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External beam radiation therapy is a widespread treatment for prostate
cancer. The ensuing patient follow-up is based on the evolution of
the prostate-specific antigen (PSA). Serum levels of PSA decay due to the
radiation-induced death of tumour cells and cancer recurrence usually mani-
fest as a rising PSA. The current definition of biochemical relapse requires
that PSA reaches nadir and starts increasing, which delays the use of further
treatments. Also, these methods do not account for the post-radiation
tumour dynamics that may contain early information on cancer recurrence.
Here, we develop three mechanistic models of post-radiation PSA evolution.
Our models render superior fits of PSA data in a patient cohort and provide
a biological justification for the most common empirical formulation of PSA
dynamics. We also found three model-based prognostic variables: the
proliferation rate of the survival fraction, the ratio of radiation-induced
cell death rate to the survival proliferation rate, and the time to PSA nadir
since treatment termination. We argue that these markers may enable the
early identification of biochemical relapse, which would permit physicians
to subsequently adapt patient monitoring to optimize the detection and
treatment of cancer recurrence.
1. Introduction
Prostate cancer (PCa) is a major health burden among ageing men worldwide
[1]. External beam radiation therapy (EBRT) is a feasible treatment for patients
of all ages and PCa risk groups [1–3]. In EBRT, radiation is delivered from an
outside beam aiming at disrupting the DNA in the tumour cells’ nuclei,
which forces them to undergo programmed cell death due to excessive
DNA damage accumulated from both radiation and the previous genetic
alterations that generate and support PCa [4]. EBRT requires a precise
planning of the radiation dose quantity, distribution over the prostate organ
and temporal delivery [1,2]. Classical EBRT plans deliver a total dose of
74–80 Gy in 2 Gy fractions. Moderately hypofractionated plans (60–66 Gy
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delivered in 3 Gy fractions) are also used after recent
clinical trials that have shown that they are non-inferior to
conventional EBRT [1]. Neoadjuvant and adjuvant androgen
deprivation therapy (ADT) may improve EBRT performance,
but can also provoke bothersome side effects (e.g. low
libido, impotence, anaemia, osteoporosis, depression).
Hence, combination of EBRT with ADT is only recommended
for intermediate-risk PCa (four to six months) and manda-
tory for high-risk tumours (two to three years) [1]. Local
recurrence after EBRT can be managed with radical prosta-
tectomy, cryoablation, brachytherapy and high-intensity
focused ultrasound, while patients with advanced PCa are
usually prescribed ADT, chemotherapy or a combination of
both [1,2].

Patient monitoring after conclusion of EBRT largely
relies on prostate-specific antigen (PSA) levels [1,2], which
is a common biomarker whose levels in blood tend to rise
during PCa [1,2]. Radiation-induced tumour cell death
causes PSA to decrease after EBRT, so a continued rise in
PSA may be indicative of PCa recurrence due to thriving
cancerous cells surviving radiation therapy. However, PSA
may also be affected by natural background fluctuations
(e.g. diet, lifestyle), a continuous smooth increase due to
prostate enlargement caused by benign prostatic hyperplasia
(BPH), and sudden rises due to ceasing ADT or to the
so-called PSA bounce (a transient rise of at least 0.1 to
0.5 ng ml−1 usually within 24 months after EBRT [5,6]).
Therefore, physicians require robust criteria to identify
when a rise in PSA corresponds to a PCa recurrence. Initially,
biochemical relapse after EBRT was defined as three consecu-
tive rises of PSA after the minimum post-EBRT PSA value
registered for a given patient (PSA nadir) [1,2]. Currently, a
superior criterion defines biochemical relapse as an increase
larger than 2 ng ml−1 over PSA nadir [1,2], which correlates
better with clinical recurrence and patient survival. The
former three-point rule is still used as a warning sign in
patient monitoring.

However, these criteria of biochemical relapse detection
require PSA to reach a minima and start increasing, which
may result in delays in the application of further treatments.
Also, this relapse measure does not inform about the
expected PCa prognosis. The definition of early markers of
PCa recurrence and malignancy would enable physicians to
successfully control the disease with an appropriate salvage
treatment. This is the purpose of multiple studies aimed at
analysing PSA dynamics after EBRT. A high value of PSA
nadir, a short time to reach PSA nadir after EBRT termination
and short PSA doubling time (or high PSA velocity) during
biochemical relapse have been correlated with metastatic dis-
ease and reduced patient survival [6–10]. While these studies
focus on long-term PSA dynamics, only a few investigations
have focused on analysing the PSA evolution shortly after
EBRT conclusion. A rising PSA trend, high PSA levels or a
rapid PSA decline shortly after EBRT have been linked with
poorer prognosis and patient survival [11–13]. To gain further
insight, post-EBRT PSA dynamics has also been quantitat-
ively described by fitting mathematical formulae to PSA
longitudinal data in different patient cohorts [14–18]. PSA
decline after EBRT in cured patients is usually described
with an exponential decay (possibly added to a constant or
a slowly increasing linear term accounting for benign
growth), while a bi-exponential formula best represents the
PSA decrease and posterior rise in biochemically relapsing
patients [14–16]. This bi-exponential formula has also been
leveraged in all cases, such that parametrization using PSA
data for cured patients will cause the rising branch to
vanish [17,18]. Still, the choice of the mathematical formula
in the vast majority of quantitative studies on PSA dynamics
only relies on the empirical observation of PSA temporal
trends following EBRT and does not account for the under-
lying tumour dynamics, which is ultimately regulating the
PCa recurrence.

Here, we present a patient-specific mathematical formu-
lation of PSA dynamics based on biological mechanisms
describing tumour response to radiation. Mechanistic
mathematical modelling of cancer and response to treat-
ments have improved the understanding of tumour growth
and can assist physicians in clinical decision-making on a
personalized basis [19–23]. Some mechanistic modelling
studies have explored the connection between tumour and
PSA dynamics in untreated PCa growth [24–27], under
hormonal therapy [28–32], and after radical prostatectomy
[33,34]. Radiation effects is a rich topic in the literature of
computational modelling of cancer [20–23,35–39]. Several
mathematical models have been proposed to describe
radiation effects on tumour cells (e.g. cytotoxic action, cell-
cycle arrest, promotion of apoptosis). The linear-quadratic
model is arguably the most widely used formulation
[20–22,35–37,40,41]. However, the linear-quadratic model
inherently assumes a relatively fast response to radiotherapy
and hence this paradigm works better in rapidly growing
tumours (e.g. glioblastoma multiforme). For slowly growing
tumours, such as low-grade glioma or PCa, the late response
to radiation requires to account for repopulation of tumour
cells, i.e. the underlying tumour dynamics [23,42,43].
Although previous modelling efforts have explored alterna-
tive formulations of radiation effects on PCa [42–45],
mechanistic mathematical descriptions of the complete evol-
ution of prostatic tumour growth and PSA after the delivery
of radiotherapy are lacking. Our mathematical formula-
tion addresses this challenge with minimal assumptions on
radiation effects.
2. Methods
2.1. Patients
Anonymized patient data were obtained from Centro Oncológico
de Galicia (COG, A Coruña, Spain). Ethics approval was
obtained from Comité Autonómico de Ética da Investigación
de Galicia (Santiago de Compostela, Spain). Informed consent
was not required for the patient data used in this study.

A total of 1588 men diagnosed with localized PCa confirmed
at COG (stage T1 to T2, Gleason score less than 8) and treated
with EBRT in this institution between 2009 and 2015 were
considered for inclusion in the study. Inclusion criteria were
first-line treatment of EBRT delivered only at COG and more
than 2 years of PSA monitoring with at least 5 PSA values after
conclusion of EBRT. Exclusion criteria were a previous neoplastic
disease prior to PCa, any other treatment for PCa (e.g. ADT,
radical prostatectomy, radiotherapy, chemotherapy) and EBRT
without radical intent.

A total of 71 patients satisfied the inclusion criteria and did
not qualify for any of the exclusion criteria. EBRT was either con-
ventional (64 patients, 2 Gy/dose) or hypofractionated (seven
patients, 3 Gy/dose). In both cases, the original EBRT plan con-
sisted of series of five daily doses delivered on weekdays



Table 1. Characteristics of the patient cohort. IQR, interquartile range.

characteristic

all patients (n = 71) cured patients (n = 64) relapsing patients (n = 7)

median IQR range median IQR range median IQR range

clinical

Pd (ng ml
−1) 6.8 (4.9, 9.1) (0.6, 25.4) 6.6 (4.9, 8.9) (0.6, 18.9) 10.1 (5.6,14.7) (3.8,25.4)

Gleason score 6 (6, 7) (4, 7) 6 (6, 7) (4, 7) 6 (6, 7) (6, 7)

age at EBRT (yr) 76 (73, 78) (63, 82) 76 (73, 78) (63, 82) 74 (71, 78) (68, 80)

radiation

total dose (Gy) 76 (74, 76) (60, 78) 76 (74, 76) (60, 78) 76 (76, 76) (76, 78)

doses 38 (37, 38) (20, 39) 38 (37, 38) (20, 39) 38 (38, 38) (38, 39)

EBRT duration (mo) 1.9 (1.8, 2.1) (0.9, 3.9) 1.9 (1.8, 2.1) (0.9, 3.9) 2.0 (2.0, 3.5) (1.9, 3.7)

PSA history

number of PSA values

total 9 (7, 10) (6, 15) 9 (8, 10) (6, 15) 8 (7, 9) (6, 10)

pre-EBRT 1 (1, 2) (1, 7) 1 (1, 2) (1, 7) 1 (1, 2) (1, 2)

post-EBRT 7 (6, 8) (5, 12) 7 (6, 8) (5, 12) 6 (5, 8) (5, 9)

follow-up time (mo)

total 56.8 (51.7, 59.4) (38.3, 69.5) 56.7 (51.4, 59.3) (40.8, 69.5) 58.2 (54.3, 61.1) (38.3, 66.4)

pre-EBRT 8.9 (6.3, 13.6) (2.2, 27.8) 9.0 (6.3, 13.6) (2.2, 27.8) 8.9 (7.4, 15.2) (5.3, 20.8)

post-EBRT 43.4 (36.9, 47.8) (27.9, 59.7) 42.7 (37.0, 48.5) (27.9, 59.7) 43.5 (37.6, 46.7) (29.2, 53.6)
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followed by two days of rest during the weekend. For simplicity,
in this preliminary study, we pooled all patients together without
differentiating radiation plans. Seven patients experienced bio-
chemical relapse (either three consecutive increasing values
of PSA or an increase of more than 2 ng ml−1 over PSA nadir),
of which four had reported evidence of PCa recurrence. We
will refer to those patients who did not show biochemical recur-
rence after EBRT as cured patients. Table 1 summarises the
characteristics of the patient cohort. Additionally, 43 cured
patients and three biochemically relapsing patients had T1
cancer, whereas 21 cured patients and four biochemically
relapsing patients had T2 cancer.
2.2. Mathematical models
2.2.1. General formulation
Serum PSA P(t) is generally assumed to be proportional to the
prostatic tumour mass and it is known to approximately follow
an exponential trend in time [1,2,24–26]. Hence, if we denote
the number of tumour cells by N(t), then

P(t) ¼ rN(t) ¼ rN0 e
t
tn ¼ P0 e

t
tn , (2:1)

where ρ is a proportionality constant, τn is the characteristic
time of net proliferation, and N0 =N(t0) and P0 = P(t0) are
the population of tumour cells and serum PSA at a time
t0, respectively.

EBRT for PCa consists of nd radiation doses delivered at times
{ti}i¼1,...,nd . We will assume that all doses are equal, which applies
to our patient cohort. After the delivery of the k-th radiation dose
at time tk, we assume that a fraction of tumour cells ~Dk(t) is irre-
versibly damaged and undergoes cell death after a characteristic
time τd, while the remaining fraction of tumour cells Sk(t) sur-
vives and continues to grow with a characteristic time of net
proliferation τs.
The dynamics of ~Dk(t) and Sk(t) are given by the following set
of ordinary differential equations,

dSk
dt

¼ Sk
ts

, Sk(tk) ¼ RdSk�1(tk) (2:2a)

d~Dk

dt
¼ �

~Dk

td
, ~Dk(tk) ¼ (1� Rd)Sk�1(tk), (2:2b)

for each interval tk≤ t < tk+1 and where S0(t1) ¼ N(t1) ¼ N0 et1=tn ,
~D0(t1) ¼ 0, and Rd is the dose-dependent fraction of surviving
cells after the delivery of the k-th radiation. We do not assume
any specific formulation for Rd, such as in most literature of com-
putational modelling of radiation effects [20–22,35–37,40,41].
Instead, we directly compute Rd from PSA data, making the
model more flexible and easier to parametrize. As each patient
always receives the same dose per session, it suffices to compute
one value of Rd per patient. The solutions to equations (2.2) are

Sk(t) ¼ RdSk�1(tk) e
t�tk
ts (2:3a)

and ~Dk(t) ¼ (1� Rd)Sk�1(tk) e
�t�tk

td , (2:3b)

for tk≤ t < tk+1.
Let Dk(t) be the accumulated population of irreversibly

damaged tumour cells due to the radiation doses already
delivered for tk≤ t < tk+1. Its dynamics satisfies the equation

Dk(t) ¼ Dk�1(t)þ ~Dk(t), (2:4)

where D0(t) = 0. Then, the population of total cancerous cells
after the k-th radiation dose Nk(t) and the corresponding serum
PSA concentration Pk(t) can be computed as

Nk(t) ¼ Sk(t)þDk(t) (2:5a)

and Pk(t) ¼ rNk(t) ¼ r(Sk(t)þDk(t)), (2:5b)
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where

Sk(t) ¼ RdSk�1(tk) e
t�tk
ts (2:6a)

and Dk(t) ¼ Dk�1(t)þ (1� Rd)Sk�1(tk) e
�t�tk

td , (2:6b)

for tk≤ t < tk+1.
Using equations (2.6) recursively stepwise from the first

radiation dose, we obtain the following explicit formulas for
the population of proliferative and damaged tumour cells

Sk(t) ¼ Rk
dN0u1 e

t
ts (2:7a)

and Dk(t) ¼ (1� Rd)
Xk
i¼1

Ri�1
d e(ti�t1)

�
1
ts
þ 1

td

� !
N0u1u2 e

� t
td , (2:7b)

for tk≤ t< tk+1 and where u1¼ et1
1
tn
� 1

tsð Þ and u2¼et1
�

1
ts
þ 1

td

�
. Hence,

Pk(t) ¼ P0u1[Rk
d e

t
ts

þ(1� Rd)
Xk
i¼1

Ri�1
d e(ti�t1)

�
1
ts
þ 1

td

� !
u2 e

� t
td

#
, (2:8)

for tk≤ t< tk+1 and where we have used that P0 = ρ N0.
:20190195
2.2.2. Periodic-dose model
In the particular case in which the radiation doses are equispaced
in time, tk = t1 + (k− 1)τr. Then, equation (2.7b) simplifies to

Dk(t) ¼ (1� Rd)
1� Rk

d e
ktr
�

1
ts
þ 1

td

�
1� Rd e

tr

�
1
ts
þ 1

td

� N0u1u2 e
� t

td , (2:9)

and hence we may rewrite equation (2.8) as

Pk(t) ¼ P0u1[Rk
d e

t
ts

þ(1� Rd)
1� Rk

d e
ktr
�

1
ts
þ 1

td

�
1� Rd e

tr

�
1
ts
þ 1

td

� u2 e
� t

td

35: (2:10)

for tk≤ t < tk+1 (see details in electronic supplementary material,
annex S2).
2.2.3. Single-dose model
Alternatively, we may assume that the whole radiation treatment
is delivered at a certain time tD. Then, S(t) and D(t) are given by

S(t) ¼ RDN0u1 e
t
ts (2:11a)

and D(t) ¼ (1� RD)N0u1u2 e
� t

td , (2:11b)

where RD is the fraction of surviving cells after the total

treatment dose, u1 ¼ etD
�

1
tn
� 1

ts

�
and u2 ¼ etD

�
1
ts
þ 1

td

�
. By using

equations (2.5) we get

P(t) ¼ P0u1[RD e
t
ts þ (1� RD)u2 e

� t
td ]: (2:12)
2.2.4. Non-dimensional parameters and prediction of
prostate-specific antigen nadir

After the completion of radiotherapy, i.e. for t . tnd, the evolution
of PSA will be given by equation (2.8), which for simplicity we
will denote by P(t):

P(t) ¼ P0u1[R
nd
d e

t
ts

þ(1� Rd)
Xnd
i¼1

Ri�1
d e(ti�t1)

�
1
ts
þ 1

td

� !
u2 e

� t
td

#
:

(2:13)

Let us define the non-dimensional counterparts of P and time t,
respectively, as bP ¼ P=(P0R

nd
d u1) and t̂ ¼ t=td. Then, we may
rewrite equation (2.13) in non-dimensional form as

bP(̂t) ¼ e
td
ts
t̂ þ (1� Rd)

Rnd
d

Xnd
i¼1

Ri�1
d e(t̂i�t̂1)

�
1
ts
þ 1

td

� !
u2 e�t̂

¼ ebt̂ þ au2 e�t̂, (2:14)

where we have introduced two non-dimensional parameters

a ¼ (1� Rd)
Rnd
d

Xnd
i¼1

Ri�1
d e(t̂i�t̂1)

�
1
ts
þ 1

td

� !
(2:15a)

and b ¼ td
ts
: (2:15b)

While α may represent the efficacy of the radiation plan, β con-
trols the dynamics of the tumour cell populations and PSA
after radiation (see §4.1). Thus, these parameters may hold
predictive value, which will assess in this work.

Following a similar procedure, we may also obtain the
expressions of α and β for both the periodic-dose model

a ¼ (1� Rd)
Rnd
d

1� Rnd
d endtr

�
1
ts
þ 1

td

�
1� Rd e

tr

�
1
ts
þ 1

td

� and b ¼ td
ts
, (2:16)

and the single-dose model

a ¼ (1� RD)
RD

and b ¼ td
ts
: (2:17)

Additionally, the derivative of equation (2.14) with respect to
t̂ provides the non-dimensional PSA velocity

bvP (̂t) ¼ dbP(̂t)
dt̂

¼ b ebt̂ � au2 e�t̂: (2:18)

According to their definition α, θ2 and β, are positive quantities.
When αθ2/β > 1, then bP decreases for at least some time after
radiotherapy. Then, we can compute the time to PSA nadir, tn,
by solving bvP (̂tn) ¼ 0 for t̂n and substituting the definition of θ2
(see §2.2.1), yielding

tn ¼ t1 þ td
ln (a=b)
1þ b

: (2:19)

Hence, the time to PSA nadir Pn since the completion of
EBRT at time tnd is given by Dtn ¼ tn � tnd .

2.2.5. Model selection for analysis and further assumptions
Radiation plans may experience delays due to treatment side-
effects, holidays, machine routine maintenance or machine failures.
The reported values of EBRT duration in table 1 suggest that these
interruptions were common in our patient cohort. In addition, the
information about EBRT in our patient dataset consists of the dates
of treatment initiation and termination, the radiation dose, and the
number of doses. This input information is not compatible with an
accurate use of our general model (§2.2.1), which would require the
exact dates of EBRT sessions. Thus, in this work, we will focus our
analysis on the periodic-dose model (§2.2.2) and the single-dose
model (§2.2.3). The possible difference in results between both
models, if any, would be related to treatment duration effects.
Electronic supplementary material, table S1 summarizes the main
quantities in all models. Electronic supplementary material,
annex S1, table S2 and figure S1 show that the periodic-dose
model is virtually equivalent to the general formulation, and we
will analyse the single-dose model as a feasible simplification of
both the general and periodic-dose models.

We will further assume that EBRT does not change the pro-
liferation rate of surviving cells, so that τn = τs and θ1 = 1. This
assumption is common in the literature [21–23], contributes to
the simplicity of our models, and facilitates parametrization,
especially in those patients with a limited number of PSA values



Table 2. Initial values and bounds for models’ parameters. P(1) is the first
PSA value available for each patient.

parameter
initial
value

lower
bound

upper
bound

P0 (ng ml
−1) P(1) 0 50

Rd 0.9 0 1

RD 0:9nd 0 1

τs (mo) 50 0.5 500

τd (mo) 2 0.5 500
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before EBRT. Additionally, we choose t0 = 0 and we will assume
that tD is the date of EBRT initiation in the single-dose model.

2.3. Statistical methods
We leveraged nonlinear least squares using the trust-region
method to estimate the parameters of our models in a patient-
specific manner. Table 2 shows the initial values for the algorithm,
the lower bounds and the upper bounds used to fit the single and
the periodic-dose models for each patient. We assessed the good-
ness of fit with the sum of squared errors (SSE), the R2, the
adjusted R2 with respect to the degrees-of-freedom in error (R̂

2
)

and the root mean squared error (RMSE).
We used the Wilcoxon rank-sum test (WRST) to identify

potential markers of biochemical relapse by analysing whether
model parameters, non-dimensional parameters, PSA nadir and
time to PSA nadir since EBRT completion differed between
cured and biochemically relapsing patients. We also tested the
goodness-of-fit statistics to analyse whether the estimation of
PSA dynamics was more accurate in either patient subgroup.
Additionally, we compared the values of model parameters
and model-derived quantities obtained with each PSA dynamics
formulation. We defined R ¼ Rnd

d in the periodic-dose model and
R =RD in the single-dose model to compare the values of Rd and
RD, respectively. This study was performed both globally by
using the WRST and patient-wise by using the Wilcoxon
signed-rank test. We used the same tests to compare the good-
ness-of-fit statistics produced by each mathematical model, and
hence to determine whether one of them provided a superior
fit. The level of significance was set at 5% for all statistical tests.

We constructed the receiver operating characteristic (ROC)
curves of the quantities that changed significantly between cured
and biochemically relapsing patients to assess their ability to clas-
sify patients in either group. We iteratively varied a threshold
for each of these quantities independently across the whole range
of values provided by each model. Threshold stepping was deter-
mined as the difference between the maximum and the minimum
value divided by 1000. For each threshold, we computed sensi-
tivity, specificity and accuracy. We also computed the area under
the ROC curve (AUC) by using the trapezoidal rule and the
optimal performance point by using Youden’s index.

Calculations were performed in Matlab (Release R2017b, The
Mathworks, Inc., Natick, MA, USA). Parameter estimation was
performed with the Curve Fitting Toolbox. Statistical tests were
run with the Statistics and Machine Learning Toolbox. We also
computed the 95% confidence bounds for each model fit with
the Curve Fitting Toolbox.
3. Results
3.1. Model fitting
The periodic-dosemodel and the single-dosemodel succeeded
in fitting individual patient PSA data. Figure 1 portrays the
results for both models corresponding to two cured patients
and two patients with biochemical relapse. Table 3 shows
that model fitting was extraordinarily precise with both
PSA dynamics models for the vast majority of patients. We
observed that superior fitting results were obtained when
several PSA data were distributed in an approximately even
manner right before and after EBRT (see electronic supplemen-
tary material, figure S2). Conversely, few pre-EBRT PSAvalues
or few post-EBRT PSA measurements close to treatment ter-
mination could hinder the accurate reproduction of PSA
dynamics (see electronic supplementary material, figure S3).
High fluctuations in PSA data always worsened the goodness
of fit (see electronic supplementary material, figure S4).

We did not identify any significant difference between
the goodness-of-fit statistics for cured and biochemically
relapsing patients with any of the two PSA dynamics models
in two-sided WRSTs (table 3). Nevertheless, we observed
that our models tended to reproduce PSA dynamics with
slightly superior accuracy for the cured patients of this cohort
(table 3). The goodness-of-fit statistics of each model did not
globally differ neither in the whole cohort nor in any patient
subgroup according to two-sided WRSTs (table 4). However,
two-sided Wilcoxon signed-rank tests identified significant
differences in the accuracy of the fit obtained with each
model for each patient (table 4). Corresponding one-sidedWil-
coxon signed rank tests showed that the single-dose model
produced lower SSE (p = 1.62 × 10−4) and RMSE (p = 2.20 ×
10−4), as well as higher R2 (p = 1.08 × 10−4) and R̂

2
(p = 1.19 ×

10−4). We observed the same results for the subgroup of
cured patients (table 4), where one-sided tests also demon-
strated that the single-dose model rendered lower SSE (p =
3.62 × 10−4) and RMSE (p = 4.72 × 10−4) as well as higher R2

(p = 2.32 × 10−4) and R̂
2

(p = 2.38 × 10−4). No model was
found to provide a significantly superior accuracy in the sub-
group of biochemically relapsing patients (table 4).
3.2. Model-based predictors of biochemical relapse
The values of the parameters P0, Rd or RD, τs and τd obtained
with the periodic-dose model and the single-dose model are
summarized in table 5. We also used them to compute each
model’s non-dimensional parameters (α, β), PSA nadir (Pn),
and time to PSA nadir since EBRT termination (Δtn) for
each patient, also reported in table 5. P0 was typically close
to the first PSA value available for each patient, but it was
not necessarily coincident (figure 1). The estimation of Rd,
RD and τd provided values inside the parametric domain
defined in table 2 for the vast majority of patients. However,
we obtained τs≈ 500 (upper bound) for many patients,
especially with the periodic-dose model. This situation only
occurred for cured patients, for whom larger values of τs
are expected. Indeed, both large τs and very small remnant
proliferative tumour cell populations after EBRT lead to simi-
lar results, i.e. no tumour regrowth for the time scales studied
leads to some uncertainty in the parameter values. However,
this fact did not compromise the accuracy of the model fitting
to the data (see table 3; electronic supplementary material,
figure S5).

For the periodic-dose model, two-sided WRSTs identified
τs, β and Δtn to be significantly different between cured and
biochemically relapsing patients (table 5). The matching one-
sided tests revealed that biochemically relapsing patients had
smaller τs (p = 4.39 × 10−4), larger β (p = 6.17 × 10−4) and shorter
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Figure 1. Curve fitting results for two cured patients (a,b) and two patients with biochemical recurrence (c,d ) using both the periodic-dose model (solid green line)
and the single-dose model (dashed blue line). For each patient, each row shows, respectively, the fit provided by the periodic-dose model, the fit obtained with the
single-dose model, and a comparison of the fits computed with either model. The shaded areas along the model fits in the first two subfigures of each row depict
the corresponding 95% confidence interval of the model fit. PSA values are depicted as red bullets and the duration of EBRT is shaded in light grey. (Online version
in colour.)

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

16:20190195

6

Δtn (p = 0.0123). For the single-dose model, we also found τs, β
and Δtn to significantly differ between cured and biochemically
relapsing patients in two-sided WRSTs (table 5). Again, the
corresponding one-sided tests showed that biochemically
relapsing patients exhibited shorter τs (p = 4.70 × 10−4), higher
β (p = 8.61 × 10−4) and smaller Δtn (p = 0.0111). Figure 2 depicts
the boxplots corresponding to the values of τs, β and Δtn
obtained with the periodic-dose model and the single-dose
model for the whole cohort, cured patients and biochemically
relapsing patients. These boxplots show how τs, β and Δtn
cluster around different values in cured and biochemically
relapsing patients. Among the other quantities of interest, the
non-dimensional parameter α was close to the significance
threshold for both models, as well as RD and Pn in the
single-dose model.

Except for P0, the two-sided Wilcoxon signed-rank tests
showed that the values of the remainder parameters, the
non-dimensional parameters, the PSA nadir, and the time
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Table 4. p-values obtained for the two-sided statistical tests to search for
significant differences in goodness-of-fit between the periodic-dose and
single-dose models. Results are shown for the whole cohort and for the
subgroups of cured and biochemically relapsing patients. The significance
level was set at p < 0.05. Significant p-values in bold.

statistic

patients

all
(n = 71)

cured
(n = 64)

relapsing
(n = 7)

Wilcoxon signed-rank tests

SSE 3.20 × 10−4 7.15 × 10−4 0.297

R2 2.14 × 10−4 4.58 × 10−4 0.297

R̂
2

2.35 × 10−4 4.70 × 10−4 0.297

RMSE 4.35 × 10−4 9.32 × 10−4 0.297

Wilcoxon rank-sum tests

SSE 0.642 0.618 0.805

R2 0.689 0.715 0.620

R̂
2

0.680 0.673 0.710

RMSE 0.665 0.629 0.805
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to PSA nadir obtained with either PSA dynamics model for
each patient were significantly different within the whole
cohort and the subgroup of cured patients (table 6). Corre-
sponding one-sided tests in the whole cohort revealed that
the single-dose model provided smaller R (p < 1 × 10−6), τs
(p = 5.47 × 10−5), α (p < 1 × 10−6) and Pn (p = 0.004) as well
as larger τd (p < 1 × 10−6), β (p < 1 × 10−6) and Δtn (p < 1 ×
10−6). Within the subgroup of cured patients, one-sided Wil-
coxon signed-rank tests also revealed that the single-dose
model produced lower values of R (p < 1 × 10−6), τs (p =
2.23 × 10−5), α (p < 1 × 10−6) and Pn (p = 1.58 × 10−4) as well
as larger values of τd (p < 1 × 10−6), β (p < 1 × 10−6) and Δtn
(p < 1 × 10−6). Within the subgroup of biochemically relap-
sing patients, only R, τd, β and α were found to significantly
vary with either model for each patient in two-sided
Wilcoxon signed-rank tests (table 6). Corresponding one-
sided tests showed that the single-dose model produced
lower values of R (p = 0.023) and α (p = 0.008) as well as
larger values of τd (p = 0.016) and β (p = 0.016). However,
the global comparison of the values provided by either
model using two-sided WRSTs did not find any significant
difference neither within the whole cohort nor within any
of the patient subgroups (table 6).
3.3. Receiver operating characteristic curves
Figure 3 shows theROC curves for the three quantities thatwere
significantly different between the groups of cured and bio-
chemically relapsing patients: τs, β and Δtn. The AUC and
optimal performance point obtained for each quantity and
model are shown in table 7. The two ROC curves for each clas-
sifier were very similar and provided comparable AUC values
and optimal points of performance, especially for τs. This
suggests the insensitivity in the accuracy of these classifiers
with respect to the choice ofmathematicalmodel to fit PSAdata.
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The shape of the ROC curves, the AUC, and the balance
between optimal sensitivity and specificity showed that τs
and β rendered almost equally outstanding results and that
both performed better than Δtn, which only showed a fairly sat-
isfactory behaviour. Parameter τs provided the highest AUC
and optimal sensitivity. While β provided a slightly lower
AUC than τs, it also showed a better trade-off between sensi-
tivity and specificity at optimal performance point. Δtn was
found to provide the highest optimal specificity, but the corre-
sponding optimal sensitivity and AUCwere remarkably lower
with respect to those of τs and β. All potential classifiers showed
similar accuracy at optimal performance point. However, as the
prevalence of biochemical relapsewas low in our cohort (seven
out of 71 cases), the accuracy of classifierswas largely driven by
the specificity, almost regardless of sensitivity (table 7). Hence,
Δtn was also found to provide a slightly higher accuracy at
optimal performance point.
4. Discussion
4.1. A robust formulation of prostate-specific antigen

dynamics offering new insights in radiation
effects on prostate cancer

Our models always lead to an explicit bi-exponential formula
of PSA dynamics relying on the coupled dynamics of the radi-
ation-induced irreversibly damaged tumour cell fraction and
the surviving tumour cell population. Consequently, we pro-
vided a biophysical meaning for the parameters appearing
in the empirical biexponential formulations [14–18]. Both
models achieved a highly remarkable accuracy in the fitting
of patient’s PSA longitudinal data in our cohort (table 3). We
observed that even a limited amount of PSA data can provide
an excellent fit with both models as long as (i) sufficient PSA
values are evenly distributed closely around EBRT and
(ii) they do not exhibit large fluctuations (see electronic sup-
plementary material, figures S2–S4). Despite its apparent
simplicity, our results show that the single-dose model suffices
to accurately describe PSA dynamics before and after EBRT,
even providing superior fittings than the more complex
periodic-dose model (tables 3 and 4). This also means that
the single-dose model is an excellent surrogate for the general
model in equation (2.8), which is virtually equivalent to the
periodic-dose model (see electronic supplementary material,
figure S1 and table S2). This extraordinary balance between
simplicity and accuracy is an appealing feature that facilitates
forthcoming research on PSA dynamics and its actual
clinical use.

By formally analysing our models, we found that the
evolution of PSA after EBRT is characterised by only two
non-dimensional parameters: α and β (see §2.2.4). The non-
dimensional parameter α controls the magnitude of PSA
decay due to EBRT, i.e. the amount of PSA eliminated due
to radiation-induced tumour cell death. Large values of α
are related to low values of Rd (equations (2.15a) and (2.16))
or RD (equation (2.17)) what means that radiation successfully
eliminates tumour cells. Thus, α accounts for the efficacy of
EBRT. As β = τd/τs, this non-dimensional parameter controls
the coupled dynamics of the irreversibly damaged and sur-
viving cell fractions that ultimately translates into the
observable temporal trends of PSA after EBRT. Because τd <
τs (see table 5), larger values of β indicate post-radiation
tumour dynamics to be mostly driven by proliferation of
the surviving fraction, while lower values of β point out
towards a dominance of radiation-induced tumour cell death.

Interestingly, the efficacy of EBRT was better in biochemi-
cally relapsing patients, who showed larger α and lower
surviving fractions (Rd or RD) than cured patients, even
though these observations were statistically not significant
(table 5). A dramatic decay of PSA following EBRT has also
been linked to PCa recurrence in the literature [13]. We
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Table 6. p-values obtained for the two-sided statistical tests to search for
significant differences in model parameters, non-dimensional parameters,
PSA nadir, and time to PSA nadir since EBRT completion between the
periodic-dose and single-dose models. Results are shown for the whole
cohort and for the subgroups of cured and biochemically relapsing patients.
The significance level was set at p < 0.05. Significant p-values are in bold.

quantity

patients

all
(n = 71)

cured
(n = 64)

relapsing
(n = 7)

Wilcoxon signed-rank tests

P0 0.563 0.288 0.297

R <1 × 10−6 <1 × 10−6 0.047

τd <1 × 10−6 <1 × 10−6 0.031

τs 1.08 × 10−5 4.39 × 10−5 0.078

β <1 × 10−6 <1 × 10−6 0.031

α <1 × 10−6 1.12 × 10−6 0.016

Pn 8.12 × 10−3 3.13 × 10−4 0.078

Δtn <1 × 10−6 <1 × 10−6 0.109

Wilcoxon rank-sum tests

P0 1.000 0.994 0.902

R 0.677 0.673 0.805

τd 0.170 0.180 0.456

τs 0.633 0.585 0.902

β 0.281 0.238 0.710

α 0.308 0.320 0.710

Pn 0.941 0.918 0.805

Δtn 0.372 0.359 0.805
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observed that biochemically relapsing patients showed smal-
ler τs (table 5), i.e. tumours proliferated faster, which may
explain this counterintuitive phenomenon: programmed cell
death is triggered before cell division in case of major genetic
damage [4], so fast proliferation accelerates the elimination
of tumour cells affected by radiation, which translates in a
dramatic decrease in total tumour cell number and thus
PSA. This mechanism has also been proposed to explain
the poorer prognosis of diffuse low-grade glioma patients
who experience a rapid tumour volume decrease following
radiotherapy using both a clinical and mathematical
approach [23,46]. As αwas not significantly different between
biochemically relapsing and cured patients, the latter may
also experience a steep PSA decay after EBRT. Hence, we
require a larger cohort to validate this mechanism in PCa.
4.2. Potential patient classifiers based on tumour
dynamics and identified through prostate-specific
antigen dynamics

This study resulted in three classifiers that showed great poten-
tial to identify biochemically relapsing patients: a short
characteristic time of tumour cell proliferation τs, a large non-
dimensional parameter β, and an early time to PSA nadir
since EBRT termination Δtn (tables 6 and 7). Indeed, both β
and Δtn are inherently controlled by τs. As τd does not vary
much between cured and relapsing patients, large β values
are also a consequence of a small τs (see §4.1). Then, large β pro-
motes an early PSAnadir (see equation (2.19)), which correlates
with PCa recurrence and worse survival rates [8,9]. The
additional dependence ofΔtn on α, which does not significantly
vary between cured and biochemically relapsing patients,
might explain the comparatively worse performance of Δtn as
a patient classifier in ROC analysis with respect to τs and β.

We believe that τs holds a promising, robust prognostic
value for PCa both before and after EBRT. An elevated
tumour cell proliferation rate (i.e. short τs) has been correlated
with increased aggressiveness of PCa in terms of a high
Gleason Score [47], which is a crucial clinical variable in clini-
cal management of PCa that has been linked to a higher
probability of PCa local recurrence and distant metastases
[2,7,8]. While Gleason Score is normally determined from
histopathological assessment of biopsy samples, τs would
enable to non-invasively monitor Gleason Score and to justify
further biopsies when model estimations suggest a more
aggressive cancer than the baseline, diagnostic biopsy.
Moreover, the PSA doubling times and velocity on the
rising branch in biochemically relapsing patients can be
approximated as DT≈ τs ln2 and vP≈ (P/τs) for all models
in §2.2. Hence, small values of τs would render short dou-
bling times and high velocities of PSA increase, which have
been associated to poor prognosis in PCa recurrence [6–
8,10]. Our estimation of τs in biochemically relapsing patients
(table 5) agrees with previously reported tumour doubling
times [48], PSA relapsing doubling times [7,10], and time to
PSA nadir since EBRT termination [9]. Parameter τs also
enables to estimate pretreatment PSA doubling times and vel-
ocity, whose prognostic value is controversial [49]. Our model
provides a robust and systematic procedure to estimate these
dynamic variables, which may facilitate the assessment of
their role as PCa prognostic markers.
4.3. Limitations and future developments
Our study presents several limitations. The patient cohort fea-
tured a limited number of patients experiencing biochemical
relapse, which makes it difficult to accurately identify and
assess patient classifiers. Our results need to be tested in larger
independent cohorts, in which we could also explore the corre-
lations between common PCa clinical characteristics and model
parameters, non-dimensional parameters and PSA nadir esti-
mation. While our models were rather robust against PSA
fluctuations, a larger cohort would also contribute to reduce
their effect on statistical analysis. We could further reduce the
impact of these fluctuations by using robust nonlinear least-
square methods, which associate a weight to each PSA value
that tends to zero as it deviates from the average trend. Further-
more, we are using biochemical relapse as a surrogate for PCa
recurrence. Ideally, our PSA dynamics models should be tested
to identify clinically confirmed PCa recurrence after EBRT. We
plan to specifically update our cohort with patients for whom
such evidence is available to conduct further research with our
PSA formulations. Hence, we could also characterize local
recurrence and distant metastases using model-based markers.

Despite ourmethods couldonlyapproximate τs≈ 500 (upper
bound) for some cured patients, we believe that this is a minor
limitation for four reasons: (i) large τs is expected in cured
patients, so τs = 500 mo might be an acceptable approximation;
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Figure 3. ROC curves for the different patient classifiers identified in the statistical analysis: (a) the characteristic time of tumour cell proliferation τs, (b) the non-
dimensional parameter β = τd/τs and (c) the time to PSA nadir since EBRT termination Δtn. (Online version in colour.)

Table 7. Analysis of ROC curves.

classifier

measure τs β Δtn

periodic-dose model

AUC 0.887 0.875 0.759

optimal point

threshold 42.6 mo 5.15 × 10−2 11.2 mo

specificity 78.1% 82.8% 89.1%

sensitivity 100% 85.7% 57.1%

accuracy 80.3% 83.1% 85.9%

single-dose model

AUC 0.885 0.865 0.768

optimal point

threshold 41.6 mo 6.19 × 10−2 11.8 mo

specificity 78.1% 81.3% 85.9%

sensitivity 100% 85.7% 57.1%

accuracy 80.3% 81.7% 83.1%
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(ii) model fitting was not compromised (see electronic sup-
plementary material, figure S5); (iii) τs plays a little role in post-
EBRT dynamics of cured patients; and (iv) τs = 500 produces
small β and large Δtn, contributing to classify the patient as
cured. Multiple pre-EBRT PSA values, robust nonlinear least-
squares fitting andproblemnon-dimensionalization could facili-
tate the accurate estimation of τs with our models.

We assumed that the proliferation rate of tumour cells did
not vary after EBRT, i.e. τn≈ τs.While this is a common assump-
tion [21–23], recent studies suggest that radiation may also
affect tumour proliferation [22,50]. To explore this phenom-
enon in PCa patients undergoing EBRT, we would need to
estimate both τn and τs, which requires multiple PSA data
both before and after EBRT. Additionally, our models do not
differentiate between the PSA produced by PCa and BPH.
We could add a term to equations (2.1) and (2.5b) to include
the BPH contribution PBPH(t) to the tumour-generated PSA
levels, i.e. P(t) = ρN(t) + PBPH(t) and P(t) = ρ (S(t) +D(t)) +
PBPH(t). For times t < 10 years, we may approximate PBPH(t)
with a linear term or another exponential [26,51]. This simple
model update would enable a more accurate determination
of τs and model fitting. We also plan to explore alternative
radiobiological definitions for Rd and RD to refine the model-
ling of radiation effects [20–22,35–37,40–43]. By introducing
an explicit dependence of Rd and RD on the radiation dose
one could pursue more sophisticated optimal EBRT plans [52].

PSA is currently the cornerstone of clinical decision-making
during follow-up after local radical radiotherapy for PCa, sowe
focused our models on this biomarker. Emerging urine and
blood tests are showing a promising performance in PCa diag-
nosis (e.g. PCA3, prostate health index, four kallikrein panel)
and they may complement or even substitute PSA in the
future [1,53]. Circulating tumour cells have also been shown
to contribute to the diagnosis of advanced PCa. However,
these tests are not recommended yet for routine screening due
to the limited and sometimes inconsistent reported data. Once
these biomarkers become routine, their corresponding
dynamics could be coupled with our model to explore their
joint performance to identify biochemically relapsing patients.

Personalised volumetric data of prostate and tumour could
further refine the estimation of PSA production by both benign
and malignant tissue [24,25]. Multiparametric magnetic reson-
ance is an emerging imaging technique that provides a wealth
of anatomic data and is increasingly used to diagnose and
monitor mild PCa during active surveillance protocols. In
this context, the underlying tumour dynamics model could
be refined, e.g. by using a phase-field or Fisher–Kolmogorov
model and linking the variable identifying tumour growth
with PSA production [22,24]. Initial tumour geometry and par-
ameter selection can then be determined by combining
longitudinal PSA and imaging data [19–22,24]. However,
tumour volume is not measured in routine monitoring of
patients after radiotherapy and longitudinal imaging follow-
up for each patient would be required besides the standard
PSA data. Thus, extending our models to include volumetric
data will inevitably require a specific research monitoring
protocol featuring an adequate image acquisition plan.
4.4. Towards patient-specific prostate-specific antigen
monitoring plans and early detection of prostate
cancer recurrence

Our mathematical models can help in the early identification
of biochemically relapsing patients. This requires a good
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parameter identification, for which we recommend collecting
at least three pre-EBRT PSAvalues and no less than four post-
EBRT PSA values. This would translate in measuring PSA
every three to six months before and after EBRT, which is
compatible with current clinical guidelines. This recommen-
dation stems from the results of this study, but we plan to
determine the minimal data that enables an optimal predic-
tion of PSA dynamics with our models in forthcoming
studies. Likewise, we also plan to compare observed PSA
data with simulated PSA trends corresponding to alternative
treatment plans, which may help to determine the window of
curability and best timing for EBRT.

These initial PSA data would allow a first evaluation of the
patient’s risk of relapse. Later, as further PSA data are gathered,
the physician can update the prognostic variables to provide
more accurate patient-specific predictions. Moreover, the pre-
dicted PSA dynamics can suggest an adequate frequency of
new PSA tests to accurately parametrize our models, for
instance, with shorter time intervals to precisely capture the
decay following EBRT, confirm the date of nadir, and character-
ize a potential rising branch in relapsing patients, or longer time
intervals to confirm the plateau or benign linear growth in
cured patients. Hence, physicians could design a personalized
PSA monitoring plan adapted to the unique PSA dynamics of
each patient and informed by the underlying tumour evolution,
instead of the fixed conventional recommendations currently
provided by clinical guidelines.
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