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Abstract: Breast cancer is one of the most common cancers and the second leading cause of cancer mortality in 
women worldwide. Novel therapies and chemo-therapeutic drugs are still in urgent need to be developed for the 
treatment of breast cancer. One of the most important metabolic hallmarks of breast cancer cells is enhanced 
lipogenesis. Increasing evidences suggest that fatty acid synthase (FAS) plays an important role in the develop-
ment of human breast cancer, for the expression of FAS is significantly higher in breast cancer cells than in normal 
cells. In addition, FAS inhibitors, such as curcumin, ursolic acid, and resveratrol, have shown anti-cancer potential. 
In the present study, we discovered that vitisin B, a natural stilbene isolated from the seeds of Iris lactea Pall. var. 
chinensis (Fisch.), was a novel FAS inhibitor. We found that vitisin B could down-regulate FAS expression and inhibit 
intracellular FAS activity in MDA-MB-231 cells. Also, we reported for the first time that vitisin B exhibited apoptotic 
effect on human breast cancer cells. Given all of this, we proposed a hypothesis that vitisin B has an application 
potential in the chemoprevention and treatment of breast cancer. 
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Introduction

Breast cancer is one of the most common 
human cancers worldwide [1]. As in other can-
cers, elevated lipogenesis is one of the most 
important metabolic hallmarks of breast can-
cer cells [2]. Cancer cells acquire fatty acids 
mainly through de novo lipogenesis to support 
their growth and proliferation [3-5]. The upregu-
lated fatty acid synthesis in cancer cells is 
reflected by significant increase in both expres-
sion and activity of fatty acid synthase (FAS, EC 
2.1.3.85) [6]. FAS catalyzes the synthesis of 
long chain saturated fatty acids from acetyl-
CoA and malonyl-CoA in the presence of the 
reducing substrate NADPH [7, 8]. The activation 
of FAS is important for carcinogenesis and can-
cer cells survival, so FAS may constitute a ratio-
nal therapeutic target for cancer treatment [8, 
9].

Several FAS inhibitors (such as cerulenin, C75, 
EGCG) have been recognized as potential ther-

apeutic agents in cancer treatment [10-12]. 
However, the drawbacks of these already inves-
tigated FAS inhibitors should be taken into 
account. Cerulenin, the first reported FAS inhibi-
tor, was chemically unstable because of the 
reactive epoxide group in its structure [10]. 
C75, the first reported synthetic FAS inhibitor, 
was found to have the side effect of causing 
weight loss and anorexia [11]. EGCG, the first 
FAS inhibitor isolated from plants, showed rela-
tively weak inhibitory activity on FAS with the 
half inhibitory concentration (IC50) of 24 µg/ml 
[12]. Therefore, it is important to explore novel 
and highly active FAS inhibitors, both natural 
and synthetic, in order to test their anti-cancer 
potential. 

Vitisin B is a natural stilbene isolated from the 
seeds of Iris lactea Pall. var. chinensis (Fisch.) 
Koidz [13]. As an oligomer of resveratrol, vitisin 
B has been reported to have several biological 
functions such as inhibition on the activities of 
HMG-CoA [14], and BACE-1 [15], and induction 
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of mitochondrial swelling and cytochrome C 
release [16]. Wu et al., reported that vitisin B 
significantly inhibited leukemia cell prolifera-
tion through activation of JNK and Fas death-
signal transduction [17]. Empl et al., reported 
that vitisin B showed cytotoxicity in prostate 
cancer LNCaP cells at fairly low concentrations 
[18]. The mechanisms exerted by vitisin B 
involve a cell cycle arrest and the activation of 
caspases (i.e. apoptosis).

By screening a variety of natural products, we 
found that vitisin B could inhibit FAS activity. 
The aim of the present study was to investigate 
the inhibitory effect of vitisin B on both extra-
cellular and intracellular FAS activities, as well 
as its apoptotic effect on FAS over-expressed 
human breast cancer MDA-MB-231 cells. 

Materials and methods

Reagents

Acetyl-CoA, malonyl-CoA, NADPH and DMSO 
were purchased from Sigma (St. Louis, MO, 
USA). Dulbecco’s modified Eagle’s medium 
(DMEM) was purchased from Gibco (Beijing, 
China). Fetal bovine serum (FBS) was purch- 
ased from Sijiqing Biological Engineering Ma- 
terial Company (Beijing, China). Cell Counting 
Kit (CCK-8) was purchased from Dojindo La- 
boratories (Kumamoto, Japan). Antibodies of 
FAS, PARP, Bax, Bcl-2 and GAPDH were pur-
chased from Cell Signaling Technology (Den- 
vers, MA, USA). Vitisin B (purity ≥ 97%, HPLC) 
was isolated and purified from the ethanol 
extracts from seed kernel of I. lactea as previ-
ously described [13] and it was dissolved in 
DMSO before use.

Preparation of FAS and its substrates 

The preparation of FAS from chicken liver was 
performed as described previously [19]. The 
concentrations of FAS and its substrates we- 
re determined by a UV-vis spectrophotometer 
(Amersham Pharmacia Ultrospec 4300, Engl- 
and, UK) with the following experimental param-
eters: FAS, 4.83 × 105 M-1 cm-1 at 279 nm; 
Ac-CoA, 1.54 × 104 M-1 cm-1 at 259 nm, pH 7.0; 
Mal-CoA, 1.46 × 104 M-1 cm-1 at 260 nm, pH 
6.0; acetoacetyl-CoA, 1.59 × 104 M-1 cm-1 at 
259 nm, pH 7.0; NADPH, 6.02 × 103 M-1 cm-1 at 
340 nm, and 1.59 × 104 M-1 cm-1 at 259 nm, pH 
9.0 [19].

Assays of FAS activity 

The FAS activity was measured at 37°C by the 
spectrophotometer at 340 nm (NADPH absorp-
tion). The overall reaction system contained 
100 mM KH2PO4-K2HPO4 buffer, 1 mM EDTA, 1 
mM dithiothreitol, 3 μM Ac-CoA, 10 μM Mal-
CoA, 35 μM NADPH, and 10 μg FAS in a total 
volume of 2 ml as previously described [19, 
20]. 

Assays of FAS inhibition

The inhibition assays followed the same proce-
dure as the activity assay but with the inhibitor 
(vitisin B). Vitisin B was dissolved in DMSO and 
added to the reaction mixture described above. 
The final concentration of DMSO was under 
0.5% (v/v), to avoid the interference with FAS 
activity. The activities of FAS with and without 
vitisin B were represented as Ai and A0. The 
value of Ai/A0 × 100% was the residual activity 
(R.A.) of FAS. The IC50 was calculated from the 
plot of R.A. versus vitisin B concentration with 
Origin v. 7.5 (OriginLab, MA, USA).

Cell line and cultures

Human breast cancer MDA-MB-231 cell line 
was purchased from the Type Culture Collection 
of the Chinese Academy of Sciences, Shanghai, 
China. Cells were cultured in DMEM containing 
10% FBS at 37°C in a humidified atmosphere 
containing 5% CO2. 

Cell viability assay

Cell viability was assessed with the CCK-8 
assay as previously described [21]. Briefly, 
MDA-MB-231 cells were seeded into 96-well 
plates at a concentration of 1 × 104 cells per 
200 μl per well, and allowed an overnight peri-
od for attachment. The medium was removed, 
and fresh medium along with various concen-
trations (0, 2, 4, 6, 8, 10, 12, 14 µg/ml) of viti-
sin B were added to cultures in parallel. In fol-
lowing treatment, a drug-free medium (100 µl 
per well) and 10 µl CCK-8 solution were added 
to the cells, which were then incubated for 1-4 
h at 37°C. The optical density (OD) value (absor-
bance) was measured at 450 nm by a micro-
plate spectrophotometer (Multiskan MK3, 
Thermo Scientific, Shanghai, China). All experi-
ments were performed in sextuplicate on three 
separate occasions.
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Analysis of apoptosis

Cell apoptosis detection was performed with 
an Annexin-V-FITC Apoptosis Detection Kit 
(Becton Dickinson, Franklin Lakes, NJ, USA) 
according to the manufacturer’s protocol [22]. 
Briefly, cells were collected after 24 h treat-
ment with vitisin B. The cells were washed 
thrice with cold phosphate buffered solution 
(PBS) and resuspended in 1× binding buffer at 
a concentration of 1 × 106 cells/ml. Then 500 
µl cell suspension was incubated with 5 µl 
Annexin-V-FITC and 5 µl PI for 15 min in the 
dark and analyzed by an FACSCalibur flow 
cytometer (Becton Dickinson, Franklin Lakes, 
NJ, USA) within 1 h. Three replicates of the 
apoptosis assay were performed.

Intracellular FAS activity assay

Cells were treated with vitisin B for 24 h and 
were harvested by trypsinization, pelleted by 
centrifugation, washed twice, and resuspend-
ed in cold PBS. Cells were sonicated at 4°C and 
centrifuged at 13,000 rpm for 15 min at 4°C to 
obtain particle-free supernatants. The FAS 
activity was determined spectrophotometrical-
ly by measuring the decrease of absorbance at 
340 nm due to oxidation of NADPH as others 
previously described [23]. 50 µl Particle-free 
supernatant, 25 mM KH2PO4-K2HPO4 buffer, 
0.25 mM EDTA, 0.25 mM dithiothreitol, 30 µM 
acetyl-CoA, 350 µM NADPH (pH 7.0) in a total 
volume of 500 µl were monitored at 340 nm for 
60 s to measure background NADPH oxidation. 
After the addition of 100 mM malonyl-CoA, the 
reaction was assayed for an additional 60 s to 
determine the FAS dependent oxidation of 
NADPH. 

Western-blot assay

Western blotting was carried out as previously 
described [24]. Briefly, after 24 h treatment of 
vitisin B, cells were washed twice with cold PBS 
and harvested in RIPA lysis buffer with 1 mM 
PMSF and then lysed for 10 min on ice. Then a 
particle free supernatant solution was obtained 
by centrifugation at 13,000 rpm for 15 min at 
4°C. Protein concentrations of cell lysates were 
measured by the Pierce BCA protein assay kit 
using bovine serum albumin (BSA) as a stan-
dard control. Comparable amounts of protein 
(50 µg FAS, 30 µg PARP, 25 µg Bcl-2, 25 µg Bax 
were put into each lane during SDS-PAGE) were 
heated in sodium dodecylsulphate (SDS) sam-
ple buffer (Laemmli) for 15 min at 95°C, sepa-

rated using a 10%-12% SDS polyacrylamide gel 
and transferred to PVDF membranes. Then 
blocked with 5% skimmed milk for 1-2 h at 
room temperature to prevent nonspecific anti-
body binding, and probed with various primary 
antibodies at dilutions recommended by the 
suppliers overnight at 4°C. Then washed thrice 
with TBST (10 mM Tris, 10 mM NaCl, 0.1% 
Tween 20), and incubated 1 h with correspond-
ing peroxidase conjugated secondary antibody 
and developed with a commercial kit (West 
Pico chemiluminescent substrate). Blots were 
reprobed with an antibody against β-actin as 
the control of protein loading and transfer.

RT-PCR analysis

Total RNA was extracted and purified from 
MDA-MB-231 cells using RNAsimple Total RNA 
Kit (TianGen Biotech, Beijing, China). A 1 μg 
amount of total RNA of each sample was re- 
verse-transcribed to cDNA with a cDNA Syn- 
thesis Kit (TianGen Biotech, Beijing, China). The 
gene expression levels of FAS were analyzed by 
quantitative real-time PCR (Mx 3000P, USA). 
The conditions for PCR were as follows: initial 
denaturation at 95°C for 5 min and followed by 
45 cycles (95°C, 15 s, 55°C, 15 s, 72°C, 20 s). 
The primer sequences used for qPCR were as 
follows. β-Actin: Forward 5’-GTGGGCCGCTCTA- 
GGCACCAA-3’ and Reverse 5’-CTCTTTGATGTC- 
ACGACGATTTC-3’; FAS: Forward 5’-TTCGTACC- 
TCCTTGGCAAAC-3’ and Reverse: 5’-GGCTGCAG- 
TGAATGAATTTG-3’ [25].

Statistical analysis

Data represent the mean ± standard deviation 
(SD) from at least three independent experi-
ments. The unpaired Student’s t test was used 
to compare the means of two groups. The st- 
atistical differences among three or more gr- 
oups were determined by one-way ANOVA with 
Tukey’s post-test using Prism 5 software (Gra- 
phPad, San Diego, CA, USA). Statistical signifi-
cance was determined at the level of P < 0.05.

Results

Inhibitory effect of vitisin B on FAS activity

The inhibitory activity of vitisin B on the FAS 
catalyzed reaction was assayed in vitro. Vitisin 
B exhibited dose-dependent inhibition on ch- 
icken FAS. The data obtained from Figure 1B 
showed that 0.617 μg/ml (0.681 μM) vitisin B 
inhibited 50% of the overall reaction activity.
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Vitisin B reduced the viability of MDA-MB-231 
cells

To evaluate the effect of vitisin B on cell viabili-
ty, MDA-MB-231 cells were incubated with vari-
ous concentrations of vitisin B (0, 2, 4, 6, 8, 10, 
12, 14 µg/ml) for 24 h, followed by a CCK-8 
assay. As shown in Figure 2, vitisin B exhibited 
a dose-dependent inhibitory effect on MDA-
MB-231 cells with an IC50 value of 8.45 µg/ml 
(9.32 µM). 

Vitisin B induced MDA-MB-231 cells apoptosis

The apoptotic effect of vitisin B on MDA-MB-231 
cells was analyzed and quantified by flow cy- 
tometry using the annexin V-FITC Apoptosis 
Detection Kit. As shown in Figure 3A, vitisin B 

induced MDA-MB-231 cell apoptosis in a dose-
dependent manner, reaching 54.96% at 8 µg/
ml (32.49% early apoptosis plus 22.47% late 
apoptosis). Corresponding to that, only 1.61% 
cell apoptosis was found in control group 
(0.63% early apoptosis plus 0.98% late apopto-
sis). The apoptotic activity of vitisin B on MDA-
MB-231 cells was also confirmed by Western 
blotting, which showed cleavage of PARP. MDA-
MB-231 cells treated with vitisin B for 24 h 
expressed a marked increase in the levels of 
the PARP cleavage product (89 kDa band) in a 
dose-dependent manner (Figure 3B). Western 
blotting analysis showed that 8 μg/ml vitisin B 
down-regulated Bcl-2 expression level, thereby 
causing a significant decrease in the Bcl-2/Bax 
ratio that favored cell apoptosis (Figure 3C). 
The expression levels of Bax were also 
decreased after treating with 2, 4, 8 μg/ml viti-
sin B (Figure 3C).

Vitisin B inhibited FAS expression and activity 
in MDA-MB-231 cells

In order to examine the impact of vitisin B on 
FAS mRNA, we measured the changes of FAS 
on mRNA level. The results showed that co- 
mpared to the control group, the mRNA level  
of FAS significantly decreased after vitisin B 
administration (Figure 4A). Moreover, MDA-
MB-231 cells incubated with vitisin B resulted 
in a dose-dependent reduction of FAS expres-
sion (Figure 4B). The intracellular FAS activity in 
vitisin B treated MDA-MB-231 cells was inhibit-
ed in a dose-dependent manner (Figure 4C). 
These results showed that vitisin B down-regu-
lated both mRNA and protein level of FAS, as 
well as inhibited intracellular FAS activity in 
MDA-MB-231 cells.

Figure 1. The inhibitory effect of vitisin B on FAS activity. A. Chemical structure of vitisin B. B. The activity for the FAS 
overall reaction was assayed to determine the inhibitory capability of vitisin B (0, 0.1, 0.2, 0.4, 0.6, 1.0, 2.0, 4.0 µg/
ml). EGCG was chosen as a positive control to compare the inhibitory effect of vitisin B on FAS.

Figure 2. Vitisin B reduced the viability of MDA-
MB-231 cells. MDA-MB-231 cells were treated with 
0, 2, 4, 6, 8, 10, 12, 14 µg/ml vitisin B for 24 h. Cell 
viability was then determined by the CCK-8 assay. 
The percentage of cell viability was calculated as the 
ratio of treated cells to control cells (0.1% DMSO). 
Data were expressed as the mean ± SD of three in-
dependent experiments.
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Discussion

Due to the differential expression levels be- 
tween cancer and normal cells, FAS has been 

suggested as a potential molecular target for 
anticancer drug development [26, 27]. Fatty 
acids contribute to cancer progression because 
they are the building blocks for newly-synthe-

Figure 3. Apoptotic effect of vitisin B on MDA-MB-231 cells. A. Apoptosis was evaluated using an annexin V-FITC 
apoptosis detection kit and flow cytometry. The X- and Y-axes represent annexin V-FITC staining and PI staining, 
respectively. The representative pictures were from MDA-MB-231 cells incubated with different concentrations of 
vitisin B (0, 2, 4 and 8 µg/ml). The gate setting distinguished between living (bottom left), necrotic (top left), early 
apoptotic (bottom right), and late apoptotic (top right) cells. The experiment was repeated three times. B. Vitisin B 
induced apoptosis in MDA-MB-231 cells as assessed by PARP cleavage (note intact PARP at 116 kDa and its cleav-
age product at 89 kDa). Shown gels were representative of those obtained from at least three independent experi-
ments. C. The expression levels of Bcl-2 and Bax were down-regulated after treatment with vitisin B. Shown gels 
were representative of those obtained from at least three independent experiments.

Figure 4. Inhibitory effect of vitisin B on FAS expression and intracellular FAS activity in MDA-MB-231 cells. A. Ef-
fect of vitisin B on FAS mRNA. MDA-MB-231 cells were treated with 0, 2, 4, 8 μg/ml vitisin B. After 24 h, mRNA 
was extracted and quantified via RT-PCR, and normalized to β-actin mRNA. Data were normalized to control cells 
without vitisin B (0 μg/ml). Data was analyzed using unpaired Student’s t test, **P < 0.01 compared to the control 
(0 μg/ml). B. Representative pictures for FAS protein expression by western blot analysis. Cells were treated with 0, 
2, 4, 8 μg/ml vitisin B. Vitisin B down-regulated FAS expression in MDA-MB-231 cells in a dose-dependent manner. 
Shown gels were representative of those obtained from at least three independent experiments. C. Intracellular FAS 
activity measured in MDA-MB-231 cells using NADPH by spectrophotometry at 340 nm. Relative FAS activities were 
represented as the means ± SD from three independent experiments with similar results. *P < 0.05 compared to 
the control (0 μg/ml).
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sized membrane phospholipids [28]. It is now 
widely recognized that cancer cells frequently 
enhanced ability of intracellular lipids synthesis 
[6, 29, 30], a process which is tightly related to 
FAS activity.

In the present work, we found that vitisin B was 
an FAS inhibitor with an IC50 value of 0.617 µg/
ml, which was significantly lower than those of 
classical FAS inhibitors like cerulenin (IC50 = 20 
µg/ml) [10] and EGCG (IC50 = 24 µg/ml) [12], as 
well as some newly reported natural FAS inhibi-
tors like resveratrol (11.1 µg/ml), curcumin 
(10.5 µg/ml), α-mangostin (2.27 µg/ml) [31-
33]. Considering that the activities of these 
compounds were measured within the same 
assay, vitisin B is one of the strongest natural 
FAS inhibitors so far discovered. 

The amino acid sequences of human and other 
animal FASs are closely similar [34], however, 
the human FAS preparations showed lower 
activity than FASs of other animals [35]. So the 
chicken and duck FAS were used commonly for 
the study of FAS inhibitors [36]. In this study, 
chicken FAS was applied to measure the inhibi-
tory activity of vitisin B. The amino acid 
sequence of chicken FAS has 63% identity with 
that of human FAS [35]. 

We found that vitisin B down-regulated not only 
protein expression level, but also the mRNA 
level of FAS. In cancer cells, newly synthesized 
lipids catalyzed by FAS preferentially transfer to 
phospholipids which could be involved in cell 
signaling and biosynthesis of cell membrane 
[3]. Inhibition of FAS has been proven to be an 
obstacle of cancer cell growth and an induction 
to cell death [9, 37]. 

As one of the widely researched stilbenes, res-
veratrol was reported to be an antitumor com-
ponent that lead to breast cancer cell apopto-
sis [38-41]. However, not many studies had 
referred to the anti-cancer activity of vitisin B 
[17]. In the present study, we found that vitisin 
B, a stilbene tetramer, exhibited dose-depen-
dent anti-proliferative activity in human breast 
cancer cells. In our previous study, we found 
that the inhibitory effect of catechin polymer 
was stronger than catechin, and condensed 
tannin was stronger than tannin monomer [42, 
43]. These results indicated that polyphenol 
oligomers may be more effective than mono-
mers in FAS inhibition. Compared with our pre-

vious studies on stilbene monomers and oligo-
mers, such as resveratrol, pallidol, rhaponticin, 
and desoxyrhaponticin, vitisin B still has stron-
ger inhibitory activity on FAS [24, 44]. The pos-
sible reason may be that vitisin B could affect 
more functional domains of FAS because of its 
big molecular structure, although the mecha-
nism involved need to be detailed investigated. 
Willenberg et al., have reported that the intesti-
nal absorption of stilbene oligomers like hopea-
phenol, whose structure is similar to vitisin B, 
was much lower than that of resveratrol [45]. 
The bioavailability of vitisin B may not be good 
and the clinical application of vitisin B should 
be evaluated with bioavailability. From this 
point of view, vitisin B may not be a promising 
anti-cancer drug candidate. FAS is an enzyme 
which catalyzes fatty acid synthesis reaction in 
the cytoplasm. In general, if a compound could 
not enter the cell, it seemed unable to affect 
intracellular FAS activity. However, we could not 
rule out the possibility that vitisin B might indi-
rectly inhibit FAS activity by sticking on the cell 
surface, since it has been reported that cell 
surface receptors such as growth factor recep-
tors and hormone receptors can play essential 
roles in tumor-related FAS over-expression [46]. 

Apoptosis signaling pathway is strictly regulat-
ed by a fine balance between pro- and anti-
apoptotic Bcl-2 family proteins [47, 48]. 
Overexpression of anti-apoptotic Bcl-2 family 
proteins, such as Bcl-2, has been demonstrat-
ed as a major contributing factor for apoptosis 
resistance in breast cancer and many other 
cancers [47, 48]. In this study, we investigated 
the effect of vitisin B on two Bcl-2 family pro-
teins in MDA-MB-231 cells. The expression lev-
els of Bcl-2 and Bax were all reduced by vitisin 
B. Compared with the apoptotic effect of α- 
mangostin, a known FAS inhibitor, vitisin B 
showed the similar effects [23]. It is interesting 
that up to 4 µg/ml vitisin B seems to favor an 
anti-apoptotic Bcl-2/Bax ratio. However, vitisin 
B treatment at concentration of 8 µg/ml 
showed major reduction of Bcl-2/Bax ratio. So 
Bcl-2 family proteins may be involved in vitisin 
B induced apoptosis and the specific mecha-
nism may be complicated. 

Many natural stilbenes with high anticancer 
efficacy and acceptable levels of toxicity to nor-
mal tissues have been suggested as candi-
dates for cancer treatment [49]. Ong et al., has 
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reported that vitisin B showed no toxic effect on 
vascular smooth muscle cells [50]. In the pres-
ent work, we found that vitisin B induced both 
early and late apoptosis, which was also similar 
to α-mangostin, as shown in Figure 3A. 
However, we could not confirm whether vitisin B 
induced apoptosis was due to its toxic effect. 

In most normal cells, de novo fatty acid synthe-
sis is suppressed. Only a few normal tissues 
and cells such as adipocytes, hepatocytes, hor-
mone sensitive cells, the cycling endometrium, 
and fetal lung tissue may keep a very active 
fatty acid synthesis pathway [51]. And even 
those with comparatively high proliferation 
rates of normal cells preferentially use dietary/
exogenous lipids for synthesis of new structural 
lipids [2, 46] whereas most cancer cells display 
increased endogenous fatty acid biosynthesis 
regardless of extracellular lipid availability. 
Therefore, FAS is a promising target for obsta-
cle the growth of cancer cells without adverse 
effect on the survival of normal cells. Hence 
vitisin B may induce cancer cells apoptosis 
without affecting the lipids metabolism in nor-
mal cells.

Conclusions

Targeting intracellular FAS activity may repre-
sent a new approach to prevent or treat human 
breast cancer. Therefore, more safe and effec-
tive FAS inhibitors along this line should be 
developed for cancer treatment. In the present 
study, we demonstrate that vitisin B is a novel 
FAS inhibitor. In addition, we found that vitisin B 
decreased FAS expression and inhibited intra-
cellular FAS activity in MBA-MD-231 cells. 
Vitisin B also induced MDA-MB-231 cell apop-
tosis, as observed by flow cytometry (with 
54.96% apoptosis at 8 µg/ml compared to the 
control, 1.61%) and evidenced by increasing 
expression level of cleaved PARP. Since FAS 
has been found to be a potent anticancer drug 
target, the results of our present work may fur-
nish some useful ideas and new clues in devel-
oping drugs in treatment of human breast 
cancer.
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