Table 1.
Applicability of mechanistic and data-driven metabolic modeling and inference frameworks
Key: [] = N/A [*] = Low [**] = Medium [***] = High |
Applicability of framework in providing insights regarding: | Resource availability | |||||||||
Metabolic engineering strategies | Regulatory structure inference | ||||||||||
Framework name | Rate-limiting steps | State prediction | Metabolite-level | Transcriptional | Metabolic stability | Kinetic variation | Experimental | Computational | Scalability | Recent applications | |
Mechanistic, targeted | EM-RA | ** | *** | * | *** | ** | *** | ** | ** | [16,17•] | |
ABC-GRASP | *** | *** | ** | ** | ** | *** | * | * | [5] | ||
ORACLE+ IMCA | *** | * | * | * | ** | ** | *** | ** | [8] | ||
ORACLE+ iSCHRUNK | *** | * | * | ** | *** | *** | ** | [7] | |||
MASS | * | * | * | *** | ** | *** | *** | [18,20] | |||
Data-driven, untargeted | LiP-SMap | *** | ** | *** | *** | [12••] | |||||
Fuhrer [13] | ** | ** | * | *** | *** | [13] | |||||
Kochanowski [14•] | *** | * | *** | *** | [14•] | ||||||
SIMMER | *** | * | *** | *** | [11] | ||||||
Costello [57••] | *** | *** | * | * | * | ** | *** | [57••] |