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Abstract

Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) that 

initiates a rapid signal transmission in the synapse before its re-uptake into the surrounding glia, 

specifically astrocytes. The astrocytic glutamate transporters, glutamate-aspartate transporter 

(GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid 

transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters that take up 

synaptic glutamate to maintain its optimal extracellular levels, thus preventing its accumulation in 

the synaptic cleft and the ensuing excitotoxicity. Growing evidence has shown that excitotoxicity 

is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), 

Alzheimer’s disease (AD), Parkinson’s disease (PD), manganism, ischemia, schizophrenia, 

epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the 

dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated 

neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the 

genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular 

glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/

GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological 

disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen 

receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and 

translational activators have shown significant efficacy in enhancing the expression and function of 

GLAST/GLT-1 and glutamate uptake in both in vitro and in vivo settings. This comprehensive 

review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with 

neurological disorders, and the pharmacological agents that mediate their expression and function.
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1. Introduction

Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS), 

where it initiates rapid signal transmission and is involved in learning, memory and synaptic 

plasticity (Parkin et al., 2018; Willard and Koochekpour, 2013). Following its synaptic 

release, glutamate is taken up into surrounding astrocytes and the glutamate gradient returns 

to resting levels (Sulkowski et al., 2014). As high levels of extracellular glutamate are 

associated with excitotoxic neuronal death, glutamate concentration is optimally maintained 

via the removal of glutamate from the synapse by astrocytic glutamate transporters after 

impulse transmission (Figure 1A) (Jia et al., 2015; Karki et al., 2015b). Astrocytic glutamate 

transporters, also referred to as excitatory amino acid transporters (EAATs) in humans, play 

a primary role in the rapid termination of glutamate signaling and the maintenance of 

extracellular glutamate levels (Shigeri et al., 2004).

Excess levels of synaptic glutamate result in the overstimulation of postsynaptic glutamate 

receptors, leading to excitotoxic neuronal death (Karki et al., 2018). An increasing body of 

evidence reveals that excitotoxicity is associated with neurological disorders, including 

amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), 

manganism, ischemia, schizophrenia, epilepsy, and autism (Figure 1B) (Bristot Silvestrin et 

al., 2013; Garcia-Esparcia et al., 2018; Mironova et al., 2018; Petr et al., 2013a). While the 

mechanisms of excitotoxicity are not well understood, the dysregulation of EAATs may 

greatly influence glutamate excitotoxicity and the resulting neuropathology. In particular, 

EAAT1 and EAAT2, the primary glutamate transporters in the CNS, may significantly 

impact glutamate excitotoxicity (Karki et al., 2013a). Glutamate-aspartate transporter 

(GLAST) and glutamate transporter-1 (GLT-1) are homologs (displaying >70% homology) of 

EAAT1 and EAAT2 in rodents, respectively, and thus can be used interchangeably (Jimenez 

et al., 2014).

Therefore, understanding transcriptional regulation, as well as the epigenetic and 

posttranslational modifications (PTMs) of GLAST and GLT-1, may greatly advance the 

development of therapeutic targets to treat diseases related to the impairment of glutamate 

transporters. This review will discuss the regulatory mechanisms of GLAST and GLT-1, 

neurological disorders associated with dysregulated GLAST and GLT-1 and the 

pharmacological agents modulating GLAST and GLT-1 expression and function.

2. Glutamate transporters

There are five EAAT subtypes identified in humans, referred to as EAAT1–5 (Bridges and 

Esslinger, 2005). EAAT1 and 2 are predominantly expressed in astrocytes (Karki et al., 

2013a), although they are also expressed in other types of glial cells, including microglia and 

oligodendrocytes (Parkin et al., 2018). Once taken into astrocytes, glutamate is converted to 

glutamine by glutamine synthase. The newly generated glutamine is subsequently available 

for transport back to presynaptic neurons, a process referred to as glutamate-glutamine 

cycling (Shen et al., 2009). EAAT3 is primarily found in neurons, particularly at the post-

synaptic terminals (He and Casaccia-Bonnefil, 2008).
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Other glutamate transporter subtypes such as EAAT4 and 5 are also expressed in the human 

CNS (Amara and Fontana, 2002). EAAT4, encoded by the human SLC1A6 gene, is 

expressed predominantly in the Purkinje cells in the cerebellum, while EAAT5, encoded by 

human SLC1A7 gene, is expressed in the photoreceptor cells of the retina (Amara and 

Fontana, 2002). This indicates the important roles of EAAT4 and 5 in glutamate 

neurotransmission in specific regions of the brain (Amara and Fontana, 2002; Perkins et al., 

2018; Yamashita et al., 2006).

2.1. EAAT1 (GLAST)

GLAST (EAAT1) is primarily expressed in the cerebellum and cerebral neocortex (Kim et 

al., 2011). Studies have shown that GLAST is highly expressed during the developmental 

stage (Kugler and Schleyer, 2004; Ullensvang et al., 1997). GLAST is a membrane-bound 

symporter, co-transporting glutamate, three Na+ ions, and one H+ ion—while counter-

transporting one K+ ion against the concentration gradient (Ryan et al., 2010). Although 

GLT-1 is believed to be the major transporter subtype in removing excess glutamate from the 

synaptic cleft, GLAST also plays a critical role in preventing excitotoxic neuronal injury. 

Studies have demonstrated that GLAST knockout in mice results in increased susceptibility 

to traumatic brain injury (TBI) and retinal degeneration (Delyfer et al., 2005; Rao et al., 

1998). Inhibition of GLAST also increases extracellular glutamate levels, resulting in 

excitotoxic neuronal death in mice (Maragakis and Rothstein, 2004; Rothstein et al., 1996).

The SLC1A3 gene, which encodes EAAT1, is located on chromosome 5 (5p13.2) and 

comprised of 81980 base pairs (Sery et al., 2015). To date, 16 variants of SLC1A3 have been 

identified, some of which are associated with neurological disorders such as epilepsy and 

schizophrenia (Bauer et al., 2010; Jen et al., 2005). Posttranslationally, EAAT1 undergoes 

glycosylation, producing 64 kDa and 70 kDa glycoproteins (Parkin et al., 2018), and these 

modifications have been linked to changes in its membrane localization and oligomerization, 

though the pathogenic effects of these modifications are not well understood (Bauer et al., 

2010).

2.2. EAAT2 (GLT-1)

GLT-1 (EAAT2) is also a Na+-dependent transmembrane symporter (Kim et al., 2011) and a 

primary astrocytic glutamate transporter in the adult human brain, accounting for over 90% 

of synaptic glutamate clearance (Rao et al., 2015a), expressing at levels four to six times 

higher than GLAST in astrocytes (Lehre and Danbolt, 1998). Although GLAST levels are 

higher than GLT-1 at early postnatal development, GLT-1 levels overtake GLAST levels 

between postnatal day P20 and P30 (Kugler and Schleyer, 2004), indicating that the 

expression of GLT-1 and GLAST are tightly regulated in the developing brains. It has been 

shown that GLT-1 levels are correlated with glutamate dehydrogenase (GDH) activity in 

astrocytes, suggesting a critical role of GLT-1 in synaptic glutamate-glutamine cycling 

(Kugler and Schleyer, 2004). Studies have also reported that astrocytic GLT-1 expression is 

closely correlated with neuronal activity in an in vitro model of the developing hippocampus 

(Benediktsson et al., 2012), indicating that the dynamic interaction between neuronal and 

glial cells is involved in synaptic glutamate homeostasis during brain development.
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EAAT2 is encoded by the SLC1A2 gene (Lin et al., 2012). In addition to full-length 

EAAT2a, two functional splice variants, EAAT2b and EAAT2c, have been identified 

(O’Donovan et al., 2015). While full-length EAAT2 predominates in the human brain, both 

splice variants contain unique C-terminal domains whose function is not yet understood 

(Chen et al., 2002). Interestingly, EAAT2 transporter function is also thought to be regulated 

via soluble neuronal factors (Gegelashvili et al., 1997).

GLT-1 is a critical mediator of the synaptic glutamate gradient in the adult brain (Karki et 

al., 2015b). Dysregulation of GLT-1 has been linked to excitotoxicity, neuronal death and 

neurological disorders (Karki et al., 2013a). GLT-1 knockout mice experienced lethal 

spontaneous seizures and significant neuronal loss, while functional GLT-1 prevented post-

traumatic seizures in a rat TBI model (Tanaka et al., 1997). EAAT2 has also been associated 

with chronic and acute neurological disorders, including AD, PD, schizophrenia and 

epilepsy (Karki et al., 2015b; Takahashi et al., 2015; Young et al., 2014).

2.3. EAAT3 (EAAC1)

Although GLAST and GLT-1 are the primary transporters responsible for synaptic glutamate 

reuptake in the CNS, EAAT3, also known as excitatory amino acid carrier 1 (EAAC1), is 

ubiquitously expressed in the brain (Bjorn-Yoshimoto and Underhill, 2016) and is primarily 

found in neurons, particularly at the post-synaptic terminals (He and Casaccia-Bonnefil, 

2008). Membrane-associated EAAT3 is associated with post-synaptic neuronal ionotropic 

receptors (Bjorn-Yoshimoto and Underhill, 2016), suggesting its role in glutamate 

neurotransmission and synaptic plasticity.

EAAT3 is encoded by the SLC1A1 gene and is highly expressed during the early 

development of the cortex, as compared to other EAAT subtypes (Bjorn-Yoshimoto and 

Underhill, 2016). In the adult brain, EAAT3 does not appear to significantly contribute to 

glutamate clearance (Rothstein et al., 1996), but has been shown to serve as a cysteine 

transporter (Watts et al., 2014). Despite a lack of involvement in glutamate gradient 

maintenance, EAAC1 knockdown in rats induced spontaneous seizures and behavioral 

abnormalities (Sepkuty et al., 2002). Additionally, aberrant SLC1A1 expression has been 

associated with familial schizophrenia (Myles-Worsley et al., 2013) and in the postmortem 

brains of patients with idiopathic schizophrenia (Horiuchi et al., 2012). The interplay 

between the glial EAAT1/2 and neuronal EAAT3 is not yet fully understood. It has been 

reported that the EAAT1/2 expression was not altered in the spinal cord and cerebral cortex 

in the absence of EAAT3 in mice (Lee et al., 2010). Moreover, deletion of GLT-1 (EAAT2) 

did not modulate EAAT3 expression (Petr et al., 2015).

3. Dysregulation of glutamate transporter expression and function

Aberrant glutamate transporter function and expression are associated with various 

neurological disorders. Therefore, understanding the underlying mechanisms of EAAT1/2 

expression may provide therapeutic targets for treating neurological disorders associated 

with impaired glutamate transporters (Figure 2).
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3.1. Single nucleotide polymorphisms (SNPs)

SNPs are variations in a single nucleotide within the genome that occur naturally in >1% of 

the population (Zhang et al., 2018). Growing evidence indicates that SNPs are associated 

with neurological pathogenesis, as well as differences in individual response to treatment 

(Giacomini et al., 2007). Studies have shown that SNPs in EAAT1 and EAAT2 are 

associated with neurological disorders such as bipolar disorder (BD), schizophrenia and 

multiple sclerosis (MS) (Pampliega et al., 2008; Poletti et al., 2014b; Poletti et al., 2018; 

Spangaro et al., 2014). Since SNPs influence pathogenesis at the transcriptional level and the 

promoter regions of EAAT1/2 contains consensus binding sequences for transcription factors 

(Karki et al., 2015a), SNPs in the promoter regions may alter the binding of transcription 

factors to the promoter, leading to dysregulation of EAAT1/2 expression.

The genetic variants of EAAT1 may contribute to various neurological disorders such as 

ataxia, seizures, migraines, hemiplegia, BD and schizophrenia (Jen et al., 2005; Poletti et al., 

2018; Spangaro et al., 2014). The SNP of EAAT1 replacing C with G at −1047 position 

(−1047C>G) is associated with ataxia, hemiplegia and seizures (Jen et al., 2005), which is 

linked to reduced glutamate uptake. The genetic polymorphism of EAAT1, rs2731880, is 

associated with impairment of cortico-limbic system and emotional dysfunction in BD 

patients (Poletti et al., 2018), suggesting that EAAT1 polymorphisms may contribute to BD 

pathology. Studies also revealed that this SNP rs2731880 decreased EAAT1 expression 

along with declined cognitive function in schizophrenia patients (Spangaro et al., 2014).

Studies show that a genetic variant of EAAT2 substituting the nucleotide A with C in the 

−181 position (−181A>C) in the promoter region changes the binding site for activator 

protein-2 (AP-2; a positive regulator) to GC-binding factor 2 (GCF2; a negative regulator) 

(Mallolas et al., 2006), resulting in reduced EAAT2 expression and glutamate uptake. 

Accordingly, individuals with this polymorphism show increased plasma glutamate levels 

and higher susceptibility to stroke (Mallolas et al., 2006). This SNP is also associated with 

MS (Pampliega et al., 2008), BD and schizophrenia (Dallaspezia et al., 2012; Poletti et al., 

2014a; Poletti et al., 2014b). The other SNP identified as rs435668, replacing A with T or G 

at the −181 position (−181A>T/G) is also associated with a reduced EAAT2 expression in 

schizophrenia patients (Spangaro et al., 2012). Moreover, the SNPs (−200C>A and 

−181A>C) increased susceptibility of preterm infants to cerebral palsy and 

neurodevelopmental disabilities (Rajatileka et al., 2018), indicating that SNPs in the EAAT2 

promoter region induce transporter dysfunction, as well as abnormal brain development and 

increased susceptibility to diseases.

In addition to polymorphisms in the EAAT2 promoter region, SNPs in the EAAT2 coding 

region may contribute to neurological disorders. A substitution of the amino acid glycine to 

arginine at residue 603 (G603A variant) in the EAAT2 coding region has been shown to be 

associated with altered behavior and liver cirrhosis in alcoholics (Foley et al., 2004; Sander 

et al., 2000b). This EAAT2 variant is believed to reduce EAAT2 functional activity in 

alcoholics, resulting in elevated glutamate levels in the brain (Sander et al., 2000b). Another 

study reported that SNPs of the EAAT2 gene did not affect the severity of idiopathic 

epilepsy (Sander et al., 2000a).
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These findings indicate that genetic polymorphisms in EAAT1/2 may contribute to the onset 

and progression of neurological disorders, potentially by dysregulation of glutamate 

transporters. Further genome-wide association studies (GWAS) are necessary to identify and 

understand the role of SNPs in EAAT1/2 across larger populations and various neurological 

diseases in humans.

3.2. Transcriptional regulation

The promoter regions of EAAT1 (GLAST) and EAAT2 (GLT-1) contain multiple consensus 

DNA-binding sites for various transcription factors including specificity protein 1 (Sp1), 

AP-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ΚB), nuclear factor of 

activated T-cells (NFAT), N-myc, cAMP response element-binding protein (CREB) and yin-

yang 1 (YY1) (Aguirre et al., 2008; Hagiwara et al., 1996; Karki et al., 2015a; Karki et al., 

2014b; Kim et al., 2003a; Su et al., 2003). Studies have shown that various stimulants 

activated these transcription factors and thus induced their binding to the consensus binding 

sites of the GLAST/GLT-1 promoters, resulting in altered expression of GLAST/GLT-1.

3.2.1. Positive transcriptional regulation—An increasing body of evidence links the 

dysregulation of glutamate transporters to excitotoxic neuronal injury (Karki et al., 2013a; 

Pampliega et al., 2008; Parkin et al., 2018; Wilson et al., 2003). Thus, understanding the 

transcriptional regulation of GLAST/GLT-1 may provide potential molecular targets to 

increase GLAST/GLT-1 expression and reverse glutamate excitotoxicity. Several 

transcription factors including NF-ΚB, CREB, β-catenin and Sp1 have been shown to increase 

GLAST/GLT-1 levels (Karki et al., 2015a; Kim et al., 2003b; Lutgen et al., 2016).

The transcription factor NF-ΚB (primarily found as a p65/p50 dimer) is a critical positive 

regulator of both GLAST and GLT-1 (Karki et al., 2013b; Karki et al., 2014c; Lee et al., 

2012a). NF-ΚBp65 overexpression significantly increased GLAST/GLT-1 expression in 

astrocyte cultures (Gupta and Prasad, 2014; Sitcheran et al., 2005). The promoter regions of 

both GLAST and GLT- 1 contain multiple NF-ΚB binding sites (Karki et al., 2015a; Sitcheran 

et al., 2005) and mutation of the binding sites in both transporters decreased their expression 

and abolished the effect of NF-ΚB overexpression (Karki et al., 2015a; Sitcheran et al., 2005). 

Pharmacological agents, including arundic acid, 17β-estradiol, tamoxifen, raloxifene, G1 (a 

selective agonist of G protein-coupled estrogen receptor (GPR30) and transforming growth 

factor alpha (TGF-α), increased the expression of EAAT1 and EAAT2 via activation of the 

NF-ΚB pathway (Figiel et al., 2003; Karki et al., 2018; Lee et al., 2012a; Lee et al., 2009; 

Unger et al., 2012). Several signaling proteins are known to regulate NF-ΚB activation to 

modulate GLAST/GLT-1 expression. Mitogen-activated protein kinase (MAPK)/

extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3- kinase (PI3K)/

Protein Kinase B (Akt) promote NF-ΚB activation (Karki et al., 2018; Karki et al., 2014c; Lee 

et al., 2009), resulting in increased GLT-1 levels (Li et al., 2006). The mammalian target of 

rapamycin (mTOR) activated Akt, resulting in enhanced NF-ΚB signaling and increased 

GLAST/GLT-1 expression in rat astrocytes (Abousaab et al., 2016; Han et al., 2016; Ji et al., 

2013). These findings indicate that various stimulants targeting these signaling proteins can 

also modulate NF-ΚB activation and GLAST/GLT-1 expression.
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The transcription factor CREB is known to play an important role in neuronal plasticity and 

long-term memory formation in the brain (Ortega-Martinez, 2015); and its reduction is 

consequently implicated in the pathology of AD and other cognitive disorders (Saura and 

Valero, 2011). CREB binds to cAMP response elements (CRE) in the promoter regions of 

EAAT1 and EAAT2 and initiates their transcription (Karki et al., 2013b; Kim et al., 2003b). 

Previous studies have demonstrated that the mutation of CRE sites completely abrogated 

tamoxifen-induced enhancement of EAAT2 promoter activity in astrocytes (Karki et al., 

2013b). Moreover, inhibition of protein kinase A (PKA), an upstream activator of CREB 

signaling, blocked the enhancing effects of 17ß-estradiol and tamoxifen on EAAT2 

expression (Karki et al., 2013b), indicating that CREB serves as a critical positive 

transcriptional regulator of EAAT1/2 (GLAST/GLT-1). Activation of GPR30) also increased 

EAAT2 (GLT-1) expression by inducing binding of CREB to the EAAT2 promoter (Lee et 

al., 2012a).

Selective estrogen receptor modulators (SERMs), which can act as ER agonists or 

antagonists depending on the tissue type, may also positively regulate EAAT1/2 (Dunn et al., 

2001). Some SERMs, such as tamoxifen and raloxifene, can act as ER agonists in the brain 

and increase expression of GLAST/GLT-1 at the transcriptional level (Colon et al., 2016; 

Morissette et al., 2008; Pajarillo et al., 2018; Pandey et al., 2016). Indeed, estrogen (17ß-

estradiol), tamoxifen and raloxifene enhanced EAAT1/2 expression both in vitro and in vivo 
(Karki et al., 2014c; Lee et al., 2013; Lee et al., 2009; Pajarillo et al., 2018). Estrogen and 

SERMs may also activate non-genomic signaling pathways such as PI3K-Akt, ERK, CREB, 

and NF-ΚB pathways to increase GLAST/GLT-1 (Karki et al., 2013b; Karki et al., 2014c; Lee 

et al., 2012a).

3.2.2. Negative transcriptional regulation—Although studies have focused on the 

positive regulation of glutamate transporters to develop potential therapeutics for 

neurological disorders related to the reduction of glutamate transporters, some studies have 

identified the negative regulators of these transporters. The transcription factor N-myc, a 

member of the Myc proto-oncogene family, is a basic-helix-loop-helix-zipper (bHLHZ) 

protein, is known to negatively regulate the expression of target genes during neurogenesis. 

It inhibited the basal and NF-ΚBp65-induced EAAT2 activation in astrocytes (Sitcheran et al., 

2005). The inflammatory agent tumor necrosis factor alpha (TNF-α) enhanced the binding 

of N-myc to its consensus binding sites in the EAAT2 promoter, resulting in repression of 

EAAT2 (Sitcheran et al., 2005). N-myc is correlated to the down-regulation of GLT-1 

expression during postnatal development in mice (Gupta and Prasad, 2014). N-myc levels 

were increased in the brains of AD and PD patients (Ferrer and Blanco, 2000), suggesting 

that aberrant N-myc is involved in their pathogenesis. N-myc is clearly involved in the 

regulation of EAAT2 transcription (Gupta and Prasad, 2014; Sitcheran et al., 2005), but its 

role in glutamate transporter dysregulation and excitotoxic neuronal damage remains to be 

elucidated.

The transcription factor YY1 is a potent negative regulator of both GLAST and GLT-1, as it 

binds to its consensus DNA-binding sites in their promoter regions and leads to decreases in 

their expression (Aguirre et al., 2008; Karki et al., 2015a; Karki et al., 2014b; Rosas et al., 

2007). YY1 can activate or repress transcription of genes, depending on cellular context and 
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co-factor availability (Galvin and Shi, 1997). YY1 plays a critical role in the brain by 

regulating genes involved in neural development, neuronal function and developmental 

myelination (He and Casaccia-Bonnefil, 2008; Shiu et al., 2016). YY1 is implicated in 

neurodegenerative disorders including PD, ALS, AD, Charcot-Marie-Tooth disease and Rett 

syndrome (Aubry et al., 2015; Bedrosian et al., 2018; Forlani et al., 2010; Nowak et al., 

2006; Ratajewski and Pulaski, 2009; Tiwari and Pal, 2017; Yin et al., 2018). Astrocyte-

elevated gene-1 (AEG-1) serves as a corepressor of YY1 to inhibit GLT-1 transcription, 

leading to reduced glutamate uptake in astrocytes (Lee et al., 2011). In addition, YY1 

mediates manganese (Mn)- and TNF-α-induced repression of GLAST and GLT-1 (Karki et al., 

2015a; Karki et al., 2014b). Activated YY1 recruits the epigenetic modifiers histone 

deacetylases (HDACs), and the resultant complex binds to its consensus binding sites of 

GLAST/GLT-1 to repress their expression. Consequently, knockdown of YY1 or mutation of 

the YY1 binding site reverses its repressive effects on GLAST/GLT-1 promoter activity 

(Karki et al., 2015a; Karki et al., 2014b).

3.3. RNA splicing

Alternative splicing of astrocytic glutamate transporters contributes to their translational 

features, posttranslational modifications and functional diversity. Previous studies have 

reported that an EAAT1 variant lacking exon 9 is expressed in the CNS, both in grey matter 

and the axonal tracts (Vallejo-Illarramendi et al., 2005). In the absence of exon 9, this 

EAAT1 variant is non-functional, but it exerts an antagonistic effect on functional EAAT1 

(Vallejo-Illarramendi et al., 2005), indicating that exon 9 is critical for plasma membrane 

localization and function of EAAT1. There are 4 major N- and C-terminal splice variants of 

EAAT2 which can reach the cell surface for glutamate uptake in astrocytes (Lauriat and 

McInnes, 2007; Peacey et al., 2009). Although some splice variants are functional, aberrant 

splicing of EAAT2 induces its rapid degradation and the consequent loss of glutamate 

uptake (Lin et al., 1998). Aberrant splicing was observed in patients with ALS (Lin et al., 

1998; Meyer et al., 1999; Meyer et al., 1998), epilepsy (Hoogland et al., 2004), AD and 

dementia with Lewy bodies (Scott et al., 2011), which exhibited reduced glutamate uptake in 

brain regions and consequent neuronal loss (Garcia-Esparcia et al., 2018).

GLT-1b is a splice variant of GLT-1(also known as GLT-1a), which contains a longer 3’-

UTR that extends to a stop codon between exons 9 and 10 (Rimmele and Rosenberg, 2016). 

Treatment with 3-nitropropionic acid (a hypoxic chemical agent) in the APP23 mouse model 

of AD increased aberrant splice variants of GLT-1 (Munch et al., 2008), suggesting that 

hypoxia- induced aberrant splicing of GLT-1 is involved in early-onset AD. Since the 

aberrant GLT-1 transcript is present in only 0.1–0.2% of the major EAAT2/GLT-1 isoforms in 

the brain (Lauriat and McInnes, 2007), the significance of aberrant splicing of EAAT2/

GLT-1 associated with neurological disorders warrants further investigation.

3.4. Epigenetic modulation

Growing evidence indicates that epigenetic modifications, including DNA methylation and 

histone modification, significantly contribute to neurodegenerative disorders by modulating 

global gene expression (Gonzalez et al., 2011). Epigenetic dysregulation of EAAT1/2 

promoter regions is associated with a decrease in their expression in various neurological 
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disorders, such as BD (Jia et al., 2017), ischemia (Chisholm et al., 2015) and ALS (Yoo and 

Ko, 2011), as well as in animal models of cocaine abuse (Kim et al., 2018).

3.4.1. DNA methylation—DNA methylation transfers a methyl group from S-adenosyl 

methionine to CpG island of genes to form 5-methylcytosine (Jin and Liu, 2018). DNA 

methylation acts primarily to repress gene transcription, and this process is essential for 

normal development and plays a key role in a number of biological and pathological 

processes such as aging, carcinogenesis and neurological disorders (Jin and Liu, 2018).

Studies have shown that levels of DNA methylation of CpG islands in the promoter region 

of GLT-1 are brain region-specific, with high levels of methylation in the cerebellar 

astrocytes of rats as compared to those in the cortex (Perisic et al., 2012). The 

pharmacological inhibition of DNA methylation with dexamethasone increased GLT-1 

expression in cerebellar glia (Zschocke et al., 2005). Moreover, the EAAT2 promoter 

displays higher levels of methylation in human glioma cell lines, leading to a decrease in 

EAAT2 expression and glutamate uptake as compared to normal human brains (Zschocke et 

al., 2007). Furthermore, self-administration of cocaine and its withdrawal effects were 

associated with increased EAAT2 DNA methylation, which in turn reduced its expression 

(Kim et al., 2018). These findings indicate that abnormal DNA hypermethylation is 

associated with various neurological disorders. Increased methylation of the EAAT2 

promoter in BD brains was also noted, but exogenous factors such as nicotine and alcohol 

addiction may have modified methylation in these patients (Jia et al., 2017), suggesting that 

exogenous stimulants can contribute to the pathogenicity of global methylation in 

neurological disorders. Despite the role of CpG methylation in EAAT2, there is no CpG 

island found in the EAAT1 gene (Sery et al., 2015).

3.4.2. Histone modifications—Histone modifications may also serve as a significant 

epigenetic contributor to neurodegenerative disease (Berson et al., 2018). Histone 

modifications are regulated by the covalent modifications of H3 and H4 histone tails, such as 

acetylation and methylation. Aberrancy of histone acetylation or methylation leads to the 

dysregulation of global gene expression in various neurological disorders (Landgrave-

Gomez et al., 2015). The mechanism of pathogenic histone modifications are beginning to 

emerge in neurodegenerative diseases related to dysfunctions of glutamate transporters. 

Aberrant histone methylation following ischemia resulted in dysfunctional GLT-1 and 

GLAST, but not their expression (Chisholm et al., 2015), suggesting other unknown 

mechanisms might be involved in histone methylation-induced modulation of glutamate 

transporters.

Aberrant histone acetylation and deacetylation play a critical role in various 

neurodegenerative disorders (Bennett et al., 2018; Mai et al., 2009; Park et al., 2016; Selvi et 

al., 2010). Inhibition of histone deacetylation using HDAC inhibitors (HDACi) such as 

trichostatin A (TSA), suberoylanilide hydroxamic acid (SAHA), sodium butyrate and 

valproic acid (VPA), increased GLAST and GLT-1 mRNA and protein levels in vitro and in 
vivo (Johnson et al., 2018a; Johnson et al., 2018b; Karki et al., 2014b; Lapucci et al., 2017). 

Moreover, HDACs are potent co-repressors of the negative regulator YY1 on GLAST/

GLT-1, and therefore, inhibiting HDACs abolished the negative effects of YY1 on GLAST/
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GLT-1 (Karki et al., 2015b; Karki et al., 2014b). These findings indicate that histone 

acetylation/deacetylation plays a critical role in regulation of GLAST/GLT-1 expression and 

may serve as a molecular target in the development of therapeutics to treat diseases 

associated with impaired glutamate transporters.

3.5. Posttranslational modifications (PTMs)

In addition to genetic, transcriptional and epigenetic modulations as critical contributors to 

GLAST/GLT-1 dysregulation, an increasing body of evidence implicates aberrant PTMs in 

pathogenesis associated with dysfunction of GLAST/GLT-1. Although PTMs play a role in 

the physiological function and localization of GLAST and GLT-1, aberrant PTMs are 

implicated in GLAST/GLT-1 dysregulation. Thus, elucidating the mechanisms of PTMs that 

affect pathogenesis may greatly expand our understanding of neurological disorders 

associated with the dysfunction of glutamate transporters.

3.5.1. Glycosylation—Glutamate transporters GLAST/GLT-1 require PTMs for their 

transport and trafficking in the cell. Notably, glycosylation of GLAST/GLT-1 is critical for 

the localization of transporters on the plasma membrane, as the glycosylation of N-terminal 

leucine-6 (L6) in GLT-1 is necessary for its export from the endoplasmic reticulum to the 

plasma membrane (Kalandadze et al., 2004). Interestingly, many splicing variants of GLT-1 

are devoid of this motif, which is compensated by a downstream arginine motif (Kalandadze 

et al., 2004).

Though glycosylation of other residues has been identified (Slotboom et al., 1999), it is still 

unclear whether aberrant glycosylation contributes to dysfunctional EAATs. Studies have 

established an association between aberrant glycosylation of GLAST/GLT-1 and 

schizophrenia (Bauer et al., 2010). Other studies have shown that both glycosylated and non-

glycosylated forms of GLT-1 were functional in the plasma membrane, suggesting that 

glycosylation of GLT-1 may not affect the trafficking or the transport activity of GLT-1 

(Raunser et al., 2005). Thus, further investigation is warranted to better understand the role 

of glycosylation in GLAST/GLT-1 trafficking and functionality.

3.5.2. Phosphorylation—Phosphorylation of GLT-1 has been identified at multiple 

serine, threonine and tyrosine residues (Casado et al., 1993; Kalandadze et al., 2002). 

Protein kinase C (PKC)-dependent phosphorylation of serine-113 (S113), serine-486 (S486) 

and serine-520 (S520) plays a critical role in GLT-1 function and trafficking (Casado et al., 

1993; Garcia-Tardon et al., 2012; Kalandadze et al., 2002). Phosphorylation of GLAST and 

GLT-1 decreased glutamate uptake in HEK293 cells and the ALS-parkinsonism dementia 

complex (PDC) mouse model, respectively (Conradt and Stoffel, 1997; Wilson et al., 2003), 

possibly due to rapid intracellular protein sequestration (Anderson and Swanson, 2000). 

However, other studies have shown that PKC-dependent phosphorylation at serine residues 

increased with GLT-1 activity (Casado et al., 1993), while others have reported that GLT-1 

localization and degradation are independent of its phosphorylation and instead requires 

ubiquitin ligase Nedd4–2 for ubiquitination (Garcia-Tardon et al., 2012). These 

contradictory findings may be due to targeting of different serine residues and involvement 
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of PKC-dependent Nedd4–2 ubiquitination associated with GLT-1 internalization and 

function used in various experimental settings (Garcia-Tardon et al., 2012).

3.5.3. Ubiquitination—Despite the significant role of phosphorylation in GLT-1 

function and trafficking, studies have implicated ubiquitination as a necessary PTM for the 

trafficking and degradation of astrocytic glutamate transporters (Boehmer et al., 2006). 

Ubiquitin ligase Nedd4–2 facilitates GLAST/GLT-1 ubiquitination (Boehmer et al., 2003; 

Boehmer et al., 2006), and aberrant Nedd4–2 activity has been shown to disrupt their 

localization to the astrocytic membrane, resulting in a reduction of membrane-bound 

GLAST and GLT-1 in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD 

animal models (Zhang et al., 2017).

Ubiquitinated lysine residues in the carboxyl terminus of GLT-1 are required for its 

endocytosis and degradation (Garcia-Tardon et al., 2012). As GLT-1 prevents excitotoxicity 

and its loss has been implicated in various pathological conditions, ubiquitination and 

targeted degradation of GLT-1 may serve as a pathological mechanism for decreasing GLT-1 

expression and function in neurodegenerativa conditions (Sheldon et al., 2008). PKC-

dependent ubiquitination of GLT-1 has been shown to reduce glutamate uptake in astrocyte 

cultures (Garcia-Tardon et al., 2012). Activation of PKC increased the ubiquitination of 

GLT-1, leading to the accumulation of ubiquitinated GLT-1 in the intracellular compartment 

(Gonzalez-Gonzalez et al., 2008). Excess glutamate increased ubiquitination and 

internalization of GLT-1, resulting in a reduction of cell surface GLT-1 expression in 

HEK293 cells (Ibanez et al., 2016). Aberrant ubiquitination of GLT-1 also reduced both its 

protein levels and glutamate uptake in astrocytes (Munoz-Ballester et al., 2016).

3.5.4. Palmitoylation—Palmitoylation is a PTM that affects the membrane partitioning, 

trafficking and activity of membrane proteins (Tortosa and Hoogenraad, 2018). The 

palmitoylation of GLT-1 occurs at cysteine 38 (C38) via a thioester linkage by palmitoyl 

acyltransferases (Huang et al., 2010). GLT-1 palmitoylation regulates normal glutamate 

uptake and is greatly reduced in the YAC128 Huntington’s Disease (HD) mouse model 

(Huang et al., 2010). Further inhibition of palmitoylation by mutation or pharmacological 

inhibition severely impairs glutamate uptake (Huang et al., 2010). Moreover, studies have 

shown that reduced palmitoylation of EAAT1 and EAAT2 in glioma patients decreased 

glutamate re-uptake (Tong et al., 2015). These findings suggest that abnormal palmitoylation 

of glutamate transporters is associated with various pathological conditions, though the 

mechanism of pathogenesis remains unclear.

3.5.5. Sumoylation—Sumoylation is a PTM that covalently attaches small ubiquitin-

like modifier (SUMO) proteins to other proteins to regulate protein localization and function 

(Hay, 2005). The localization of GLT-1 in the cells is affected by sumoylation, which is 

closely associated with proteolytic cleavage (Foran et al., 2011). Caspase-3-mediated 

cleavage of GLT-1 leads to intracellular accumulation of a sumoylated GLT-1 C-terminus 

fragment (CTE-SUMO1) at the beginning of disease onset in ALS mouse models 

(Rosenblum et al., 2017). Moreover, sumoylated proteolytic fragments of GLT-1 were found 

in the nucleus and endosome in spinal cord astrocytes of ALS mice (Foran et al., 2011; 

Foran et al., 2014). Nuclear accumulation of GLT-1 fragments in astrocytes also induces 
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neuronal toxicity in co-culture, suggesting that sumoylation of astrocytic GLT-1 contributes 

to motor neuron degeneration and ALS pathogenesis (Foran et al., 2011). On the other hand, 

desumoylation facilitates trafficking of GLT-1 to the plasma membrane, resulting in 

enhanced glutamate uptake in primary astrocytes (Foran et al., 2014). Taken together, these 

findings warrant further elucidation of the role of sumoylation of GLT-1 in 

neurodegenerative diseases.

3.5.6. Proteolytic cleavage—Enhanced proteolytic cleavage of GLT-1 by caspase-3 

activation is associated with impairment of glutamate uptake in mutant superoxide dismutase 

(SOD1) ALS mouse models (Boston-Howes et al., 2006). SOD1-mutant mice enhanced 

caspase-3-mediated cleavage of GLT-1, resulting in the formation of truncated GLT-1 

(Boston-Howes et al., 2006). Caspase-3 cleaved GLT-1 at the C-terminal domain, leading to 

the accumulation of sumoylated GLT-1 C-terminus fragments prior to the onset of ALS. 

Mutation of this cleavage site did not affect GLT-1 activity, but delayed disease progression 

and extended lifespan in an ALS mouse model (Rosenblum et al., 2017). Additionally, 

accumulation of GLT-1 proteolytic fragments in astrocytes increased toxicity, resulting in the 

impairment of neuronal and axonal growth (Foran et al., 2011). These findings suggest that 

abnormal GLT-1 cleavage impairs glutamate uptake, leading to excitotoxicity in ALS, 

providing potential molecular targets for pharmacological interventions.

3.5.7. Nitrosylation—S-Nitrosylation is the covalent attachment of a nitroso group (-

NO) to a cysteine thiol to form S-nitrosothiol (SNO), which plays an essential role in nitric 

oxide (NO) bioactivity (Anand and Stamler, 2012). Recent studies have shown that the 

nitrosylation of proteins plays a critical role in glutamate neurotransmission by modulating 

the glutamate/glutamine cycle (Raju et al., 2015). S-nitrosylation of GLT-1 occurs at 

cysteine-373 (C373) and cysteine-561 (C561), which was abrogated in mice lacking 

endothelial nitric oxide synthase (Raju et al., 2015). In addition, GLT-1 that was not S-

nitrosylated at C373 or C561 showed increased glutamate uptake as compared to 

nitrosylated GLT-1, suggesting that S-nitrosylation impairs glutamate uptake (Raju et al., 

2015). Other studies have shown that chronic Toxoplasma infection and ischemia models 

showed increased nitric oxide concomitant to decreased GLT-1 levels (David et al., 2016; 

Yamada et al., 2006), indicating that nitrosylation may contribute to neurological disorders 

by promoting aberrant glutamate neurotransmission and excitotoxicity.

4. Impairment of glutamate transporters in neurological disorders

4.1. AD

AD is a chronic neurodegenerative disease characterized by progressive memory loss and 

cognitive decline (Brookmeyer et al., 2018). While several genetic mutations have been 

linked to AD, most cases are idiopathic in nature and the mechanisms of pathogenesis are 

not well understood (Tsolaki et al., 2018). Glutamate-mediated excitotoxic neuronal death is 

implicated in AD pathology (Kornhuber and Wiltfang, 1998), indicating that dysregulation 

of GLAST and GLT-1 impact AD pathogenesis.

Clinical studies in AD patients and experimental animal studies have shown that a loss of 

GLT-1 is involved in pathological features of AD (Takahashi et al., 2015). Moreover, AD 
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mouse models with the loss of one GLT-1 allele showed accelerated cognitive decline as 

compared to wild-type control, whereas overexpression of GLT-1 attenuated AD-associated 

cognitive deficits in transgenic mice (Mookherjee et al., 2011; Takahashi et al., 2015). 

Pharmacological restoration of GLT-1 function with LDN 212320, a translational activator, 

in AD mice also attenuated the cognitive deficits, suggesting that GLT-1 plays a critical role 

in cognitive function and neuroprotection in AD (Takahashi et al., 2015).

4.2. PD

PD is a chronic, progressive neurodegenerative disorder characterized by the loss of 

dopaminergic neurons in the substantia nigra, resulting in motor deficits such as 

hypokinesia, tremors and muscle rigidity (Rees et al., 2018).

Dysregulation of glutamate homeostasis and neurotransmission have been implicated in PD 

pathogenesis. Glutamate uptake in platelets is reduced by 50% in PD patients as compared 

to normal human subjects (Ferrarese et al., 2001). PD severity and Parkinsonian symptoms 

were also correlated with glutamate uptake reduction. Ro 25–6981, an N-methyl-D-aspartate 

(NMDA) receptor antagonist, attenuated Parkinsonian motor symptoms in the MPTP-

induced PD animal model (Loschmann et al., 2004). Further, in a PD rat model, exposure to 

6-hydroxydopamine resulted in decreased striatal GLT-1 (Chung et al., 2008). Aberrant 

ubiquitination of GLT-1 leads to decreases in GLT-1 expression and motor deficits along 

with DA cell loss in an MPTP-induced PD mouse model (Zhang et al., 2017). Taken 

together, these findings suggest that GLT-1 is critically involved in the pathogenesis of PD.

4.3. ALS

ALS is a neurological disorder, characterized by progressive degeneration of motor neurons 

in the brain and spinal cord (Chi et al., 2018). The mechanisms of ALS are not well 

understood, but growing evidence shows that glutamate-mediated excitotoxicity is closely 

related to ALS pathogenesis (Lin et al., 2012). Postmortem brain tissue from the ALS 

patients revealed a 30–95% loss of EAAT2 in the motor cortex and spinal cord, 

corroborating findings of GLT-1 reduction in transgenic ALS mice (Rothstein et al., 1995). 

Genetic mutations of SOD1 in the ALS mouse model have also shown a reduction of GLT-1, 

in addition to the loss of motor neurons (Tortarolo et al., 2004). Moreover, treatment of 

SOD1 mice with β-lactam antibiotic ceftriaxone attenuated motor symptoms and prolonged 

survival (Rothstein et al., 2005). These results suggest that GLT-1 dysregulation is closely 

associated with ALS pathogenesis.

4.4. Manganism

Chronic overexposure to manganese (Mn) results in a neurological disorder known as 

manganism, which shares pathologic features with sporadic PD (Kwakye et al., 2015). In 

addition to extrapyramidal motor deficits (Racette et al., 2012), Mn induces dopaminergic 

neurotoxicity along with dysfunction of GLAST/GLT-1 (Johnson et al., 2018a; Pajarillo et 

al., 2018). Moreover, Mn neurotoxicity is also known to contribute to the development of 

other neurodegenerative disorders such as AD, PD, ALS, schizophrenia, and epilepsy 

(Bowman et al., 2011; Takeda, 2003).
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Mn decreases GLAST/GLT-1 expression and function in astrocyte cultures, possibly leading 

to excitotoxic neuronal injury (Karki et al., 2015b; Karki et al., 2014b). Although the exact 

mechanisms by which Mn represses these transporters are not completely understood, the 

transcription factor YY1 appears to mediate the Mn-induced repression of GLAST/GLT-1 

(Karki et al., 2013a). This is supported by the findings that Mn increases YY1 expression 

and enhances YY1 binding to the GLAST/GLT-1 promoters (Karki et al., 2015a; Karki et 

al., 2015b; Karki et al., 2014b) while mutation of YY1 binding sites in the promoter regions 

attenuates Mn-induced repression of GLAST/GLT-1 (Karki et al., 2014b).

4.5. Schizophrenia

Schizophrenia is a chronic psychiatric disorder characterized by behavioral disturbances and 

dissociation from reality (Bartoli et al., 2018). Increasing evidence has shown that 

dysregulation of glutamate transporters is associated with this disease. It has been reported 

that EAAT1 expression is decreased in schizophrenia as compared to healthy subjects (Bauer 

et al., 2008). A genetic variant of EAAT2 (SNP rs4354668) has been correlated with the 

severity of schizophrenia (Spangaro et al., 2012; Spangaro et al., 2014). At the translational 

level, N-glycosylation of EAAT2 was reduced in schizophrenic brains (Kalandadze et al., 

2004). Together, these findings indicate that EAAT1/2 may be involved in schizophrenic 

pathogenesis, a phenomenon which warrants further exploration.

4.6. Epilepsy

Epilepsy is a neurological disorder characterized by sensory disturbances, seizures and loss 

of consciousness, induced by overstimulation of glutamate receptors. There was a significant 

increase in extracellular glutamate levels in the hippocampus prior to seizure onset in 

epileptic patients (Cavus et al., 2005), while overexpression of GLT-1 attenuated 

pilocarpine-induced recurrent seizures and prevented seizure-induced neuronal death in 

GLT-1 transgenic mice (Kong et al., 2012). Moreover, VPA, an antiepileptic, reversed Mn- 

or glutamate-reduced GLAST/GLT-1 in both in vitro and in vivo settings (Aguirre et al., 

2008; Johnson et al., 2018a). These results suggest that GLAST/GLT-1 might be a 

therapeutic target in the treatment of epilepsy.

4.7. Cerebral Ischemia

Cerebral ischemia is a condition in which blood flow to the brain is blocked, leading to 

ischemic stroke (Gulke et al., 2018). A large body of evidence suggests that glutamate-

associated excitotoxicity is associated with ischemia (Mayor and Tymianski, 2018). 

Knockdown of GLT-1 exacerbates neuronal damage in ischemic rat models, indicating that 

GLT-1-mediated glutamate uptake is critical for neuronal survival (Rao et al., 2001). GLT-1 

overexpression was also neuroprotective against ischemia, which was induced by oxygen/

glucose deprivation in astrocytes (Weller et al., 2008). Ceftriaxone, a β-lactam antibiotic, 

also increased GLT-1 expression and decreased cell death in a rat model of ischemia (Chu et 

al., 2007). Further, overexpression of GLT-1 in a rat model of stroke showed that GLT-1 

reduced excess glutamate levels, decreased stroke-associated cell death and improved 

recovery (Harvey et al., 2011), suggesting that GLT-1 is critically involved in preventing 

stroke.
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4.8. Autism spectrum disorders (ASD)

ASD or autism is characterized by deficits in social interaction and repetitive behavior as 

well as impairment of language and communication (Kaufmann et al., 2004). Several studies 

have reported that dysregulated GLT-1 expression and glutamate uptake impairs glutamate 

clearance from the synaptic cleft, leading to pathogenesis in ASD animal models (Bristot 

Silvestrin et al., 2013). Moreover, loss of GLT-1 resulted in synaptic over-excitability and 

pathological repetitive behaviors in mice, suggesting that GLT-1 has an important role in 

regulating cortical synapses (Aida et al., 2015). Another study reported that the deletion of 

fragile X mental retardation protein (FMRP) in mice decreased GLT-1 expression and 

glutamate re-uptake, resulting in abnormal neuronal hyperexcitability, which were reversed 

by ceftriaxone treatment (Higashimori et al., 2016). The loss of FMRP in the brain produces 

fragile X syndrome (FXS) phenotypes and is associated with ASD pathogenesis (Kaufmann 

et al., 2004). These findings indicate a possible link between dysfunctional glutamate 

transporters and ASD, warranting further exploration.

5. Pharmacological interventions targeting astrocytic glutamate 

transporters

Several pharmacological agents have been shown to modulate GLAST/GLT-1 expression at 

the transcriptional and translational levels (Kim et al., 2003b; Kong et al., 2014; Pawlak et 

al., 2005). Despite the significant efficacy of these compounds, the molecular mechanisms 

involved in the upregulation of these transporters remain to be elucidated. For example, 

estrogen (primarily 17ß-estradiol) increased both GLAST and GLT-1 at the transcriptional 

level and reversed manganese (Mn)-induced reduction of those transporters (Lee et al., 2009; 

Pajarillo et al., 2018). Various pharmacological agents regulating GLAST/GLT-1 expression 

and function are compared by their mode of action (Table 1).

5.1. β-Lactam antibiotics

Several β-lactam antibiotics have been shown to enhance GLT-1 expression at the 

transcriptional level in experimental settings (Rothstein et al., 2005). Ceftriaxone increased 

GLT-1 protein levels as well as glutamate uptake and exerted neuroprotection against 

ischemia and ALS both in vitro and in vivo (Rao et al., 2015c). At the transcriptional level, 

ceftriaxone activated the NF-ΚB signaling pathway to enhance GLT-1 promoter activity and 

protein levels. Other β-lactam antibiotics, such as ampicillin, cefazolin, and cefoperazone, 

elicited similar effects in enhancing GLT-1 expression and function (Rao et al., 2015b). 

These findings indicate that multiple ß-lactam antibiotics upregulate GLT-1 at the 

transcriptional level and may serve as molecular targets to treat neurological disorders 

associated with EAAT2 dysregulation.

5.2. Estrogen and SERMs

Growing evidence suggests that estrogen and SERMs exert neuroprotective effects in 

neurological disorders, including ischemia, AD, PD and Mn-induced toxicity, in several 

experimental models (Liang et al., 2002; Pajarillo et al., 2018).
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Estrogen modulates a broad spectrum of molecular mechanisms to induce neuroprotective 

effects. One such mechanism is the release of brain-derived neurotrophic factor (BDNF), 

which promoted neuronal survival and cognitive function in an ischemic rat model (Yang et 

al., 2010). Estrogen and SERMs, such as tamoxifen and raloxifene, also increase expression 

of GLT-1 and GLAST at the transcriptional level in vitro and in vivo through genomic 

pathways (Karki et al., 2014c; Lee et al., 2009; Pajarillo et al., 2018). Additionally, estrogen 

and tamoxifen enhanced transcription of GLT-1/GLAST via non-genomic pathways, 

activating MAPK ERK, PI3K-Akt, TGF-α and NF-ΚBsignaling in astrocytes (Lee et al., 

2012b; Lee et al., 2009). Raloxifene upregulated GLAST/GLT-1 by the activation of ERK, 

epidermal growth factor receptor (EGFR), and CREB in astrocytes (Karki et al., 2014c).

Estrogen increased GLAST and GLT-1 expression and attenuated decreases in GLAST/

GLT-1 in AD patient-derived astrocytes (Pawlak et al., 2005). Estrogen and tamoxifen also 

reversed Mn-reduced GLAST and GLT-1 protein levels in mice (Pajarillo et al., 2018). 

Estrogen receptor (ER)-a has been associated with GLT-1 expression in an ischemic rat 

model (Cimarosti et al., 2005), indicating that ER-α may serve as the primary receptor 

involved in GLT-1 expression and neuroprotective actions. These results indicate that 

estrogen and SERMs promote neuroprotection through a variety of mechanisms, including 

the regulation of astrocytic glutamate transporter expression and function.

5.3. Growth factors

A variety of growth factors, including TGF-α, TGF-ß1, epidermal growth factor (EGF), 

insulin-like growth factor I, basic fibroblast growth factor (FGF), glial cell line-derived 

neurotrophic factor (GDNF) and BDNF, have been shown to enhance the expression and 

function of GLAST/GLT-1. These growth factors also exert neuroprotective effects in 

various neurological disorders via attenuation of excitotoxicity (Lee et al., 2012b).

Studies have shown that TGF-ß1-deficient mice exhibited high sensitivity to excitotoxic 

injury, similar to the tendencies of GLT-1-deficient mice (Koeglsperger et al., 2013). TGF-ß1 

induced neuroprotection and attenuated the reduction of GLT-1 in a chronic pain rat model 

(Chen et al., 2013). EGF and TGF -α increased GLAST/GLT-1 expression in rat primary 

astrocytes and cell line cultures (Karki et al., 2017; Lee et al., 2012b; Sitcheran et al., 2005; 

Unger et al., 2012) via activation of the NF-ΚBpathway, likely via PI3K-Akt and MAPK/ERK 

signaling (Lee et al., 2012b; Sitcheran et al., 2005). TGF-α also mediates the effects of 

estrogen and SERMs on GLAST/GLT-1 expression via non-genomic signaling in vitro (Lee 

et al., 2009). Moreover, TGF-α expression is abundant in astrocytes and its expression is 

increased by estrogen (Ma et al., 1994). Estrogen and tamoxifen increased expression of 

TGF-α as well as GLT-1/GLAST concomitantly (Pajarillo et al., 2018), indicating that TGF-

α at least partially mediates estrogen/SERM-induced neuroprotection by enhancing 

astrocytic glutamate transporters in mice. These findings suggest that growth factors may be 

utilized in the development of neurotherapeutics via enhancement of glutamate transporters 

GLT-1 and GLAST.
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5.4. HDACi

HDACs are epigenetic modifiers that remove acetyl groups from histone molecules, 

resulting in tightening of the DNA around histones and decreased gene transcription (Mai et 

al., 2009). HDACs are classified into Class I (HDACs 1, 2, 3, 8), Class IIa (HDACs 4, 5, 7, 

9), Class IIb (HDACs 6, 10), Class III (sirtuins) and Class IV (HDAC11) (Mai et al., 2009). 

Studies have shown that HDACi such as MC1568, VPA, and sodium butyrate, increased 

GLAST/GLT-1 expression and glutamate uptake in in vitro and in vivo models of ALS and 

Mn-induced neurotoxicity (Johnson et al., 2018a; Johnson et al., 2018b; Karki et al., 2014b; 

Lapucci et al., 2017). Many HDACi, including sodium butyrate, VPA, SAHA and TSA, 

increased expression of GLT-1 and GLAST in cell culture models (Karki et al., 2014b). 

Moreover, VPA and sodium butyrate increased GLAST and GLT-1 expression and protected 

the loss of dopaminergic neurons against Mn neurotoxicity, resulting in improved motor 

coordination and activity in mice (Johnson et al., 2018a; Johnson et al., 2018b). Another 

HDACi, MC1568, has been shown to increase GLT-1 expression and restore spinal cord 

expression of GLT-1 and glutamate uptake in mouse primary astrocyte cultures and SOD1-

mutant mice, an ALS animal model (Lapucci et al., 2017). MC1568 also increased the 

sumoylation of EAAT2 (Lapucci et al., 2017), suggesting a link between histone acetylation 

and sumoylation of EAAT2 at the transcriptional and posttranslational levels. The molecular 

mechanism of HDACi by which GLT-1/GLAST are upregulated remains to be elucidated.

In addition to acting as epigenetic modifiers through the deacetylation of histone molecules, 

HDACs serve as co-repressors of non-histone protein transcription factor YY1, which binds 

to its consensus binding sites in the promoter regions of GLT-1 and GLAST, inhibiting their 

expression (Karki et al., 2015a; Karki et al., 2014b). This indicates that HDACi can target 

multiple proteins at the cellular levels. HDACi have also been tested clinically in the 

treatment of various diseases, including cancer (Suraweera et al., 2018) and muscular 

dystrophy (Bettica et al., 2016), and there is a growing interest in its use in the treatment of 

neurological disorders.

5.5. Translational activators

The compound LDN 212320, a pyridazine derivative, is known as an activator of GLT-1 

translation and has significant neuroprotective effects in vivo (Kong et al., 2014). LDN 

212320 protects cultured neurons from glutamate-mediated excitotoxic injury and death via 

GLT-1 activation (Kong et al., 2014). The compound delayed motor function decline and 

extended lifespan in an animal model of ALS (Kong et al., 2014). LDN 212320 activated 

PKC and subsequent Y-box-binding protein 1 (YB-1), which regulates activation of EAAT2 

translation (Kong et al., 2014).

LDN 212320 restored GLT-1 protein function with significant improvement of cognitive 

function, reestablishing synaptic integrity and reducing amyloid plaques in a transgenic AD 

animal model (Takahashi et al., 2015). These effects lasted a month after compound 

treatment cessation (Takahashi et al., 2015). These findings indicate that small molecules 

such as LDN 212320 enhance GLT-1 translation. These small molecules may also contribute 

to the treatment of neurodegenerative diseases associated with GLT-1 dysfunction.
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6. Conclusion

Dysregulation of EAAT1/GLAST and EAAT2/GLT-1 have been strongly linked to the 

pathogenesis of various neurological disorders such as ALS, AD, PD, manganism, ischemia, 

schizophrenia, epilepsy, and autism. While epigenetic modifications, transcriptional 

regulation, RNA splicing and PTMs support the diversity and pleiotropic functions of 

astrocytic glutamate transporters, aberrancy of these processes contributes to the onset and 

progression of glutamate excitotoxicity. Accordingly, delineating the molecular mechanisms 

involved in the genetic, epigenetic, transcriptional and translational regulation of GLAST/

GLT-1 expression and function is critical to further our understanding of glutamate 

excitotoxicity and neuropathogenesis. Likewise, drug targeting of glutamate transporters 

constitutes an exciting direction for exploration, which would extend our collective 

comprehension of neurological disorders and aid in the identification of potential therapeutic 

targets. Pharmacological agents such as ß-lactam antibiotics, estrogen and SERMs, growth 

factors, HDACi, and translational activators show promising efficacy in increasing GLAST/

GLT-1 expression and glutamate uptake in astrocytes, thus preventing excitotoxic neuronal 

injury (Figure 3).
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Highlights

• Excitotoxicity plays a critical role in neurological and neurodegenerativa 

disorders.

• Glutamate transporters GLT-1 and GLAST are essential in preventing 

excitotoxicity.

• GLT-1/GLAST expression can be modulated by drugs at multiple levels of 

gene expression.

• Pharmacological agents can target GLT-1/GLAST to treat neurological 

disorders.
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Fig. 1. 
Role of astrocytic glutamate transporters in the central nervous system (CNS) and 

neurological disorders. (A) The tripartite synapse is comprised of astrocytes, presynaptic and 

postsynaptic neurons. Astrocytic glutamate transporters, excitatory amino acid transporters 1 

(EAAT1) and 2 (EAAT2), uptake glutamate from the synaptic cleft to maintain glutamate 

homeostasis and prevent excitotoxic neuronal death. (B) Dysfunctional glutamate 

transporters have been implicated in various neurological disorders such as amyotrophic 

lateral sclerosis (ALS), Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, 

epilepsy, and autism.
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Fig. 2. 
Regulatory mechanisms of EAAT1 and EAAT2. Astrocytic glutamate transporters are 

membrane-bound trimeric proteins which regulate synaptic glutamate levels. The 

expression, function and trafficking of glutamate transporters are regulated at the 

transcriptional and translational levels. Single nucleotide polymorphisms (SNPs), aberrant 

RNA splicing and dysregulated transcription factors modulate the expression of EAAT1/

EAAT2. Epigenetic modifications such as DNA methylation and histone acetylation/

methylation also modulate their expression. Posttranslational modifications (PTMs) such as 

glycosylation and phosphorylation regulate function, localization and degradation of EAAT1 

and EAAT2.
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Fig. 3. 
Pharmacological interventions targeting astrocytic glutamate transporters. At the 

transcriptional level, β-lactam antibiotics, estrogens and growth factors enhance EAAT1 and 

EAAT2 expression and function. Epigenetic modifiers such as histone deacetylase inhibitors 

(HDACi) increase transcription of EAAT1/EAAT2. At the translational level, the 

translational activator of EAAT2 LDN 212320 also increases EAAT2 protein expression and 

function.
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Table 1.

List of pharmacological drugs that modulate the expression and function of GLAST/EAAT1 and GLT-1/

EAAT2

Drug Regulatory Effect Molecular mechanism/
pathways

In vitro/in vivo; disease 
model

Reference

β-lactam antibiotics

Ceftriaxone ↑TEAAT2/GLT-1 PI3K-Akt, NF-κB In vitro and in vivo; ALS, 
ischemia, HD, neuropathic 
pain, hypoxia, AD, alcohol 
abuse/dependency, 
subarachnoid hemorrhage

(Chu et al., 2007;
Cudkowicz et al., 2014;
Decker et al., 2016;
Eljaja et al., 2018;
Feng et al., 2014;
Jagadapillai et al., 2014;
Petr et al., 2013b;
Sari et al., 2016)

Ampicillin ↑EAAT1,
↑EAAT2/GLT-1

PI3K-Akt In vivo; alcohol abuse/
dependency

(Rao et al., 2015b)

Cefazolin ↑EAAT1,
↑EAAT2/GLT-1

PI3K-Akt In vivo; alcohol abuse/
dependency

(Rao et al., 2015b)

Cefoperazone ↑EAAT1,
↑EAAT2/GLT-1

PI3K-Akt In vivo; alcohol abuse/
dependency

(Rao et al., 2015b)

Estrogen and SERMs

17β-estradiol ↑EAAT1/GLAST,
↑EAAT2/GLT-1

PI3K-Akt, TGF-α, 
ERK, NF-κB, and 
nuclear ER binding

In vitro and in vivo; 
manganism

(Lee et al., 2012a;
Lee et al., 2012b;
Lee et al., 2009;
Pajarillo et al., 2018;
Pawlak et al., 2005)

Tamoxifen ↑EAAT1/GLAST,
↑EAAT2/GLT-1

PI3K-Akt, TGF-α, 
ERK, NF-κB, and 
nuclear ER binding

In vitro and in vivo; 
manganism

(Lee et al., 2012b;
Lee et al., 2009;
Pajarillo et al., 2018)

Raloxifene ↑EAAT1/GLAST,
↑EAAT2/GLT-1

PI3K-Akt, TGF-α, 
ERK, NF-κB, and 
nuclear ER binding

In vitro; manganism (Karki et al., 2014c)

Growth factors

EGF ↑EAAT1/GLAST,
↑EAAT2/GLT-1

PI3K-Akt, NF-κB In vitro (Figiel et al., 2003;
Sitcheran et al., 2005;
Zelenaia et al., 2000)

TGF-α ↑EAAT1/GLAST,
↑EAAT2/GLT-1

TGF-α, PI3K-Akt In vitro; manganism (Figiel et al., 2003;
Lee et al., 2012b)

TGF-β1 ↑EAAT1/GLAST,
↑EAAT2/GLT-1

TGF-β1 In vitro and in vivo (Close et al., 2005;
Koeglsperger et al., 2013;
Stipursky and Gomes, 2007)

BDNF ↑EAAT1/GLAST,
↑EAAT2/GLT-1

BDNF-TrkB, CREB, 
NF-κB

In vitro and in vivo; 
depression, AD, hypoxia

(Dai et al., 2012;
Figiel et al., 2003;
Liu et al., 2016;
Rodriguez- Kern et al., 2003)

GDNF ↑EAAT1/GLAST,
↑EAAT2/GLT-1

MAPK ERK In vitro (Bonde et al., 2003;
Delyfer et al., 2005;
Figiel et al., 2003;
Koeberle and Bahr, 2008)

Basic FGF ↑EAAT1/GLAST,
↑EAAT2/GLT-1

MAPK ERK, NF-κB, 
PI3K-Akt

In vitro (Figiel et al., 2003)

dbcAMP ↑EAAT1/GLAST,
↑EAAT2/GLT-1

PI3K-Akt, NF-κB, 
cAMP-dependent, PKA

In vitro (Li et al., 2006; Schluter et al., 2002; 
Zelenaia et al., 2000)

HDACi

SAHA ↑EAAT1,
↑EAAT2

Class I and II HDAC 
inhibition, histone 
acetylation

In vitro; manganism (Karki et al., 2014b)
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Drug Regulatory Effect Molecular mechanism/
pathways

In vitro/in vivo; disease 
model

Reference

VPA ↑EAAT1/GLAST,
↑EAAT2/GLT-1

Class I and HDAC 
inhibition, histone 
acetylation

In vitro and in vivo; 
manganism

(Johnson et al., 2018a;
Johnson et al., 2018b;
Karki et al., 2014b)

Sodium butyrate ↑EAAT1/GLAST,
↑EAAT2/GLT-1

HDAC inhibition, 
histone acetylation

In vitro and in vivo; 
manganism

(Johnson et al., 2018b;
Karki et al., 2014b)

TSA ↑EAAT1, EAAT2 Class II HDAC 
inhibition, histone 
acetylation

In vitro; manganism (Karki et al., 2014a)

MC1568 ↑GLT-1 Class II HDAC 
inhibition, histone 
acetylation

In vivo; ALS (Lapucci et al., 2017)

Other compounds

Arundic acid ↑EAAT1 ERK, NF-κB, Akt In vitro; manganism (Karki et al., 2018)

LDN 212320 ↑EAAT2/GLT-1 PKC, translational 
activation

In vivo; AD (Kong et al., 2014)

Riluzole ↑EAAT2 PKCK1 isoform δ In vitro and in vivo; ALS, 
AD, depression, PD

(Carbone et al., 2012a,
b;
Pereira et al., 2017)

Harmine ↑EAAT2/GLT-1 - In vivo, ALS (Li et al., 2011)

Rosiglitazone ↑EAAT2/GLT-1 - In vitro and in vivo; stress, 
ischemia

(Garcia- Bueno et al., 2007;
Romera et al., 2007)

Maslinic acid ↑EAAT1/GLAST,
↑EAAT2/GLT-1

NF-κB In vitro and in vivo; 
glutamate toxicity, 
ischemia

(Guan et al., 2011;
Qian et al., 2011;
Qian et al., 2016)

L-threohydroxy 
aspartate

↓EAAT1/GLAST,
↓EAAT2/GLT-1

Competitive inhibition In vitro, glutamate toxicity (Qian et al., 2011)

Bromocriptine ↓EAAT2/GLAST Competitive inhibition In vitro (Shirasaki et al., 2010)

Dihydrokainate ↓EAAT2/GLT-1 Competitive inhibition In vitro and in vivo (Arriza et al., 1994;
Kawahara et al., 2002)

T0070907 ↓GLT-1 Peroxisome 
proliferator-activated 
receptor gamma 
(PPARγ)

In vivo; ischemia (Romera et al., 2007)

dl-threo-beta- 
benzyloxyaspartic acid 
(TBOA)

↓EAAT2 Competitive inhibition In vitro (Shimamoto et al., 1998)

Phorbol ester ↓EAAT1/GLAST,
↓EAAT2/GLT-1

PKC In vitro (Dunlop et al., 1999;
Ganel and Crosson, 1998;
Gonzalez et al., 2005;
Kalandadze et al., 2002)

WAY-855 ↓EAAT2/GLT-1 Non-competitive 
inhibition

In vitro (Dunlop et al., 2003)

WAY-213613 ↓EAAT2/GLT-1 Competitive inhibition In vitro (Dunlop et al., 2005)
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