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Using Transcriptomic Hidden Variables
to Infer Context-Specific Genotype Effects in the Brain

Bernard Ng,1,2 William Casazza,1,2 Ellis Patrick,3 Shinya Tasaki,4 Gherman Novakovsky,2 Daniel Felsky,5

Yiyi Ma,5 David A. Bennett,4 Chris Gaiteri,4 Philip L. De Jager,5 and Sara Mostafavi1,2,6,*

Deciphering the environmental contexts at which genetic effects are most prominent is central for making full use of GWAS results in

follow-up experiment design and treatment development. However, measuring a large number of environmental factors at high gran-

ularity might not always be feasible. Instead, here we propose extracting cellular embedding of environmental factors from gene expres-

sion data by using latent variable (LV) analysis and taking these LVs as environmental proxies in detecting gene-by-environment (GxE)

interaction effects on gene expression, i.e., GxE expression quantitative trait loci (eQTLs). Applying this approach to two largest brain

eQTL datasets (n ¼ 1,100), we show that LVs and GxE eQTLs in one dataset replicate well in the other dataset. Combining the two sam-

ples via meta-analysis, 895 GxE eQTLs are identified. On average, GxE effect explains an additional�4% variation in expression of each

gene that displays a GxE effect. Ten of these 52 genes are associated with cell-type-specific eQTLs, and the remaining genes are multi-

functional. Furthermore, after substituting LVs with expression of transcription factors (TF), we found 91 TF-specific eQTLs, which dem-

onstrates an important use of our brain GxE eQTLs.
Introduction

Large-scale genome-wide association studies (GWASs) have

identified numerous genetic risk loci for complex neuro-

logical and psychiatric disorders.1–3 However, the majority

of disease-associated loci are non-coding and likely regula-

tory.4 Inferring their downstream impact on molecular

mechanisms thus requires additional data, such as expres-

sion quantitative trait loci (eQTLs) datasets.5 Although

many GWAS variants are shown to affect expression of

nearby genes, the contexts under which effects are most

prominent are largely unknown. Toward this end, studies

have shown that certain eQTLs are more pronounced in

specific cell types,6,7 which helps prioritize cell targets for

follow-up experiments and treatment development. Other

studies have identified response QTLs, where response to

certain exposures is dependent on genotype.8–10 More

broadly, gene-by-environment (GxE) eQTL studies have

identified genetic variants that affect gene expression in

sex-, age-, cellular-environment-, and developmental-

stage-specific manners.11–14 The small number of eQTL

studies that measure environmental factors, such as those

related to lifestyles (e.g., smoking, drinking, and exercise)

and physical environment (e.g., air pollution), have pro-

vided a rich resource for identifying GxE eQTLs.15,16

A central challenge for identifying GxE eQTLs is the scar-

city of large datasets with both gene expression data and

environmental variables from the same individuals. One

approach for addressing this challenge is to infer the cellular

embedding of environmental factors from gene expression

data.17–20 A powerful tool for such inference is latent vari-
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able (LV) analysis.21–25 LVs inferred from gene expression

data often reflect common environmental variables, such

as age, sex, smoking, and drug intake.26 LVs have also

been shown to correlate with the proportion of constituent

cell types in bulk tissue samples and tissue-specific activa-

tion of various gene pathways.27 In fact, LVs might capture

cellular embedding of environmental factors at a granu-

larity that is currently not possible to directly measure,

hence enabling identification of novel GxE eQTLs.

To test the possibility of identifying GxE eQTLs with

expression-based LVs as environmental factors in the

brain, we assembled the two largest eQTL datasets from

dorsolateral prefrontal cortex (DLPFC, n ¼ 1,100) and

applied a biologically informed latent variable analysis25

to derive a large number of LVs (q ¼ 135). Using these

LVs, we found 895 GxE eQTLs, corresponding to 52 unique

genes, at a dependent false discovery rate (FDR)28

threshold of 0.1 (Figure 1). On average, modeling the inter-

action between genotype and LV explained an additional

�4% variation in expression of each gene that exhibits a

GxE effect. Ten of these 52 genes are associated with cell-

type-specific eQTLs. The remaining genes are multi-func-

tional, which is consistent with how their expression levels

are expected to be differentially regulated by context. Hy-

pothesizing that certain LVs might reflect the effects of

transcription factors (TFs), we substituted the LV in each

identified GxE eQTL with its significantly correlated TFs,

and tested for interaction effect. We found ninety-one

TF-specific eQTLs, corresponding to four unique genes

and three unique TFs, which demonstrates an important

utility of our GxE eQTLs.
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Figure 1. Graphical Summary of GxE Analysis
Cellular embedding of environmental factors is first extracted from whole genome RNA-sequencing data via PLIER. For each gene, mul-
tiple regression is then applied so that the interaction effect between a LV and each cis SNP of the given gene can be tested. Significant
interaction is declared at a dependent FDR threshold of 0.1.
Methods

RNA-Sequencing and Genotype Data
In this work, we used data from the ROSMAP29 and CMC30

studies, which have been approved by their respective institu-

tional review boards. Five hundred eight and 592 individuals

have both genotype and RNA-sequencing data from the DLPFC

in the ROSMAP and CMC studies, respectively. The data prepro-

cessing pipelines are exactly the same as previously

described,30,31 except the top 10 principal components (PCs)

were removed from the gene expression data after LV extraction.

13,484 and 13,078 highly expressed genes were retained after

QC for the ROSMAP and CMC expression datasets, respectively,

and 10,961 genes were shared between the two datasets.

LV Extraction from Gene Expression Data
Given that environmental effects are reflected in the transcrip-

tome,17–20 inferring environmental proxies from gene expression

data should capture an individual’s exposures. Conventional LV

inference methods, such as non-negative matrix factorization,32

principle-component analysis (PCA),21 and their variants,23,33

enable extraction of LVs in an unsupervised manner. Most LV

inference methods can be formulated as the following optimiza-

tion problem:

minL;ZkX� LZ k 2
F þ UðL; ZÞ; (Equation 1)

where X is a n 3 p gene expression data matrix of n subjects and p

genes that has already been normalized to account for known

technical confounding factors, such as batch. L is a n 3 q matrix

containing q LVs, and Z is the corresponding q3 p loadingmatrix.

U(L,Z) is a regularization function, e.g.,ZitZj and jjZijj2¼ 1 for all

i, j in the case of PCA, where Zi is the ith row of Z. These methods

summarize the variations common across features in X into a

small number of LVs. In practice, some of the inferred LVs are

often found to correlate with biologically relevant factors,

such as age and sex, despite the fact that no mathematical

mechanism in Equation 1 imposes such a property. However,

some of the LVs might correlate with hidden technical confound-

ing factors.
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To encourage inference of environmentally relevant LVs and

reduce those that capture technical confounding factors, one

can impose additional constraints on Equation 1. One strategy,

implemented in PLIER,25 imposes constraints to encourage Z to

be a combination of known gene sets and pathways:34–37

minL;Z;BkX� LZ k 2
F þ l1kZ�BG k 2

F þ l2kL k 2
F þ l3kB k 1s:t: Zij

> 0; Bij > 0;

(Equation 2)

whereG is a h 3 g binary matrix with Gij ¼ 1 if gene j belongs to a

known gene set or pathway i.B is a q3 h non-negative weightma-

trix encouraged to be sparse via incorporation of jjBjj1 so that each

row of Z would be constructed from only a small number of gene

sets and pathways, which eases interpretation of the LVs. Equation

2 can be solved with block coordination descent, and PLIER pro-

vides heuristics for setting the tuning parameters l1, l2, l3, and q.

In this work, we focused on using PLIER to extract LVs. We first

applied PLIER separately to the ROSMAP and CMC gene expres-

sion data after removing technical confounding factors but

without regressing out expression PCs. The reason for not regress-

ing out PCs is that they often capture broad patterns related to

non-genetic factors, which are indeed the type of variation we

like to capture. As for parameter selection, PLIER is shown to be

robust for a wide range of parameter combinations around the

default values.25 Hence, we opted to use the default parameter

setting. In brief, l1 and l2 are based on the singular value of X.

l3 is set such that the fraction of LVs associated with prior pathway

information is 0.7, and the statistical significance of the pathway

associations (rows of B) are assessed via a pseudo-cross-validation

procedure for labeling LVs with specific gene sets and pathways. q

is set on the basis of the ‘‘elbow’’ of the eigenspectrum of X. To

enable subsequent GxE meta-analysis, we concatenated the

ROSMAP and CMC gene expression data after standardization

and applied PLIER to generate a LV set common to the two data-

sets. We note that 10 LVs (LV12, LV20, LV26, LV32, LV88,

LV113, LV114, LV115, LV116, and LV133) have values close to 0,

which PLIER correctly assigned to no known gene sets or

pathways, and no significant GxE eQTLs are associated with

these LVs.
Journal of Human Genetics 105, 562–572, September 5, 2019 563



To further aid interpretation of the LVs, we correlated the

(ROSMAP portion of the) LVs to phenotypic and demographic var-

iables of the ROSMAP samples as well as gene-expression-based

estimates of cell-type proportions.35 The phenotypic and demo-

graphic variables included those related to cognition, clinical, per-

sonality, age, sex, alcohol, smoking, self-reported thyroid diseases,

and pathology.

LV Replication
To assess LV replication, we computed the correlation between

gene loadings of all LV pairs across the ROSMAP and CMC datasets

and matched the LVs by using Hungarian clustering.38 The corre-

lation between gene loadings ofmatched LVs was used as the repli-

cation metric. To establish a baseline, we extracted LVs from the

blood-based DGN expression dataset26 and examined the correla-

tion between matched LVs derived from the two brain datasets

versus this blood dataset. We also assessed how well the common

LV set reflects the LVs derived from each brain-based dataset by

computing the correlation between LVs across the concatenated

and individual datasets; we applied Hungarian clustering tomatch

the LVs and again used the correlation between matched LVs as

the evaluation metric.

Modeling GxE Effects
We modeled the expression levels of each gene j as a function of

SNP i’s genotype, LV k, and their interaction:

yj ¼giaþ ckbþ ðgi,ckÞgþ ε; (Equation 3)

where the n3 1 vector, yj, contains the expression levels of gene j

from n individuals and where known confounding factors in

addition to the top 10 PCs of expression were removed (here,

we regressed out the top 10 PCs to better capture the genetic

and GxE component of expression17). We note that yj is different

from X in Equation 2 in that X has only known technical con-

founding factors removed. The n 3 1 vector, gi, contains the ge-

notype values of cis SNPs that are within 1Mb from the transcrip-

tion starting site (TSS) of gene j and part of the previously found

brain xQTL SNP set.31 The rationale for restricting our analysis to

the xQTL SNP set is that cell-type-specific eQTL SNPs typically

display significant main effects.20 We thus only analyzed SNPs

exhibiting main effects on molecular traits31 to focus on SNPs

that are more likely to display GxE effects while reducing the

multiple testing burden. The n 3 1 vector, ck, corresponds to

LV k, derived by concatenation of the ROSMAP and CMC gene

expression data and application of PLIER. To reduce false GxE de-

tections, we also applied a number of filters in addition to stan-

dard QC. In particular, outliers in LVs and gene expression can

easily result in false GxE detections, especially if the outliers

happened to only belong to one genotype but not the others.

Another problematic scenario is when a SNP has an acutely

smaller number of samples for one genotype than for the other

genotypes, which also tends to result in false GxE detections.

Therefore, we restricted our GxE analysis to SNPs with all three

genotypes, each of which has sample size > 5% of the total sam-

ple. We also excluded subjects with LV values or expression levels

beyond 3 standard deviations from the median. We first applied

the above procedures separately to the ROSMAP and CMC data-

sets and subsequently combined the results by using meta-anal-

ysis to increase statistical power. Significant GxE eQTLs were

declared a dependent FDR threshold28 of 0.1, correcting for all

LVs examined.
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GxE Replication
To assess replicability, we computed the p1 statistics

39 to estimate

the proportion of GxE eQTLs that were in ROSMAP and were also

significant in CMC. To declare significance, we generated an

empirical null distribution by computing p1 for 104 random

p value subsets of size m, where m is the number of GxE eQTLs.

Only p values of associations that did not overlap with the GxE

eQTLs were used for null estimation. We note that the modest

number of detected GxE eQTLs limited the accuracy of the empir-

ical p value distribution for p1 estimation. The magnitude of the

estimated p1 should thus be interpreted with caution, and statisti-

cal testing of p1 is needed.
Mapping Transcription Factors to Their Targeted Genes

with GxE eQTLs
We hypothesized that some of the LVs would capture effects of

TFs, hence the GxE eQTL genes could potentially be their targets.

To test this hypothesis, we first used a stringent criterion to assign

TFs to LVs. Specifically, we took the list of 1,734 TFs encoded in hu-

man genome from the Catalog of Inferred Sequence Binding Pref-

erences (CIS-BP),40 intersected this list with the highly expressed

genes in the ROSMAP samples (892 genes), and used the expres-

sion of the intersected genes as the representation of the TFs. We

then modeled the expression of each intersected gene (without

PC removal) as a linear combination of all LVs by using multiple

regression and applied stability selection41 to identify the signifi-

cant LVs for each TF. To perform stability selection, we generated

10,000 bootstrap samples, applied multiple regression to each

bootstrap sample, and identified significant regression coefficients

at an a of 0.05 with Bonferroni correction. LVs with a selection fre-

quency of 1, i.e., those that passed the Bonferroni-corrected

threshold for all 10,000 bootstraps, were declared as significant

for a given TF. We note that including all LVs into multiple regres-

sion, as opposed to correlating each LV separately with each TF,

semi-partials out the variations of other LVs and thus highlights

the unique aspect of each LV. Also, we opted to use gene expres-

sionwithout PC removal as TF representation because LVs were ex-

tracted from gene expression data without PC removal. After we

assigned TFs to LVs, for each identified GxE eQTL, we used the

gene expression representation of the TFs in place of their corre-

sponding LVs and tested for interaction effect. Significant interac-

tion was declared at 0.05 with Bonferroni correction for the

number of GxE SNP-TF pairs tested.
Results

Deriving and Interpreting Latent Variables

To derive biologically informed LVs, we applied a variant of

factor analysis called PLIER25 on the ROSMAP and CMC

gene expression data. PLIER introduces a regularization

term to factor analysis and thereby encourages factor load-

ings to be consistent with known gene sets and path-

ways.34–37 This modification tends to yield LVs that are

biologically interpretable and more robust across datasets

because the resulting LVs are less likely to represent data-

specific technical factors.

To assess LV replicability, we first applied PLIER (with the

default parameter setting) separately to the ROSMAP and

CMC gene expression datasets to derive 111 LVs and 107
ber 5, 2019



LVs, respectively. We then computed the correlation be-

tween gene loadings of matched LVs, which we used as

the LV replication metric (see Methods). To establish a

baseline, we used the DGN expression dataset,26 which

was derived from blood samples of 902 individuals, and ex-

tracted 109 LVs with PLIER’s default setting. We then

examined the correlation between matched LVs derived

from the two brain datasets versus this blood dataset.

The correlation between matched LVs of ROSMAP and

those of CMC (both from brain tissue) is 0.3706 5

0.2553, which is significantly higher than ROSMAP versus

DGN (0.1653 5 0.1578) and CMC versus DGN (0.1648 5

0.1619), as determined by the Wilcoxon rank sum test,

with p < 10-9 for both cases. Our results thus suggest that

LVs from the two brain datasets are reasonably replicable,

which is encouraging given the substantial differences in

the underlying populations. Also, each LV derived from

one dataset highly correlates with only a single LV derived

from the other dataset for the majority of the LVs

(Figure 2A). To facilitate meta-analysis for increasing statis-

tical power in GxE eQTL detection, we further applied

PLIER to the entire sample (n ¼ 1,100) to generate a com-

mon LV set, which resulted in 135 LVs (see Methods). All

subsequent GxE analyses were based on this LV set. Among

the 135 LVs, 49% displayed a correlation of >0.8 with LVs

derived from the ROSMAP dataset alone (Figure 2B).

Each LV was associated with a prior weight vector that

indicates the biological processes it captures. Overall, 70

(51%) of the 135 LVs were significantly associated with

known gene sets and pathways (Table S1, Figure 2D). These

include oxidative and stress-response pathways, specific

immune activation pathways (such as NFKB and IFN path-

ways), and mitochondrial processes. 16 LVs were associ-

ated with five major brain cell types (neurons, endothelial

cells, microglia, astrocytes, and oligodendrocytes) on the

basis of the LV prior weights (Table S1). These 16 LVs them-

selves highly correlate with expression-based cell-type

markers35 (Figures 2E and 2F), which confirms PLIER’s

annotation.

In addition to annotating LVs with known gene sets and

pathways with PLIER, we also associated phenotype and

demographical variables to LVs by using correlation anal-

ysis (Table S2). The phenotypic and demographic variables

were assembled into nine categories on the basis of expert

knowledge. Categories include cognition, clinical, person-

ality, age, sex, alcohol, smoking, self-reported thyroid dis-

eases, and pathology. Several LVs are associated with these

categories; for example, LV27 is associated with smoking,

LV56 with age, and LV60 with sex (Figure 2C).
Identifying GxE eQTLs with Latent Variables

To identify GxE eQTLs, we modeled the expression levels

of each gene j, yj, as a function of SNP i’s genotype, gi, LV

k, ck, and their interaction:

yj ¼ giaþ ckbþ ðgi 3 ckÞgþ ε (Equation 4)
The American
For each gene, we assessed each cis SNP within 1 Mb of

the TSS. Considering how SNPs affecting gene expression

in a cell-type-specific manner typically display strong

main effects,20 we opted to restrict our GxE analysis to

xQTL SNPs, i.e., SNPs that affect molecular traits. Specif-

ically, we restricted analysis to SNPs that affect gene expres-

sion (eQTLs), DNA methylation (mQTLs), or histone

acetylation (haQTLs) in the DLPFC as found in our previ-

ous work;31 this resulted in 702,103 tested SNPs. LVs in

(Equation 4) correspond to those derived by concatenation

of the ROSMAP and CMC gene expression datasets (after

per-dataset standardization) and application of PLIER.

Known confounds and the top 10 expression PCs were re-

gressed out from yj, and outlier subjects were removed so

that false GxE eQTL detection would be reduced (see

Methods). Significant interaction was declared at a depen-

dent FDR threshold28 of 0.1.

The GxE eQTLs derived from the ROSMAP data alone

replicated well in the CMC data with a replication p1 of

0.7 (p ¼ 0.01). This replication rate is larger than those

for trans eQTLs but is smaller than the replication rate of

cis eQTLs on the same tissue type.5 231 GxE eQTLs corre-

sponding to 10 unique genes were detected. When we

doubled the sample size by applying meta-analysis to the

ROSMAP and CMC samples, we detected 895 GxE eQTLs

corresponding to 52 unique genes (Table S3, Figure 3A),

which is a �4 3 increase in detection rate. The substantial

increase in detection rate suggests that the current sample

size (n¼ 1,100) is just large enough to start detecting inter-

action effects, i.e., detection is far from plateauing, which

is consistent with previous sub-sampling analysis.20

On average, modeling LV-genotype interaction explains

an additional �4% variance in the expression of each gene

that shows a significant interaction effect (Figure 3B),

which is consistent with previous reports.17,42 In a few

genes, an additional 7%–10% variation in gene expression

is explained by the interaction effect. For example, 53%

variation in expression level of TMPRSS5 (MIM: 606751)

is explained by genotype (rs12279366) alone, and the

interaction between LV23 and rs12279366 explains an

additional 10% variation in gene expression (Figure 3C).

Ten GxE eQTL genes were found for LVs that represent

cell types (Figure 3A). These cell-type-specific eQTLs facili-

tate validation with external data. For instance, the genetic

regulation of five genes is significantly modified by LV134

(a LV that reflects oligodendrocyte proportions). Among

these genes are STMN4, NKAIN1 (MIM: 612871), and

FAM221A, which are mainly expressed in oligodendro-

cytes.35 Other examples include an astrocyte-specific ge-

netic regulation of FAS (MIM: 134637).35

In addition to cell-type-specific eQTLs, we identified

several GxE eQTLs that point to a context-specific impact

of cis SNPs on well-known disease genes. For these SNPs,

the associated LVs can yield insights into condition-spe-

cific regulation of the implicated genes, which provides

promising directions in experimental conditions and stim-

ulations for follow-up experiments. For instance, we found
Journal of Human Genetics 105, 562–572, September 5, 2019 565
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Figure 2. LV Replication and Characterization
Let LV_R and LV_C denote LVs derived from the ROSMAP data alone and the CMC data alone, respectively. Let LV_RC denote LVs
derived from the concatenation of ROSMAP and CMC data, and let the ROSMAP and CMC components of LV_RC be denoted as LV_RCr
and LV_RCc, respectively.
(A) Correlation of gene loadings between LV_R and LV_C. Each LV_R is matched with its best corresponding LV_C via Hungarian clus-
tering. LVs are arranged along the rows and columns so that the diagonal elements correspond to correlations between matched LVs.
(B) Correlation between LV_R and LV_RCr. 49% of the matched LVs have correlation >0.8.
(C) Spearman’s correlation between LV_RCr and phenotypes across nine categories present in the ROSMAP cohort are shown as heat-
maps with LV_RC hierarchically clustered. Only phenotypes significantly correlated to any LV_RCr are displayed, and significance is
declared at a dependent FDR threshold of 0.05. The correlation range is clipped to -0.3 to 0.3 for clarity.
(D) Pathway enrichment of LV_RC is summarized in terms of area under the curve (AUC).24 AUC of the most enriched pathway is dis-
played. Certain LVs (in yellow) are not enriched for any particular pathway.
(E) Spearman’s correlation between LV_RCr and expression-based cell-type proportion estimates.32 Correlation range is clipped to -0.8 to 0.8.
(F) Spearman’s correlation between LV_RCc and expression-based cell-type proportion estimates.32 The correlation range is clipped to
-0.8 to 0.8.
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Figure 3. GxE eQTL Characterization
(A) The number of GxE eQTLs detected by each LV. Only LVs associated with R1 GxE eQTLs are displayed. The number of unique GxE
genes is indicated on top of each bar. The colored bars correspond to LVs representing cell-type proportions.
(B) The percentage variance explained (PVE) by the main effect of a SNP versus the effect of interaction between SNP and LV. Interaction
effect explains an additional �4% variance in expression of each GxE gene on average.
(C) Gene expression of TMPRSS5 versus LV23 with respect to the genotype of rs12279366. The interaction effect between rs12279366
and LV23 corresponds to the highest amount of additional variance explained in gene expression.
significant effects of interaction between cis SNPs for 18

genes and LV71 (enriched for genes annotated in the

retinol metabolism pathway, p < 10-5). One such gene is

SPATA7 (MIM: 609868) (Figure 4A), which is known to

cause childhood-onset severe retinal dystrophy.43

Although SPATA7 is expressed in various brain regions

and plays an important role in the retina, its specific func-

tion is unclear. Our results indicate that genetic regulation

of SPATA7 is sensitive to activation of retinol metabolism.

Fittingly, four of 10 functional interaction partners of

SPATA7 are enriched for retinol metabolism, according to

results obtained with STRINGdb,44 p < 10-7 (Figure 4B).

Another example is a ITGB3BP (MIM: 605494) eQTL SNP

that interacts with LV71. ITGB3BP is a multi-functional

gene involved in the modulation of several critical
The American
pathways, including retinoid X receptor, NF-kappaB-

dependent signaling, caspase signaling, and mitotic

progression. Given the importance of ITGB3BP in these

pathways, it is plausible that the genetic effects on these

pathways might be partly regulated by retinoic acid

activity.

A further example is the interaction between SNPs near

IL1RL1 (MIM: 601203) and LV23 (Figure 4C). IL1RL1 is a

member of Toll-like receptor superfamily, which has been

associated with cardiovascular disease45 as well as allergy

and immune disorders.46 Interestingly, we found that

PLIER associated LV23 mainly with a gene set that is upre-

gulated in heart tissue of patients with heart failure after

the implantation of assistive devices,47 p < 10-5. After

closer examinations of genes with higher weights for
Journal of Human Genetics 105, 562–572, September 5, 2019 567
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Figure 4. Examples of GxE eQTL Genes
(A) Expression levels of SPATA7 versus LV71 with respect to the genotype of rs10998698. LV71 is enriched for ‘‘retinol metabolism’’
genes.
(B) A SPATA7 functional interaction network obtained from the STRING database. Genes annotated to ‘‘retinol metabolism’’ are shown
in red.
(C) Expression levels of IL1RL1 versus LV23 with respect to the genotype of rs12712135.
(D) Gene loading score for LV23; genes annotated to ‘‘repeatable Glucocorticoids response genes’’40 are highlighted in pink.
LV23, we also found a strong enrichment for genes

induced by glucocorticoids specifically in the brain48

(p < 10-10 hypergeometric test, Figure 4D). Indeed, FKBP5

(MIM: 602623) has the largest weight for LV23, and is

known for regulating glucocorticoid receptor sensitivity.

Thus, the GxE analysis predicts that the eQTL SNP

rs12712135 has a glucocorticoid-dependent effect on

IL1RL1 expression.

Hypothesizing that LVs might reflect the effects of TFs,

we used the detected GxE eQTLs to identify gene targets
568 The American Journal of Human Genetics 105, 562–572, Septem
of TFs.40 Specifically, we first assigned TFs to LVs by using

a bootstrap procedure41 (see Methods). We then replaced

the LV in each detected GxE eQTL with its corresponding

TFs, and tested for an interaction effect (Table S4).

Ninety-one TF-specific eQTLs, corresponding to four

unique genes and three unique TFs, were found at a Bon-

ferroni-corrected threshold of 0.05. Interestingly, KLF15

(MIM: 606465) was found to be the top TF for LV23 (corre-

lation of 0.7346, p < 10-86) and shows a significant interac-

tion effect with rs12712135 on the expression of IL1RL1,
ber 5, 2019



p < 10-6. This finding, in combination with prior evidence

for induction of KLP15 by the glucocorticoid response,49

provides further support for our finding of a glucocorti-

coid-dependent effect on IL1RL1 expression.

Although we found several LVs that strongly correlate

with common environmental factors, such as age and

sex, we did not find GxE eQTLs for these LVs. Finally, we

overlapped the set of GxE eQTL SNPs with three well-pow-

ered, brain-relevant GWASs (Schizophrenia [MIM:

181500],50 MDD [MIM: 608516],51 and AD [MIM:

104300]52). Given the small number of independent loci

obtained from our GxE analysis, we did not find enrich-

ment for disease SNPs. One locus near PPM1M (MIM:

608979) overlapped with a Schizophrenia-associated re-

gion, which showed an interaction effect with LV71 (a

LV that is enriched for genes annotated in the retinol meta-

bolism pathway). PPM1M is a protein phosphatase that is

preferentially expressed in a few tissues, including brain

tissue. Although little is known about PPM1M’s function

in the brain, an early study linked its function to neurite

growth. Fittingly, retinol metabolism is a critical pathway

for neurite outgrowth and plays an important role in path-

ogenesis of Schizophrenia.53
Discussion and Conclusion

In this study, we investigated how SNPs influence gene

expression in DLPFC through their interaction with LVs

that reflect environmental conditions. Our approach was

motivated by the observation that broad variability in

gene expression across individuals, as summarized by

LVs, often reflects cellular and environmental factors. We

thus sought to represent a large set of environmental vari-

ables with LVs whose impact is embedded at the cellular

level, and we used these LVs to identify GxE eQTLs. To

this end, we applied a biologically informed latent variable

analysis to infer 135 LVs from the two largest brain eQTL

datasets (n ¼ 1,100) and showed that the majority of these

LVs are highly reproducible across datasets. We then used

these LVs in a standard statistical interaction model to

identify interaction effects between LVs and genotype, as

manifested on gene expression levels. At a dependent

FDR threshold of 0.1, we identified 52 genes whose expres-

sion levels were impacted by an interaction effect between

genotype and LVs. On average, the interaction term ex-

plains an additional �4% variation in expression levels

for genes exhibiting GxE effects. We observed that �20%

of the GxE eQTLs correspond to cell-type-specific eQTLs.

Other GxE eQTLs are mostly associated with multi-func-

tional genes, such as ITGB3BP, where the impact of specific

regulatory variants depends on the cellular context.

Our study builds upon a previous work on identifying

context-specific eQTLs;17 in that work, different contexts

were defined by individual proxy genes. We chose to use

LVs, as opposed to single proxy genes, for three reasons.

First, our preliminary experiments showed that LVs can
The American
more accurately represent a latent context and hence

improve the statistical power for identifying interaction ef-

fects. Specifically, we compared the discovery rate for five

proxy genes that are typically used to represent five major

cell types (ENO2 [MIM: 131360] for neurons, OLIG2 [MIM:

606386] for oligodendrocytes, CD34 [MIM: 142230] for

endothelial cells, CD68 [MIM: 153634] for microglia, and

GFAP [MIM: 137780] for astrocytes) against LVs that repre-

sent cell types with the ROSMAP data. At the same depen-

dent FDR threshold of 0.1, we found 75 cell-type-specific

eQTLs with LVs, whereas we found only five cell-type-spe-

cific eQTLs with single proxy genes (Figure S1). Second,

LVs are typically associated with tens to hundreds of genes,

providing more information for interpreting the specific

pathways and/or cellular context that they represent.

Third, because LVs are constructed by aggregation of sig-

nals that are common across a specific set of genes, genetic

components of expression that are disparate across these

genes would be averaged out. Thus, LVs presumably pro-

vide a ‘‘cleaner’’ representation of environmental factors

than single proxy genes, which inherently have the ge-

netic component of gene expression intact.

The discovery rate of GxE eQTLs greatly depends on the

sample size. By doubling the sample size from �500 to

�1,000, we observed an approximately 43 increase.

Although already the largest sample for brain tissue, the

discovery rate for GxE eQTLs in this study is rather low,

which most likely implies that much larger sample sizes

are needed to fully recover the range of eQTLs that are

context dependent. Recent multivariate models that

combine multiple environments and genotypes might

also help in improving statistical power.42

Considering that cell-type-specific eQTL SNPs typically

exhibit strong main effects on gene expression,20 we

restricted the GxE analysis to xQTL SNPs,31 i.e., SNPs

shown to affect molecular traits. This SNP selection hones

in on SNPs that are more likely to display GxE effects while

reducing the multiple testing burden. Also, by including

mQTL and haQTL SNPs, we permitted the possibility of

finding non-eQTL SNPs with GxE effects. Indeed, the ma-

jority of detected GxE eQTLs are eQTLs also. Hence, the

GxE analysis is providing only a few new eQTL discoveries

(Table S3). To further test this observation, we compared re-

stricting the analysis to xQTL SNPs to using all SNPs within

1 Mb of the TSS of each gene. At a ¼ 0.1 with Bonferroni

correction, 222 GxE eQTLs were found both when xQTL

SNPs were used and when all SNPs were used. Fifty-three

GxE eQTLs were found only when xQTL SNPs were used,

and 31 GxE eQTLs were found only when all SNPs were

used. This high overlap in GxE eQTLs provides additional

evidence that GxE eQTL SNPs typically display strong

main effects on gene expression. Also, matching our

expectation, restricting the SNPs to xQTL SNPs increases

detection sensitivity. Importantly, we note that the actual

value of the GxE analysis is the identification of environ-

mental conditions for which the effects of the eQTL

SNPs are more pronounced. For instance, the GxE eQTL
Journal of Human Genetics 105, 562–572, September 5, 2019 569



SNPs near CD53 (MIM: 151525) (a gene primarily ex-

pressed in microglia) display significant main effects, but

in addition, the GxE analysis predicts that the impact of

these SNPs on CD53 expression is much greater in micro-

glia cells. Also, we showed that the detected GxE eQTLs

can be used for finding potential gene targets of TFs. For

example, SPL1 was found to modify the genetic effects

on CD53 expression, which aligns with how CD53 is a

target of SPL1 in mice.54

In summary, we investigated GxE eQTLs in the brain by

inferring LVs from gene expression data and using these

LVs to represent cellular context. Our investigation

identified 52 unique genes, whose eQTLs showed context

dependency. The identified GxE eQTLs provide insights

into cell-type-specificity and gene function.
Supplemental Data
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