the kinetome – the space of kinetic rate constants in metabolism – correlates 

better with genetic variation [18]. The MASS (Mass Action Stoichiometric Simulation) 

framework can perform large-scale analysis of kinetic variation [19]. Because MASS 

assumes mass action kinetics (e.g. Rate = k1[A][B]), a population of thermodynamically 

consistent rate constant sets can be efficiently computed and studied. While mass action 

kinetics is an oversimplification of many metabolic reactions, comparison of the fitted rate 

constants can reveal loci of important variation between systems, for example, in red blood 

cells from different patients [18] as well as metabolic response to specific drugs [20].

Hurdles to large-scale quantitative predictions

While kinetic models can address complex biological questions, data limitations can result 

in large uncertainties in predictions, and large models can result in computational 

intractability. Here, we discuss these hurdles, focusing on recent developments to overcome 

them.

Challenges in experimental measurements used to train kinetic models

The most important type of data for kinetic models is structure. At a minimum, structure 

includes all reactions relevant to the system but may also include regulatory interactions and 

cell growth. While most reaction networks are well-defined, promiscuous enzyme activity 

and heterologous pathways can have unforeseen effects. Tools such as BNICE [21], Pickaxe 

[22], Retropath2.0 [23], and novoStoic [24] can elucidate these reactions through 

comparison to known reaction chemistry [25].
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Because kinetic models ultimately depict system properties as a function of kinetic 

parameters, there have been several efforts in constructing ‘bottom-up’ models of 

metabolism where one uses directly measured or predicted kinetic properties of enzymes in 

model parameterization. While much progress has been made, using in vitro enzyme 

properties can cause unrealistic model behavior without the manual curation of regulatory 

effects [26,27]. Recent efforts [28] have shown that Michaelis–Menten rate law 

approximations using kinetic data can replace detailed rate laws; however, as enzyme kinetic 

information remains sparse, this approach is only valid for a small number of well-

characterized reactions.

More commonly, -omics measurements are used to train kinetic models. However, different 

kinetic modeling frameworks utilize different types of -omics data to varying degrees 

(Figure 1); therefore, data types readily available for a given project should be taken into 

consideration when deciding on a kinetic modeling framework.

Flux data are arguably the most difficult to obtain. Nevertheless, fluxes are generally the 

most important property to measure, as most frameworks, including ORACLE, EM, ABC-

GRASP, and MASS, require an accurate intracellular reference flux distribution. 13C tracer 

studies elucidate aspects of intracellular metabolism, while uptake and secretion fluxes are 

obtained by measuring changes in extracellular metabolite concentrations.

Measurements of intracellular metabolomics are also useful for parameter inference, but 

they are difficult to obtain. Metabolomics can refer to either relative or absolute 

concentrations of metabolites. While relative measurements – which do not require internal 

standards and are higher throughput – can typically be incorporated in rate laws, absolute 

metabolomics are required to accurately implement thermodynamic constraints [29]. 

Reaction thermodynamics strongly control fluxes for most reversible reactions and thus help 

to ensure feasibility in kinetic models [11]. For a thorough review of metabolomics methods, 

see Ref. [30].

Proteomics, while a low-throughput measurement, can be directly incorporated into most 

kinetic modeling frameworks. This is especially true in the case of highly irreversible 

reactions in which fluxes are often sensitive to enzyme concentration [11]. Relative 

proteomics are currently higher throughput than absolute measurements, although label-free 

absolute proteomics methods have made recent advances [31].

Parameter identifiability

Usually, experimental datasets measure too few conditions or not enough fluxes/metabolites/

proteins at a given condition to resolve all parts of a network, that is, those parameters lack 

identifiability with the data provided. Methods for determining parameter and structural 

identifiability are complex and previously reviewed [32]. However, model solutions 

containing many feasible model parameterizations, including aspects of the network that are 

non-identifiable, are typically sufficient to answer design hypotheses, even if individual 

members of the solution contain loosely fit parameters [33]. We especially want to highlight 

recent modeling efforts that result in a distribution of parameters, rather than just one 

optimal set, and provide impactful insight into system behavior despite lacking a sufficient 
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amount of data for direct parameter identification [15,16,34,35]. In general, kinetic models 

are best positioned to identify overall changes in system behavior rather than individual 

parameter values, as different sets of kinetic parameters can give rise to the same overall 

behavior.

Most kinetic models are written as large systems of stiff ordinary differential equations 

(ODEs) that are computationally expensive to solve. However, optimization tools such as 

Markov Chain Monte Carlo (MCMC) [36], genetic [37], and particle swarm [38,39] 

algorithms can decrease computational burden. For example, a parallelizable scatter search 

method was developed [38]. This method initiates multiple threads of a search algorithm, 

and the combination of these results is then communicated between parallel threads to better 

search the solution space. Additionally, a genetic algorithm (GA) step was added to the 

traditional EM framework to identify a single parameter set rather than an ensemble [37]. 

However, the lack of an ensemble makes it challenging to gauge uncertainty as there is no 

dispersion in one model, so several GA searches should be deployed in parallel. 

Furthermore, while the GA step more efficiently searches the parameter space, it often 

results in lower overall computational efficiency due to parameter tuning and overhead costs. 

Thus, these tools may not always reduce computational burden. However, other techniques 

that reduce the parameter sampling space directly by, for example, imposing reference flux 

states, reaction thermodynamic limits, and local stability constraints often reduce 

computational burden [4,16,29,34,40,41•]. While these strategies efficiently search and 

constrain the kinetic parameter space, directly reducing the number of kinetic parameters 

can also improve computational tractability.

Model reduction

The goal of model reduction is to reduce the number of kinetic parameters while 

maintaining predictive power. Although reduction techniques are often applied after 

parameter estimation [42–45], here we highlight a priori model reduction methods 

applicable to most kinetic modeling efforts.

1. Model scope - selecting the appropriate amount of detail to include before using 

post-parameter estimation reduction techniques [42–45] is an ill-defined process. 

Too much detail leads to an impractical amount of time spent on model reduction 

(due to large computational costs), while too little detail may not capture 

observed effects at all.

2. Rate expression - the type of rate expression determines the number of 

parameters required. Approximate rate laws, such as lin-log kinetics, are model-

reducing as they use fewer kinetic parameters [46]. However, they typically 

invoke assumptions whose validity should be checked [2•,47]. This natural trade-

off should be considered during initial model development [28,48].

3. Conservation analysis - biological networks inherently contain conserved 

moieties, such as the total pool of ATP, ADP, and AMP. These conserved groups 

are considered independent variables in many kinetic modeling approaches and 

increase the stiffness of ODE systems, increasing solve time. Because it is 

difficult to manually identify all conserved moieties, a tool that performs 
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conservation analysis on biological networks was developed [49]. We have found 

that using this method decreases computation time.

4. Lumping - lumping techniques, such as a condensing a linear pathway into a 

single reaction, can greatly shrink the parameter space [50,51]. Often, 

optimization methods are used to identify potential lumping schemes throughout 

the network [26,52].

Use of appropriate model reduction techniques can greatly reduce the resources required to 

interrogate large-scale biological networks [43]. Conservation analysis, in particular, is easy 

to implement [49] and would provide value to most kinetic modeling efforts.

Conclusions

While we have reviewed the types of questions addressed by recent kinetic modeling 

frameworks, comparative studies need to be done in order to further characterize similar 

kinetic frameworks, similar to comparisons done for CBM frameworks [53]. In addition, it is 

important to survey modeling efforts in other fields, such as heterogeneous catalysis [54–

56], and especially efforts that take advantage of the increasing availability of -omics data, 

particularly fluxomics, intracellular metabolomics, and proteomics [57••]. Improving 

parameter estimation and model reduction techniques will allow tractable simulations for 

large-scale kinetic models while the discussed structural inference techniques can best 

inform model structure. As metabolic networks are large, complicated, and highly-coupled, 

sophisticated modeling frameworks will be essential in predicting system-level behavior.
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Box 1

Type of question informs the type of model used

CBMs are more appropriate for some types of questions:

Flux distribution (during growth):

What does the intracellular flux distribution look like?

Growth rate:

How might the ratio of media components Y1 and Y2 affect growth?

Knockouts (during growth):

Which enzyme(s) should be knocked out to increase flux through pathway P?

Maximum theoretical yield (MTY):

How does the MTY of product X change if I change media composition?

Kinetic models are better suited for others:

State prediction:

Which enzyme(s) should I overexpress to increase production of metabolite X?

Knockouts (during non-growth):

Which enzyme(s) should be knocked out to increase flux through pathway P during non-

growth conditions?

Metabolic stability:

Will incorporating heterologous pathway P limit productivity due to metabolic 

instability? How much can I overexpress enzyme E without losing stability?

Regulatory interactions:

Is there an allosteric interaction between enzyme E and metabolite X?
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Figure 1. 
Different data types have varying value to kinetic modeling frameworks.

-omics types are required to varying levels by different model frameworks (darkest boxes 

indicate data type is required, less dark boxes indicate data type is used to a high degree in 

practice, lighter blue boxes indicate data type can be used, light gray boxes indicate data 

type is not used) [4,5,6,15,19,57••]. While all the -omics data types shown have utility in 

kinetic modeling, modeling results are usually most sensitive to variation in those near the 

bottom (e.g. variation in network structure). Thus, those data types generally provide more 

utility to kinetic modeling efforts and should be prioritized. Note that while regulatory 

reactions provide much value to kinetic modeling, they are not always incorporated, either 

because they are unknown or because they cannot be incorporated easily using a given 

framework. Data-driven models, while requiring very large amounts of data, may not require 

knowledge of the reaction network or regulatory interactions at all [57••].

ABC-GRASP, Approximate Bayesian Computation – General Reaction Assembly and 

Sampling Platform; EM, Ensemble Modeling; EMRA, Ensemble Modeling for Robustness 

Analysis; ER-MA, Elementary Reaction Mass Action; LMA, Law of Mass Action; MASS, 
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Mass Action Stoichiometric Simulation; MWC, Monod-Wyman-Changeux; ORACLE, 

Optimization and Risk Analysis of Complex Living Entities.
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