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pathCHEMO, a generalizable computational
framework uncovers molecular pathways of
chemoresistance in lung adenocarcinoma
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Despite recent advances in discovering a wide array of novel chemotherapy agents, identi-
fication of patients with poor and favorable chemotherapy response prior to treatment
administration remains a major challenge in clinical oncology. To tackle this challenge, we
present a generalizable genome-wide computational framework pathCHEMO that uncovers
interplay between transcriptomic and epigenomic mechanisms altered in biological pathways
that govern chemotherapy response in cancer patients. Our approach is tested on patients
with lung adenocarcinoma who received adjuvant standard-of-care doublet chemotherapy
(i.e., carboplatin-paclitaxel), identifying seven molecular pathway markers of primary treat-
ment response and demonstrating their ability to predict patients at risk of carboplatin-
paclitaxel resistance in an independent patient cohort (log-rank p-value = 0.008, HR =10).
Furthermore, we extend our method to additional chemotherapy-regimens and cancer types
to demonstrate its accuracy and generalizability. We propose that our model can be utilized
to prioritize patients for specific chemotherapy-regimens as a part of treatment planning.
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related death in the United States with a five-year survival

rate of 17.7%!. The majority of patients with LUAD lack
clinically actionable mutations and are commonly administered a
doublet chemotherapy (i.e., platinum-based chemotherapy often
combined with plant alkaloids and/or antimetabolites) to improve
response rates and survival’>—>. Most recently, treatment for
LUAD has also included immune checkpoint inhibitors, yet they
are not curative for most patientsé. The heterogeneity of response
to the standard-of-care therapies and rapidly emerging treatment
resistance remain major challenges in lung cancer management.
Prioritization of patients based on their risk of developing resis-
tance prior to therapy administration would improve disease
course and enhance informed clinical decision making at large.

In recent years, several successful attempts’~12 have improved
classification of LUAD based on markers of overall disease
aggressiveness, including mutations in oncogenes (EGFR’,
KRASS), proto-oncogenes (ERBB2°, BRAF'0), and tumor sup-
pressor genes (TP53!1, PTEN'?). Despite being successful as
prognostic markers of LUAD aggressiveness, they have not been
associated with the complexity of therapeutic response yet!314,
suggesting that more complex mechanisms might be at play in
this malignancy.

Recently, multiple transcriptomic and epigenomic alterations
have been highlighted to play a role in primary and secondary
chemoresistance across various cancer types!>=20. For example,
studies focused on transcriptomic alterations have demonstrated
that: MDRI amplification is implicated in acquired resistance to
anthracyclines, vinca alkaloids, and other antineoplastic che-
motherapies in breast cancer!®; over-expression of dihydrodiol
dehydrogenase enzyme is central in resistance to cisplatin in
ovarian cancer!® and higher genomic instability due to p53
inactivation is essential in resistance to platinum-based che-
motherapy in ovarian cancer!’. In parallel, epigenomic-centered
studies have demonstrated that: genome-wide hypermethylation
is implicated in resistance to antineoplastic fotemustine in mel-
anoma!$; hypermethylation of DKK3 leads to docetaxel resistance
in non-small cell lung cancer!”; and hypomethylation of
MIR663A induce cyclophosphamide and docetaxel resistance in
breast cancer2. Given the success of individual transcriptomic
and epigenomic determinants of chemoresponse, a systematic
genome-wide investigation of the interplay between tran-
scriptomic and epigenomic mechanisms implicated in resistance
can provide valuable predictive markers of predisposition to
chemotherapy failure.

In the past decade, several computational methods have been
successfully applied to understand cancer initiation and pro-
gression through integration of transcriptomic and epigenomic
data, including correlation of mRNA expression and DNA
methylation and/or copy number variations?!~23, linear regres-
sion connecting DNA methylation sites and mRNA expression of
the site-harboring genes®*, network-based integration of mRNA
expression and DNA methylation and/or copy number varia-
tions2>~27. Even though successful in identifying clinically rele-
vant signatures of disease progression, these methods have not yet
fully explored the interplay between transcriptomic and epige-
nomic mechanisms altered in molecular pathways implicated in
chemo response, which would shed light on complex molecular
mechanisms that govern therapeutic resistance.

In this work, we develop a generalizable computational fra-
mework to identify molecular pathways altered on transcriptomic
(i.e., mRNA expression) and epigenomic (i.e., DNA methylation)
levels that govern resistance to chemotherapy. We name our
approach pathCHEMO—uncovering transcriptomic and epige-
nomic pathways implicated in CHEMOTresistance. Our overall
idea is that pathways that are altered on both mRNA expression

I ung adenocarcinoma (LUAD) is a major cause of cancer-

and DNA methylation levels are more likely to capture complex
relationships implicated in therapeutic resistance and overcome
noise present in any single experiment or data type. In addition,
our approach provides several important advantages that tackle
complexity of treatment response. First, it uncovers molecular
pathways altered on both transcriptomic and epigenomic levels,
which increases the likelihood to identify functionally relevant
alterations. Second, these pathways can be utilized as effective
markers of primary chemoresistance to predict patients with poor
and favorable response, even prior to therapy administration.
Finally, it uncovers molecular pathways, rather than single
determinants, thus providing potential functional candidates for
therapeutic intervention to preclude or overcome resistance.
Motivated by the need for markers of chemoresponse in lung
cancer, we analyze profiles of patients with LUAD from The
Cancer Genome Atlas (TCGA-LUAD)?8, which received adjuvant
standard-of-care chemotherapy (i.e., a combination of platinum-
based carboplatin and plant alkaloid paclitaxel). pathCHEMO
identifies seven molecular pathways altered on transcriptomic
and epigenomic levels that differentiate patients with poor and
favorable carboplatin—paclitaxel response. We demonstrate that
the activity of these pathways as well as their representative read-
out genes, can serve as molecular markers to identify patients at
risk of resistance to carboplatin—paclitaxel in an independent
patient cohort® (log-rank p-value = 0.0081, hazard ratio = 10)
and can predict the risk of resistance to carboplatin-paclitaxel
combination for new patients (i.e., through leave-one-out cross-
validation). We also confirm significant non-random predictive
ability of our identified seven candidate pathways, when com-
pared to seven pathways selected at random (random model
p-value < 0.007) and show that our approach outperforms other
commonly utilized methods (e.g., linear regression, support vec-
tor machine, and random forest) in identifying patients at risk of
resistance to chemotherapy (Area Under the Receiver Operating
Characteristics (AUROC) = 0.98)242930,  In addition, we
demonstrate that our model is independent of, and is not affected
by commonly used covariates (i.e., age, gender, and cancer stage
at diagnosis) and by the known signatures of lung cancer
aggressiveness  (adjusted  hazard  ratio=14,  hazard
p-value = 0.03). Finally, we extend our approach to additional
chemo combinations (i.e., a combination of platinum-based cis-
platin and plant alkaloid vinorelbine, and a combination of
platinum-based oxaliplatin and antimetabolite agent fluorouracil)
and additional cancer types (i.e., lung squamous cell carcinoma
and colorectal adenocarcinoma)*3! and demonstrate accuracy
and general applicability of our approach (log-rank
p-value < 0.03, hazard ratio > 3.5 across cancer types and che-
motherapy-regimens). We propose that our model can be used to
pre-screen patients and prioritize them for specific chemotherapy
treatments.

Results

pathCHEMO overview. We have developed a genome-wide
computational approach pathCHEMO that integrates mRNA
expression and DNA methylation patient profiles to identify
pathways altered on both transcriptomic and epigenomic levels
(as demonstrated in Fig. 1) that differentiate poor from favorable
response to chemotherapy-regimens. Here, we briefly outline the
major steps of our integrative algorithm (also visualized in Sup-
plementary Fig. 1). Stepl: our algorithm identifies two groups of
patients, which will be used to define a chemotherapy response
signature: patients that failed a specific chemotherapy-regimens
(e.g., developed metastasis within 1 year after therapy adminis-
tration), and patients with favorable chemotherapy response (e.g.,
remained disease-free for more than 2 years after chemotherapy
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Fig. 1 Schematic representation of pathway altered on both transcriptomic and epigenomic levels. Pathway genes affected on transcriptomic and
epigenomic levels in G alpha (s) signalling events pathway are represented by ovals, where their colors correspond to either over-expression (red), under-
expression (blue) or no differential expression (white). Small satellite circles represent over-methylation (red) or under-methylation (blue)

administration). Step 2: it compares transcriptomic (mRNA
expression) and epigenomic (DNA methylation) profiles between
these two groups of patients, which define differential tran-
scriptomic signature and differential epigenomic signature of
chemoresponse. Step 3: Such signatures are then individually
subjected to signed and absolute valued pathway enrichment
analyses, which are then integrated and define molecular path-
ways affected in either one direction (i.e., containing either over-
expressed or under-expressed genes) or both directions (ie.,
containing both over-expressed and under-expressed genes)
enriched in the transcriptomic signature, and similarly pathways
affected in either one direction or both directions on the epige-
nomic level, enriched in the epigenomic signature. Step 4: These
transcriptomic and epigenomic pathway signatures are then

integrated to define a set of pathways that control both tran-
scriptomic and epigenomic programs disrupted in resistance. Step
5: Such candidate pathways and their read-out genes are sub-
jected to validation studies, where they are evaluated for their
ability to predict therapeutic response in independent patient
cohorts, through multivariable survival analysis. Step 6: Finally,
the identified pathways are used to assign individual risk of
resistance for new incoming patients.

Defining molecular signatures of chemoresponse. We tested
our approach to evaluate response to standard-of-care doublet
chemotherapy, which contains carboplatin and paclitaxel (ie.,
carboplatin—paclitaxel), in LUAD patients. For this, we have
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analyzed clinical and molecular profiles of patient with LUAD in
the TCGA clinical cohort?8. To study primary resistance to this
chemo combination, we specifically selected primary tumors from
patients that did not receive any neoadjuvant therapy, were
treated with adjuvant carboplatin—paclitaxel chemo regimen, and
were further monitored for disease progression (n=14) (Sup-
plementary  Table 1). Each patient that received
carboplatin—paclitaxel was evaluated for his/her time to tumor
relapse defined as time between the start of carboplatin-paclitaxel
administration and a new tumor event (defined as tumor re-
occurrence, local or distant metastases). To accurately uncover
signal that differentiates poor from favorable treatment response,
we employed an extreme-responder analysis, widely utilized by
us243233 and others343°, where two groups of patients with
drastically different treatment response (i.e., favorable response
and poor response) are compared for differences in their mole-
cular profiles to capture the most prominent molecular signal. To
assure that the comparison groups are balanced with respect to
initial age, gender, disease stage at diagnosis (i.e., initial disease
aggressiveness), smoking status etc., we performed stratified sub-
sampling (which identifies patient groups with similar distribu-
tions for these variables) and identified patients that experienced
relapse within 1 year of carboplatin-paclitaxel start (i.e., poor
response, n = 4); and patients that did not experience any events
for more than 2 years (ie., favorable response, n =4) (Supple-
mentary Table 2).

To uncover a complex interplay between transcriptomic and
epigenomic mechanisms implicated in response to chemotherapy,
we compared poor response and favorable response groups based
on their mRNA expression and DNA methylation profiles using
two-sample two-tailed Welch t-test3® and re-confirmed with fold
change (see Methods), which defined carboplatin—paclitaxel
response differential gene expression signature (Supplementary
Data 1A) and carboplatin—paclitaxel response differential methy-
lation signature (Supplementary Data 1B).

Integrative analysis identified pathways of resistance. To
understand molecular mechanisms that govern chemoresponse, we
next sought to identify molecular pathways that control tran-
scriptomic and epigenomic signatures of carboplatin-paclitaxel
resistance (as in Fig. 1). For this, we subjected the
carboplatin—paclitaxel response differential expression signature
and carboplatin-paclitaxel response differential methylation sig-
nature to pathway enrichment analysis using the comprehensive C2
pathway database3” (which includes 833 pathways from REAC-
TOME?®%, KEGG?®, and BIOCARTA*’ databases). Pathway
enrichment was performed using Gene Set Enrichment Analysis
(GSEA)*L. This analysis estimated Normalized Enrichment Score
(i.e., NES) for each of the 833 pathways, which reflects the extent to
which each pathway is enriched in the treatment response sig-
nature, also referred to as pathway activity. A list of 833 pathways
ranked by their enrichment (i.e., NESs) in the carboplatin-paclitaxel
response differential expression signature defined
carboplatin—paclitaxel response differential expression pathway
signature and a list of 833 pathways ranked by their enrichment
(i.e, NESs) in the carboplatin-paclitaxel response methylation sig-
nature defined carboplatin-paclitaxel response differential methy-
lation pathway signature (see Methods). To account both for the
pathways that have majority of their genes affected in the same
direction (e.g., majority of genes being either over-expressed or
under-expressed) and pathways that have genes affected in different
directions: some genes affected in one direction (e.g., over-expres-
sed) and some in an opposite direction (e.g., under-expressed), we
have performed both signed and absolute valued pathway enrich-
ment analysis with their subsequent integration (see Methods),

which defined carboplatin-paclitaxel response composite expres-
sion pathway signature (Supplementary Data 2A) and
carboplatin—paclitaxel response composite methylation pathway
signature (Supplementary Data 2B).

Further, to define interplay between complex mechanisms
implicated in chemoresistance, we sought to identify molecular
pathways that are affected on both transcriptomic (i.e., mRNA
expression) and epigenomic (i.e, DNA methylation) levels and
which would capture pathway genes affected: only on transcrip-
tomic level, only on epigenomic level, or both levels (as in Fig. 1).
To achieve this goal (Fig. 2a), we compared the
carboplatin—paclitaxel response composite expression pathway
signature (as a reference) and carboplatin-paclitaxel response
composite methylation pathway signature (as a query pathway
set) using GSEA (the threshold for the query pathway set at p-
value <0.001 was selected as in Fig. 2b, see Methods), which
identified seven molecular pathways with significant alterations
on both transcriptomic and epigenomic levels (GSEA NES = 2.75,
p-value < 0.001) (Fig. 2¢, see Methods). These pathways included
chemokine receptors bind chemokines, mRNA splicing, G alpha
(s) signalling events, intestinal immune network for IgA
production, metabolism of proteins, RNA degradation, and cell
cycle mitotic.

To confirm that these identified seven molecular pathways are
robust to the choice of the statistical methods used to define
treatment response signatures, we have also performed our
analysis using signatures defined using all DNA methylation sites
and using non-parametric tests. First, we defined differential
methylation signature with all DNA methylation sites considered
(Supplementary Fig. 2a). Second, we defined differential methyla-
tion signature using fold change (Supplementary Fig. 2b). Finally,
we defined both differential expression and differential methyla-
tion signatures using fold change (Supplementary Fig. 2c).
Analyses using all of these signatures identified the same seven
candidate pathways (GSEA NES > 2.45, p-value < 0.001), demon-
strating robustness of our analysis regardless of the signature
choice.

To investigate if mRNA expression or DNA methylation
carries more weight in the predictive ability of our seven
candidate pathways, we have performed Receiver Operating
Characteristic (ROC) analysis*2 based on pathway activities in
each patient sample (i.e., through single-sample pathway analysis,
see Methods), defined on either expression levels or methylation
levels of the pathway genes (see Methods). The predictive ability
was measured using Area under ROC (AUROC), which reflected
how well each data type separates poor response and favorable
response patients in the TCGA-LUAD patient cohort (the
AUROC value of 0.5 indicates random predictor and 1 indicates
a perfect predictor). Our analysis demonstrated that both
expression levels (AUROC =0.987) and methylation levels
(AUROC =0.965) of seven candidate pathways are highly
predictive of poor response vs. favorable response separation
(Fig. 2d), indicating that they both can be used to identify patients
at risk of developing chemoresistance.

We further evaluated a topological structure of transcriptomic
and epigenomic alterations within each identified pathway.
Firstly, we examined to which extent genes from each pathway
were affected on transcriptomic or on epigenomic levels (Fig. 3a,
Supplementary Fig. 3, and Supplementary Data 2) and have
observed that seven pathways exercised different patterns of
transcriptomic and epigenomic alterations. For example, majority
of genes from G alpha (s) signaling events pathway were altered
on their mRNA level (i.e., Fig. 3a, nodes in pink) while genes
from the mRNA splicing pathway were heavily altered on DNA
methylation level (Fig. 3a, nodes in grey) and on both mRNA
expression and DNA methylation levels (Fig. 3a, nodes in yellow).
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Fig. 2 Integrative genome-wide transcriptomic and epigenomic analysis identifies candidate molecular pathways of chemotherapy response. a Schematic
representation of the integrative transcriptomic and epigenomic analysis: first, patients are defined by their response to chemotherapy; second, our method
integrates patients’ transcriptomic and epigenomic profiles; third, candidate pathways affected on both transcriptomic and epigenomic levels are identified;
and finally, our method employs multi-modal validation of candidate pathways. b Box and whisker plot depicting p-value cutoff for query
carboplatin-paclitaxel response composite methylation pathway signature (x-axis) and NESs from the corresponding GSEA comparison between
composite methylation and expression pathways signatures (y-axis), based on analysis in TCGA-LUAD patient cohort. Arrow indicated optimal p-value
threshold, which results in the strongest GSEA enrichment. ¢ GSEA comparing carboplatin-paclitaxel response composite expression pathway signature
(reference) and carboplatin-paclitaxel response composite methylation pathway signature (query, NES p <0.001), based on analysis in TCGA-LUAD
patient cohort. Horizontal red bar indicates leading edge pathways altered on both transcriptomic and epigenomic levels. NES and p-value were estimated
using 1000 pathway permutations. d ROC analysis comparing ability of the 7 candidate pathways to predict carboplatin-paclitaxel where their activity is
defined based on their expression values (green) or methylation values (blue). AUROC is indicated

Secondly, we examined connectivity within and between the treatment with carboplatin and a taxane (e.g., paclitaxel) and
pathway genes, where an edge within the pathway corresponds to  monitored for further disease progression for 11 years. In this
the pathway membership and connecting edge between pathways  cohort, survival status during the clinical study (1996-2007) was
shows shared genes and demonstrated that our candidate used as a clinical endpoint and time to this event was calculated
pathways share little overlap (Fig. 3b). Finally, we examined between the start of carboplatin-paclitaxel treatment to death (for
differentially methylated sites harbored in genes from the seven patients with this event) or to follow-up (for censored patients).
pathways and evaluated their regions/locations on the genome Similar to the analysis above, we evaluated activity levels of seven
(Supplementary Fig. 4a), where regions were defined as TSS200 candidate pathways in each patient sample (i.e., through single-
(i.e., 200 base pairs upstream of transcription start site, TSS), sample pathway analysis, see Methods) and employed t-
TSS1500 (i.e., 1500 base pairs upstream of TSS200), 5’UTR, 1st  Distributed Stochastic Neighbor Embedding (t-SNE) cluster-
exon, gene body, and 3’UTR. In fact, the majority of pathways ing*’, which stratified patients into two groups based on pathway
have methylated sites overrepresented in TSS200 + TSS1500 activity levels (Fig. 4b): one group with increased composite
regions, indicating a possible interaction with the transcription pathways’ activities (orange) and one group with decreased
machinery binding at the promoter/enhancer regions*>. An composite pathways’ activities (green). We then subjected these
exception was Immune network for IgA production pathway, patient groups to Kaplan-Meier survival analysis and Cox pro-
whose sites were heavily enriched in the gene body, indicating portional hazards model (Fig. 4c), which demonstrated that these
their potential interaction with alternative splicing machinery** groups had a significant difference in their response to
(Supplementary Fig. 4b). carboplatin—paclitaxel (log-rank p-value = 0.0081, hazard ratio =
10) (see Methods).

To evaluate non-randomness of this result, we compared
Validation in independent patient cohorts. Our next essential predictive ability of our candidate seven pathways to the
step was to evaluate if the candidate molecular pathways can predictive ability of seven pathways selected at random (see
stratify patients based on the risk of failing chemotherapy in an  Methods), which demonstrated that ability of the candidate seven
independent, non-overlapping patient cohort (Fig. 4a). For this, pathways to predict carboplatin-paclitaxel response is highly
we first considered a Tang et al. cohort® (Supplementary Table 1) non-random compared to 10,000 randomly selected pathways
from the University of Texas MD Anderson Cancer Center, (Fig. 4d, random model 1: p-value = 0.003). We paralleled this
which contains LUAD primary tumor samples obtained at sur- analysis with evaluation if patient groups stratified by our model
gery (n=39) collected between 1996 to 2007, followed by are different in their treatment response compared to patient
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Fig. 3 Transcriptomic and epigenomic alterations in candidate pathways of carboplatin-paclitaxel response. a Representative molecular pathways altered
on both transcriptomic and epigenomic levels, visualized through circlize R package. Genes from the leading edge in each pathway are represented as
differentially expressed (pink), methylated (gray) and both differentially expressed and methylated (yellow). Width of each connecting line is proportional
to the extent of differential expression and differential methylation. Pathways are depicting as follows: chemokine receptors bind chemokines pathway (19
differentially expressed genes, four differentially methylated genes, and eight differentially expressed and methylated genes); mRNA splicing pathway (21
differentially expressed genes, 39 differentially methylated genes, and 28 differentially expressed and methylated genes); and G alpha (s) signaling events
pathway (37 differentially expressed genes, eight differentially methylated genes, and four differentially expressed and methylated genes). b In the
seven candidate pathway network representation, nodes correspond to the genes, which are connected to central pathway-membership circles (i.e.,
indicating pathway membership). Gene colors describe differential expression (pink), differential methylation (grey) and both differential expression and

methylation (yellow). Network was constructed with ggnetwork R package

groups chosen at random, which were shown to be highly non-
random (Fig. 4d, random model 2: p-value = 0.007).

Further, we simulated a situation when a new incoming
patient is diagnosed with LUAD and needs to be assigned
the risk of developing resistance to carboplatin-paclitaxel
utilizing leave-one-out cross-validation (LOOCV)#® in the
Tang et al. validation cohort’. In LOOCV, one patient
is removed, and the model is trained on the rest of the

patients. Then the patient that was removed is subjected
to predictive analysis and is assigned a risk of developing
resistance  (i.e., simulating a scenario of a new
incoming patient). This process is repeated for all patients
(see Methods). LOOCYV analysis demonstrated that our model
has high accuracy in predicting poor and favorable
carboplatin-paclitaxel response for a new incoming patient
(Supplementary Fig. 5a).
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Fig. 4 Candidate molecular pathways stratify patients based on response to carboplatin-taxane in an independent cohort. a Validation strategy, as follows:
first, employment of molecular transcriptomic and epigenomic profiling of patients; second, predicting patients’ risk of developing chemoresistance; and
finally, informed clinical decision making based on patients personalized risks. b t-SNE clustering of lung adenocarcinoma patients treated with
carboplatin-taxane (e.g., paclitaxel) from the Tang et al. validation cohort (n =39 biologically independent patient samples), based on activity levels of
seven candidate pathways. Among two groups green group (n = 21 biologically independent patient samples) corresponds to patients with low composite
activity levels of candidate pathways and orange group (n =18 biologically independent patient samples) corresponds to patients with high composite
activity levels of candidate pathways. ¢ Kaplan-Meier survival analysis to estimate difference in response to carboplatin-taxane (e.g., paclitaxel) between
two patient groups is identified in b. Log-rank p-value and number of patients in each group are indicated. d Two random models indicate non-random
predictive ability of our model in the Tang et al. validation cohort: random model 1 (steel-blue) is defined based on to seven pathways selected at random,
and random model 2 (goldenrod) is defined based on to equally sized patient groups selected at random

Finally, to determine that our candidate pathways specifically
distinguish carboplatin-paclitaxel response and not disease
aggressiveness, we have evaluated if the pathways can also
separate patients based on their lung cancer aggressiveness. For
this, we evaluated the predictive ability of our candidate pathways
on the LUAD patient cohorts that did not receive any treatment
after surgery (we used these cohorts as negative controls). These
datasets (Supplementary Table 1) included: Der et al.¥” LUAD
tumor samples (n = 127) collected through surgery between 1996
and 2005 at Princess Margaret Cancer Centre, and Tang et al.”
provisional cohort, which includes LUAD tumor samples (n =
94) collected through surgery between 1996 and 2007 at The
University of Texas MD Anderson Cancer Center. These negative
control patient cohorts did not receive any subsequent treatment
but were monitored for disease progression (for Der et al. lung
cancer-related death was used as a clinical endpoint and for Tang
et al. survival status during the clinical study (1996-2007) was
used as a clinical endpoint). Kaplan-Meier survival analysis on
these datasets demonstrated that our candidate seven pathways
did not separate patients based on the disease progression in both
unstratified and stratified (i.e, based on tumor stages) analyses
Der et al. (Supplementary Fig. 5b-d, log-rank p-value = 0.68),
and Tang et al. (Supplementary Fig. 5e-g, log-rank p-value =
0.35) and are in fact specific for carboplatin-paclitaxel response.

Comprehensive comparative analysis. To assess advantages of
our approach, we have compared its predictive performance to
other commonly utilized methods, including methods based on
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linear regression modeling, support vector machine (SVM), and
random forest; and evaluated if our approach can be affected by
commonly utilized covariates or known signatures of lung cancer
aggressiveness.

First, to measure the advantage of our model over other
commonly utilized methods, we have compared predictive
performance of our model (see Methods) to Panja et al.>* method,
Epi2GenR, based on linear regression integration between DNA
methylation and mRNA expression patient profiles, which
identified 35 site-gene pairs as candidate markers of
carboplatin—paclitaxel response. Second, our model was compared
to Zhong et al.30 method based support vector machine (SVM)
analysis, which identified 104 candidate genes. Finally, our model
was evaluated against Yu et al.2? method PRES, based on random
forest algorithm, which identified three candidates of
carboplatin—paclitaxel response. We first compared ability of the
identified candidates from each method to separate patients with
poor and favorable carboplatin—paclitaxel response in the Tang
et al. dataset using ROC analysis, which demonstrated advantage of
pathCHEMO over other commonly utilized methods (Fig. 5a,
AUROCpathCHEMO = 098, AUROCEpiZGenR = 092, AUROCSVM =
0.86, AUROCpggs = 0.66). Furthermore, we compared ability of
these methods to predict response to carboplatin-paclitaxel in the
Tang et al. validation set (as above), through Kaplan-Meier survival
analysis (Fig. 5b: log-rank p-valuep,mcremo = 0.008, log-rank
p-valuegpipgenr = 0.04,  log-rank  p-valuegyy =0.06, log-rank
p-valueprgs = 0.82) and Cox proportional hazards model (Fig. 5b:
hazard ratiop,mcaemo = 10.1, hazard ratiogyigenr = 4.0, hazard
ratiogyy = 5.4, hazard ratioprgs = 1.3), which confirmed that
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Fig. 5 Comparative performance analysis confirms robust predictive ability of pathCHEMO. a, b Comparison of pathCHEMO (turquoise) to other
commonly utilized methods, including Panja et al. Epi2GenR (yellow), Zhong et al. SVM (light blue), Yu et al. PRES random forest (dark blue) using (a) ROC
analysis (with AUROC indicated) and (b) Kaplan-Meier and Cox proportional hazards model (with log-rank p-value and hazard ratio indicated) in Tang
et al. validation cohort. € Multivariable Cox proportional hazards analysis demonstrating adjustment of seven candidate pathways for common covariates
(i.e., age, gender and stage at diagnosis). Hazard p-value is indicated. d Multivariable Cox proportional hazards analysis demonstrating adjustment of seven
candidate pathways for signatures of lung cancer aggressiveness, including Larsen et al. (54 lung adenocarcinoma markers), Beer et al. (50 lung
adenocarcinoma markers), and Tang et al. (12 non-small cell lung cancer markers). Hazard p-value is indicated

pathCHEMO outperformed other commonly used methods in its
ability to predict therapeutic response.

Second, to assure that our model is not affected by commonly
utilized covariates (i.e., age, gender, and disease stage at diagnosis),
we have evaluated their effect through multivariable (i.e., adjusted)
Cox proportional hazards model*® on the Tang et al. dataset (see
Methods), which demonstrated that these covariates are not
predictive of treatment response and do not affect predictive ability
of our model (Fig. 5¢). Furthermore, to re-confirm this result we
performed stratified Kaplan-Meier survival analysis; where we
stratified the Tang et al. validation cohort into patient groups based
on: age (< median age and > median age); gender (i.e., female and
male); and disease stage at diagnosis (stage I and stages II and III),
which confirmed that ability of our model to predict chemotherapy
response does not depend on commonly utilized covariates and is
indeed indicative of a therapeutic response to carboplatin-paclitaxel
(Supplementary Fig. 6).

Finally, to assure that our model is not affected by markers of
overall tumor aggressiveness, we tested if any known prognostic
signatures of lung cancer aggressiveness can predict
carboplatin-paclitaxel response or affect predictive ability of
our model. For this, we first selected known prognostic signatures

of lung cancer aggressiveness including: Larsen et al.® (54
prognostic markers); Beer et al.>® (50 prognostic markers); and
Tang et al.> (12 prognostic markers) (Fig. 5d) and utilized them in
multivariable Cox proportional hazards model, as above. Our
analysis demonstrated that these prognostic signatures were not
predictive of carboplatin-paclitaxel response and did not affect
the predictive ability of our seven candidate pathways (Fig. 5d).

Pathway activity read-outs. Molecular pathways are comprised
of multiple genes, which complicate their clinical applicability as
markers of treatment response. To tackle this limitation, we
looked for genes which could serve as read-outs of pathway’s
activity implicated in therapeutic response. Specifically, we looked
for genes inside each pathway, which were: first, altered on
transcriptomic and/or epigenomic levels; second, correlated with
pathway activity levels (i.e., NESs in each patient); and finally,
associated with carboplatin—paclitaxel response (see Methods).
This analysis identified seven read-out genes (i.e., FGFRIOP,
CCL22, CCRY, LSM7, PDE7A, CCT4, and POLR2C), which: first,
accurately reflected activity levels of their corresponding path-
ways; second, were associated with treatment response; and
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Fig. 6 pathCHEMO accurately identifies pathways of treatment resistance across chemo-regimens and cancer types. Treatment related Kaplan-Meier
survival analysis in a cisplatin-vinorelbine treated lung adenocarcinoma (LUAD) patients in the Zhu et al. patient cohort (n = 39 biologically independent
patient samples), b cisplatin-vinorelbine treated lung squamous cell carcinoma (LUSC) patients in the Zhu et al. patient cohort (n =26 biologically
independent patient samples), and ¢ FOLFOX (folinic acid, fluorouracil, and oxaliplatin) treated colorectal adenocarcinoma (COAD) patients in the Marisa
et al. patient cohort (n = 23 biologically independent patient samples), demonstrating ability of identified candidate pathways (for each analysis) to predict
treatment response. Log rank p-value and number of patients in each group are indicated

finally, achieved identical accuracy in predicting patients at risk of
carboplatin—paclitaxel resistance (Supplementary Fig. 7, Supple-
mentary Table 6). We propose that these seven read-out genes
can be used as markers of carboplatin-paclitaxel response and
can be easily adopted in the clinic.

Model generalizability. In order to test the general applicability of
pathCHEMO, we applied our approach across additional che-
motherapy combinations and cancer types. In particular, we
extended pathCHEMO to: cisplatin-vinorelbine response in lung
adenocarcinoma, cisplatin—vinorelbine response in lung squamous
cell carcinoma, and folinic acid, fluorouracil, and oxaliplatin (i.e.,
FOLFOX) response in colorectal adenocarcinoma (Supplementary
Table 3-5). First, we applied our approach to additional chemo-
combination (ie., cisplatin-vinorelbine) administered to lung ade-
nocarcinoma (TCGA-LUAD) patients (Supplementary Table 3),
which identified a set of three molecular pathways as markers of
cisplatin—vinorelbine resistance (GSEA NES=251, p-value<
0.001) (Supplementary Fig. 8a) and their corresponding read-out
genes (Supplementary Table 6). These pathways included metabo-
lism of nucleotides, actin Y, and ribosome pathways. We validated
these predictions using the Zhu et al.# cohort from the National
Cancer Institute of Canada Clinical Trials Group (Supplementary
Table 3), which contains LUAD tumor samples (n = 39) collected
through surgery, for patients that received adjuvant
cisplatin-vinorelbine, and demonstrated that three candidate
pathways can predict poor and favorable cisplatin-vinorelbine
response in patients with LUAD (lung cancer-related death used as
a clinical endpoint) using Kaplan-Meier survival analysis and Cox
proportional hazards model (Fig. 6a, log-rank p-value = 0.0048,
hazard ratio = 3.64).

Next, we applied our approach to cisplatin-vinorelbine treated
lung squamous cell carcinoma (TCGA-LUSC) patients (Supple-
mentary Table 4) and identified a set of six molecular pathways
(GSEA NES =1.67, p-value<0.001) (Supplementary Fig. 8b)
including neuroactive ligand-receptor interaction, SLC-mediated
transmembrane transport, transport of mature mRNA derived
from an intron-containing transcript, cytokine-cytokine receptor
interaction, DNA repair, and translation pathways and their
corresponding read-out genes (Supplementary Table 6). We
validated these predictions using the Zhu et al. patient cohort*
(Supplementary Table 4), which contains LUSC primary tumor
samples (n=26) collected through surgery, for patients that

received adjuvant cisplatin-vinorelbine treatment, and demon-
strated that six candidate pathways can accurately predict poor
and favorable cisplatin-vinorelbine response in patients with
LUSC (lung cancer-related death used as clinical endpoint)
(Fig. 6b, log-rank p-value = 0.026, hazard ratio = 7.94).

Lastly, we applied our approach to patients with colorectal
adenocarcinoma (TCGA-COAD) that received FOLFOX (i.e.,
folinic acid, fluorouracil, and oxaliplatin) combination (Supple-
mentary Table 5), which identified five molecular pathways as
markers of FOLFOX resistance (GSEA NES = 2.02, p-value < 0.001)
(Supplementary Fig. 8c). These pathways included processing of
capped intron containing pre mRNA, S phase, elongation and
processing of capped transcripts, metabolism of proteins, and
calcium signaling pathways and their corresponding read-out genes
(Supplementary Table 6). We validated these predictions using an
independent patient cohort, Marisa et al.3! (Supplementary Table 5)
from the French National Cartes d’Identité des Tumeurs (CIT),
which contains COAD tumor samples (n = 23) collected through
surgery followed by adjuvant treatment with FOLFOX monitored
for further disease progression (i.e., defined as locoregional or
distant recurrence), and demonstrated that five candidate pathways
can predict poor and favorable FOLFOX response in patients with
COAD (Fig. 6¢, log-rank p-value=0.01, hazard ratio=6.21).
Interestingly, when evaluating overlaps between pathways across
different chemo-treatments and cancers, we have noticed that even
though some biological pathways might be overlapping (Supple-
mentary Data 3), their overlapping genes exhibit totally different
behaviors (e.g., are over-expressed for one chemo-regimen and are
under-expressed for another etc.), thus demonstrating drastically
different patterns of pathway dysregulations inherent for each
specific chemo-regiment and for each cancer type.

Taken together, these analyses demonstrate the general
applicability of our method across various chemotherapy-
regimens and cancer types and builds a foundation for our
long-term goal to enhance personalized therapeutic advice and
improve patient care and clinical decision support at large.

Discussion

We have introduced a systematic generalizable computational
approach pathCHEMO to uncover molecular pathways that
govern complex transcriptomic and epigenomic mechanisms
implicated in chemotherapy response. Firstly, the distinguishing
feature of pathCHEMO is in the identification of molecular
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pathways altered on both transcriptomic and epigenomic levels,
which increases the likelihood of elucidating functionally relevant
alterations. Secondly, the identified pathways constitute not only
molecular markers for predictive analysis but also valuable can-
didates for therapeutic targeting to preclude or overcome resis-
tance. Thirdly, our approach is generalizable and has been
successfully applied to additional chemotherapy-regimens and
cancer types, where it demonstrated the high accuracy of its
predictions. Fourthly, pathCHEMO predicts patients at risk of
developing resistance to specific chemotherapy, even prior to
therapy administration, which builds a platform for optimal
treatment planning and personalized therapeutic advice. Finally,
to the best of our knowledge, pathCHEMO is the first compu-
tational predictive effort of its kind in chemotherapy resistance
space, with near-term potential to improve informed clinical
decision-making and cancer management.

We used pathCHEMO to elucidate mechanisms of resistance
to carboplatin—paclitaxel chemotherapy in lung adenocarcinoma
and identified seven molecular pathways implicated in resistance,
including chemokine receptors bind chemokines, mRNA splicing,
G alpha (s) signalling events, intestinal immune network for IgA
production, metabolism of proteins, RNA degradation, and cell
cycle mitotic pathways. Interestingly, paclitaxel resistance has
been shown to be modulated by Hippo signaling pathway in
breast cancer®!, which is directly activated by our candidate G
alpha (s) signalling events pathway>2. Furthermore, chemokine
receptors bind chemokines pathway is directly associated®® with
cytokine and inflammatory response pathway, which modulates
carboplatin resistance in ovarian cancer’. Finally, cell cycle
mitotic pathway has been shown to be directly affected by
paclitaxel®> and carboplatin—paclitaxel®®>7 treatments in ovarian
cancer. Thus, primary (i.e., before therapy administration) dys-
regulation in these pathways might affect drug mechanism of
action and can be utilized to identify patients at risk of resistance.

Interestingly, one of the identified pathways, G alpha (s) signal-
ling events pathway, is involved in mediation of extracellular sig-
naling and activation of Protein Kinase A (PKA), a known player in
cancer cell invasion and metastasis. Recently, PKA has been shown
to play a central role in resistance to tamoxifen in breast cancer®$,
and disease progression in prostate cancer®®. PKA has been known
to contribute to lung cancer tumorigenesis by interacting with RAS
oncogenic pathway and promoting epithelial-mesenchymal transi-
tion (EMT) during hypoxia. Several recent studies have confirmed
the role of EMT as a key player in acquired (i.e., caused by the
treatment) resistance to chemotherapy including acquired resis-
tance to gemcitabine in pancreatic cancer®, to paclitaxel in ovarian
cancer®l, and to gefitinib in lung cancer®?, emphasizing importance
of further investigating EMT as a mechanism of primary resistance
to chemotherapy in lung adenocarcinoma.

In addition to EMT, the development of neuroendocrine
phenotype has been shown to be a major emerging player in
acquired therapeutic resistance in lung cancer®>64. Recent studies
have demonstrated that 50% of patients with metastatic lung
adenocarcinoma, which were treated with erlotinib and acquired
resistance to it, had a histological transformation to large cell
neuroendocrine carcinoma (LCNEC), leading to increased
metastatic burden and lethality®>%0. Therefore, further investi-
gation of the role of EMT and neuroendocrine markers and their
interplay with transcriptomic and epigenomic molecular altera-
tions are necessary for comprehensive understanding of complex
mechanisms involved in resistance to chemotherapy and will
contribute a central focus of our subsequent studies.

Methods
Lung adenocarcinoma patient cohorts. For this study, LUAD patient cohorts
were obtained from publicly available data sources (Supplementary Table 1), which

include. The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD)?28,
Tang et al. (GSE42127)°, Der et al. (GSE50081)%7, and Zhu et al. (GSE14814)*
datasets. The primary LUAD patient cohort, utilized for reconstruction of tran-
scriptomic and epigenomic signatures of chemoresistance, was obtained from The
Cancer Genome Atlas (TCGA-LUAD) project?® and downloaded from the
Genomics Data Commons database (GDC, https://portal.gdc.cancer.gov/) on
February 2017. Clinical information (i.e., clinical file, follow-up, and treatment
data) for these datasets were obtained from the TCGA GDC legacy archive (https://
portal.gdc.cancer.gov/legacy-archive/).

Gene expression and DNA methylation analysis. For RNA-seq analysis, we
normalized and stabilized variance for raw RNA-seq counts using DESeq2 R
package. DNA methylation values for each site were reported as  (Beta) values,
which were subsequently converted to M-values as suggested in® when parametric
analysis was utilized, using beta2m function in Lumi R package.

Defining signatures of chemotherapy response. To determine molecular char-
acteristics that differ between poor response and favorable response, we defined
signatures of treatment response on transcriptomic (i.e., differential expression)
and epigenomic (i.e., differential methylation) levels between poor response and
favorable response patient groups using two-sample two-tailed Welch #-test (t.test
function in R) in R studio version 3.3.2, such that differential expression signature
was defined as a list of genes ranked on their differential expression (i.e., t-test
values) and differential methylation signature was defined as a list of genes based
on the differential methylation of the corresponding site (i.e., t-test values). We
coupled this analysis with signatures defined based on a fold change, and obtained
similar results. For DNA methylation signature, we performed analysis two ways:
selected one CpG site per gene through the coefficient of variation analysis, where a
site with the highest coefficient of variation was selected for each gene; and con-
sidered all CpG sites for signature reconstruction, yielding similar results.

Transcriptomic and epigenomic pathway enrichment analysis. To identify
molecular pathways altered on transcriptomic and epigenomic levels (as in Fig. 1),
we first performed pathway enrichment analysis on differential expression sig-
nature and differential methylation signature (as in Supplementary Fig. 1). For this,
we used the comprehensive C2 pathway database’” (http://software.broadinstitute.
org/gsea/msigdb), which includes 833 pathways from REACTOME?3®, KEGG?*,
and BIOCARTA*0 databases, and implemented pathway enrichment analysis using
Gene Set Enrichment Analysis (GSEA)*!, where differential expression and dif-
ferential methylation signatures were used as a reference and collection of genes
from each pathway was used as a query gene set. Normalized Enrichment Scores
(NESs), and p-values were estimated using 1,000 gene permutations. This analysis
estimated NESs for each of the 833 pathways, which reflects the extent to which
each pathway is enriched in the treatment response signature and defines a so-
called pathway activity. Positive NES would reflect pathway enrichment in the
over-expressed part of the signature (e.g., majority of pathway genes being over-
expressed) and negative NES would reflect pathway enrichment in the under-
expressed part of the signature (e.g., majority of pathway genes being under-
expressed). We refer to such pathway enrichment analysis as signed as it considers
over- and under-expression of genes (with direction). Signed pathway enrichment
analysis was performed on the differential methylation signature of treatment
response in the similar manner.

Further, to overcome limitations of such (i.e., signed) pathway enrichment
analysis, which assumes that the pathway will be enriched only if majority of genes
in the pathway are changed in the same direction (i.e., either over-expressed or
under-expressed, but not both), we performed absolute valued analysis. For this,
the pathway enrichment analysis was run on the absolute valued differential
expression signature, where signature f-stat values are absolute valued to collapse
positive and negative signature tails, as was previously done in33. In this case,
positive NESs reflect enrichment in the differentially expressed part of the signature
(which includes both over-expressed and under-expressed genes) and negative
NESs reflect enrichment in the non-differentially expressed part of the signature
(and are therefore not considered). This absolute valued pathway enrichment
analysis discovers pathways whose genes might be changed in both directions (both
over-expressed and under-expressed) as it estimates the enrichment in the
differentially expressed tail of the signature (irrespective of sign). Such absolute
valued pathway enrichment analysis defined NESs for each of 833 pathways, as
above. Absolute valued pathway enrichment analysis was performed on the
differential methylation signature of treatment response in the similar manner.

The next essential step was to then integrate NESs from signed and absolute
valued pathway enrichment analysis so that for each pathway a final integrative
NES was defined as an NES with the lowest p-value between signed and absolute
valued pathway analyses (note, that negative NES values for absolute valued
analysis are not considered as they reflect enrichment in the non-changed part of
the signature). The advantage of such integration is two-fold: it captures pathways
whose genes are strictly over-expressed or under-expressed in each pathway, and
whose genes are changed in both directions (i.e., such pathway would contain genes
that are over-expressed and genes that are under-expressed), thus increasing the
probability to identify functionally relevant molecular determinants. Similar logic
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applies to the methylation signatures. Such integration of signed and absolute
valued NESs defined composite expression pathway signature and composite
methylation pathway signature.

Transcriptomic and epigenomic pathway integration. We have employed GSEA
to compare composite expression pathway signature and composite methylation
pathway signature to identify pathways that are affected on both transcriptomic
and epigenomic levels (i.e., belong to the leading edge from the GSEA analysis). To
assure that we can identify pathways which are over-expressed and under-
methylated; under-expressed and over-methylated; differentially expressed and
differentially methylated etc., each pathway signature was ranked based on the
absolute values of their NESs and used for subsequent GSEA comparative analysis.

For this pathway-based GSEA, we utilized composite expression pathway
signature as a reference signature and top pathways from the composite
methylation pathway signature as a query pathway set. To accurately define query
pathway set, which should assure strongest enrichment between pathway
signatures, we varied the threshold for the query pathway set between 0.001 and
0.05 (width of each step = 0.005) and estimated the strength of enrichment
between the two signatures at each threshold. Since GSEA is a probabilistic
algorithm, for each threshold, GSEA was run 100 times and average NES for the
enrichment was reported. Threshold with the highest average NES then reflects the
optimal threshold which corresponds to the strongest enrichment between the
composite expression pathway signature and the composite methylation pathway
signature, used for subsequent analysis. GSEA analysis between the composite
expression pathway signature and the composite methylation pathway signature at
the optimal threshold identified a set of pathways (e.g., for carboplatin—paclitaxel
response LUAD, we identified 28 pathways) of treatment response altered on both
transcriptomic and epigenomic levels.

One of the limitations of the pathways from the C2 collection is that they often
represent a parent—child relationship, where a parent pathway (e.g., cell cycle)
would encompass all genes in its child pathways (i.e., cell cycle phase). Such overlap
produces data redundancy and can result in model overfitting as the same
pathways are fit in the model repeatedly. To overcome this limitation and to
eliminate pathways with heavy overlaps, we performed Fisher Exact Test (fisher.test
function in R) and compared leading edge genes for each pair of pathways from
our analysis (e.g., for all 28 pathways, resulting in (28 choose 2 = 378)
comparisons). From each group of parent—children pathways which shared a large
number of overlapping genes, we selected one representative pathway with the NES
corresponding to the lowest p-value, which defined a final set of pathways (e.g., for
carboplatin-paclitaxel response LUAD, we identified seven pathways) maximally
non-overlapping non-redundant pathways used for subsequent analysis.

Comparing expression and methylation predictive ability. To examine if, in our
candidate pathways, both data types (i.e., mRNA expression or DNA methylation)
have equivalent ability to predict therapeutic response, we compared the perfor-
mance of candidate pathways utilizing their activity levels based on expression only
and activity levels based on methylation only, separately. To compare pathway
performances based on each data type, we first scaled both expression and
methylation data matrices (i.e., z-scored on genes or sites) in the discovery (i.e.,
TCGA-LUAD) cohort, which defined single-sample differential expression and
single-sample differential methylation signatures, respectively. Each sample was
then used for signed and absolute valued pathway enrichment analysis (separately
for expression and for methylation, as above), where each single-sample signature
was used as a reference and genes from each of seven candidate pathways were
used as a query set thus producing a pathway activity signature for each patient.
These single-sample expression and methylation pathway signatures were then
used to evaluate predictive ability of seven pathways (for expression and methy-
lation, separately), using logistic regression modeling followed by ROC analysis.
The logistic regression analysis was done using glm function and ROC analysis was
done using pROC and ggplot2 packages in R.

Validation and robustness in independent clinical cohorts. To evaluate clinical
significance of the candidate molecular pathways, we examined their ability to
predict patients at risk of chemoresistance in an independent clinical cohort from
the Tang et al.” dataset, and used survival status during the clinical study
(1996-2007) as a clinical endpoint (time to event or follow-up was estimated
between the start of carboplatin—paclitaxel treatment and death or follow-up,
respectively; maximum time to event/follow-up is 2567 days). First, we estimated
activity levels of the candidate pathways in the independent clinical Tang et al.
cohort on a single-sample level, as above. The activity levels (i.e., NESs) of the
candidate pathways were then subjected to t-Distributed Stochastic Neighbor
Embedding (t-SNE) clustering*> (implemented through Rtsne package in R), a
non-linear dimensionality reduction technique which chooses two similarity
measures between pairs of points of high dimensional input space and low-
dimensional embedding space. First, it constructs a probability distribution over
the pairs of high dimensional space (i.e., seven-dimension in our case) in such a
way that similar points are exhibited by nearby instances, while dissimilar points
are exhibited by distant instances. Second, it constructs a similar probability dis-
tribution over the points in low-dimensional embedding space and tries to

minimize the Kullback-Leibler divergence (i.e., KL divergence) between the high
dimensional data and low-dimensional anticipated data at each point. Therefore,
patients with similar pathway activity levels will be anticipated as nearby instances
while patients with dissimilar pathway activity levels will be anticipated as dis-
similar instances. The advantage of t-SNE lies in its ability to reduce dimensions
from seven (maximum possible in our analysis) to two and effectively identify
groups of patients that share similar pathway activity levels. This analysis stratified
patients into two groups: a group with overall increased composite pathways’
activities and a group with overall decreased composite pathways’ activities. We
then evaluated if these patient groups differ in their response to
carboplatin-paclitaxel treatment using Kaplan-Meier survival analysis, and Cox
proportional hazards model via survival, ggplot2 and survminer R packages.

In order to evaluate if a random set of pathways can perform as well as our
identified seven pathways, we compared the predictive ability of our seven
candidate pathways to the predictive ability of seven pathways selected at random.
For this, we built a random model, where seven pathways were selected at random
and their activity levels were utilized to stratify patients based on their treatment
response, with subsequent evaluation using Kaplan-Meier survival analysis.
Random selection was done 10,000 times and the empirical p-value was
estimated as a number of times Kaplan-Meier log-rank p-value for seven candidate
molecular pathways outperformed the results at random. We have also employed a
second random model, where we evaluated the effect of selecting random patient
groups.

Finally, to estimate the accuracy with which our model can predict treatment
response for a new incoming patient, we simulated this process using leave-one-out
cross-validation (LOOCV). In LOOCV, one patient is removed; and the model
is trained on the rest of the patients. The patient that was removed is considered
as a new incoming patient, subjected to predictive analysis, and is assigned a risk of
developing resistance. This process was repeated for all patients. We
implemented the predictive model for LOOCV using generalized linear modeling
(e.g., utilizing multivariable logistic regression) through glm function and ggplot2
package in R.

Comprehensive comparative analysis. To assess advantages of our approach, we
have compared its predictive performance to other commonly utilized approaches,
including linear regression modeling, support vector machine, and random forest;
and evaluated if our approach can be affected by commonly used covariates or
known signatures of lung cancer aggressiveness.

To demonstrate the advantages of our approach over other commonly utilized
methods, we compared its performance: first, to Panja et al.>* method, Epigenomic
and Genomic mechanisms of treatment Resistance (Epi2GenR), which utilized
linear regression to integrate DNA methylation and mRNA expression data;
second, to Zhong et al.>¥ method, based on support vector machine (SVM)
algorithm which utilized mRNA expression patient profiles; and finally, to Yu
et al.2% method, Personalized REgimen Selection (PRES) method, based on random
forest machine learning approach which utilizes mRNA expression patient profiles.
We followed the selection and cross-validation techniques suggested in each of the
above publications to carefully compare their performance to our approach.
Epi2GenR utilized the same signature as utilized in our study. To apply SVM and
PRES correctly, we split our validation set into 70:30 proportion subsets, where
70% of the validation set were used for model training and 30% for model
validation. Predictive ability of the identified candidates from each of these
methods was evaluated using ROC, Kaplan-Meier survival, and hazard ratio
analyses through survival, survcomp, and survminer packages in R.

Next, we evaluated if any of commonly used covariates (i.e., age, gender, and
disease stage at diagnosis) and known signatures of lung cancer aggressiveness
(from Larsen et al.?, Beer et al.>?, and Tang et al.> described above) can predict
therapeutic response or can affect predictive ability of the identified seven
candidate pathways. For this, we utilized the multivariable Cox proportional
hazards model*® (using coxph function in R) and stratified Kaplan-Meier survival
analysis through survival, and survminer packages in R.

Pathway activity read-outs. To identify pathway read-outs, we looked for genes
inside each pathway, which were altered on transcriptomic and/or epigenomic
levels (i.e., belong to the leading edge from the pathway enrichment analysis);
correlated with pathway activity levels (i.e., correlation between NESs and a can-
didate gene across all patients, measured by Pearson correlation, cor.test function
in R); and associated with carboplatin-paclitaxel response (i.e., Cox proportional
hazards model through coxph in R, using likelihood-ratio test as reliable for small
sample sizes®®). Likelihood-ratio test p-values were then combined with Pearson
correlation p-values using Fisher’s method (metap R package) and utilized to make
final gene selection. Visualization of the resulting read-outs was done using
Cytoscape®’.

Model generalizability. To test the generalizability of our model, we applied our
method to additional chemotherapy combinations (i.e., cisplatin-vinorelbine and
oxaliplatin—fluorouracil) and additional cancer types (i.e., lung squamous cell carci-
noma and colorectal adenocarcinoma) (Supplementary Table 3-5). In particular, we
investigated response to: cisplatin (platinum-based alkylating chemotherapy) and
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vinorelbine (non-platinum-based plant alkaloid chemotherapy) response in lung
adenocarcinoma (LUAD); cisplatin-vinorelbine response in lung squamous cell car-
cinoma (LUSC); and oxaliplatin (platinum-based alkylating chemotherapy), fluor-
ouracil (antimetabolite chemotherapy) and, folinic acid (chemotherapy protective
drug often given with fluorouracil to improves the binding; also known as leucovorin)
(i.e., FOLFOX) response in colorectal adenocarcinoma (COAD).

For signature development, we utilized primary tumor samples from TCGA-
LUAD/TCGA-LUSC/TCGA-COAD (n = 8), for patients without neo-adjuvant
treatment (i.e., no pre-treatment), who received adjuvant chemotherapies of
interest and were further monitored for new tumor events (as defined above).

For clinical validation of response to cisplatin-vinorelbine combination in
LUAD we utilized the Zhu et al. patient cohort* (GSE14814), which included
LUAD tumors obtained at surgery (n = 39), treated with adjuvant
cisplatin-vinorelbine chemotherapy. In this cohort, lung cancer-related death was
used as a clinical endpoint and time to event was calculated between the start of
cisplatin-vinorelbine treatment and lung-cancer-related death (for patients with
this event) or to follow-up (for censored patients), with maximum time to event/
follow-up 3390 days.

For clinical validation of response to cisplatin—vinorelbine combination in lung
squamous cell carcinoma (LUSC) we utilized a different subset of patients from the
Zhu et al. patient cohort* (GSE14814), which were patient with LUSC whose tumors
were obtained at surgery (n = 26) and who were treated with adjuvant
cisplatin—vinorelbine chemotherapy. In this cohort, lung cancer-related death was
used as a clinical endpoint and time to event was calculated between the start of
cisplatin—vinorelbine treatment and lung-cancer-related death (for patients with this
event) or to follow-up (for censored patients), with maximum time to event/follow-up
3318 days.

Finally, for validation of FOLFOX combination in colorectal adenocarcinoma
(COAD) we utilized Marisa et al. patient cohort?! (GSE39582), which includes
COAD tumors obtained at surgery (n = 23), treated with adjuvant FOLFOX
chemotherapies. In this cohort, relapse-free survival (i.e., where relapse was defined
as locoregional or distant recurrence) was used as a clinical endpoint and time to
event was calculated between the start of FOLFOX treatment to relapse (for
patients with this event) or to follow-up (for censored patients), with maximum
time to event/follow-up 2790 days.

To investigate pathways overlaps, we employed Fisher Exact Test (fisher.test
function in R) on the leading edge genes from the transcriptomic and epigenomic
pathways (i.e., genes that contribute to the enrichment of biological pathways in
corresponding signatures). All resulting p-values are corrected for multiple
comparisons using FDR.

Statistics and reproducibility. Statistical analyses and data visualization were
conducted using R studio version 3.3.2. To define differential expression signatures,
we utilized two-sample two-tailed Welch t-test3¢ for parametric estimates and fold
change for non-parametric estimates. Signatures were compared using Gene Set
Enrichment Analysis (GSEA)*!, where NES and p-values were estimated using
1,000 gene/site/pathway permutations. Clustering of patients based on their
pathway activity levels (i.e., NESs) was performed using t-Distributed Stochastic
Neighbor Embedding (t-SNE) clustering®®. To estimate the statistical difference in
treatment response between patient groups, we used Kaplan-Meier survival ana-
lysis and Cox proportional hazards model. To estimate the association between
gene and pathway activity levels, we employed Pearson correlation analysis. When
needed, p-values were combined using Fisher’s method. Statistical significance of
the overlap between sets was estimated using Fisher’s Exact Test. P-values were
adjusted for multiple comparisons using FDR correction. To assure reproducibility
of our results, we have deposited a SWEAVE executable document with necessary
data objects for freely available download and analyses at http://license.rutgers.edu/
technologies/2019-121_pathchemo??.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data depicted in the main and supplementary figures are available in the
Supplementary Information and Supplementary Data 1-3. All the data supporting

the findings of this study were obtained from the following public repositories:

The Cancer Genome Atlas (TCGA) downloaded from the Genomics Data Commons
data portal (GDC, https://portal.gdc.cancer.gov/); clinical information pertaining TCGA
dataset downloaded from the TCGA GDC legacy archive (https://portal.gdc.cancer.gov/
legacy-archive/); and all other datasets used for our analyses downloaded from the Gene
Expression Omnibus (GEO): Tang et al. (GSE42127), Der et al. (GSE50081), Zhu et al.
(GSE14814), Marisa et al. (GSE39582). C2 pathway database can be freely downloaded
from MSigDB (http://software.broadinstitute.org/gsea/msigdb).

Code availability

The code and data objects are combined into SWEAVE executable document for user-
friendly download and result reproducibility, which can be freely accessed and
downloaded from http://license.rutgers.edu/technologies/2019-121_pathchemo”’.
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