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Antimicrobial resistance (AMR) is one of the greatest public health challenges
we are currently facing. To develop effective interventions against this, it is
essential to understand the processes behind the spread of AMR. These are
partly dependent on the dynamics of horizontal transfer of resistance genes
between bacteria, which can occur by conjugation (direct contact), trans-
formation (uptake from the environment) or transduction (mediated by
bacteriophages). Mathematical modelling is a powerful tool to investigate
the dynamics of AMR; however, the extent of its use to study the horizontal
transfer of AMR genes is currently unclear. In this systematic review, we
searched for mathematical modelling studies that focused on horizontal trans-
fer of AMR genes. We compared their aims and methods using a list of
predetermined criteria and used our results to assess the current state of this
research field. Of the 43 studies we identified, most focused on the transfer
of single genes by conjugation in Escherichia coli in culture and its impact on
the bacterial evolutionary dynamics. Our findings highlight the existence of
an important research gap in the dynamics of transformation and transduction
and the overall public health implications of horizontal transfer of AMRgenes.
To further develop this field and improve our ability to control AMR, it is
essential that we clarify the structural complexity required to study the
dynamics of horizontal gene transfer, which will require cooperation between
microbiologists and modellers.
1. Introduction
Antimicrobial resistance (AMR) is undeniably one of the greatest global public
health challenges we are currently facing [1]. The recent discoveries on the
spread of resistance genes for key antimicrobials such as NDM-1 for carbapenem
resistance [2–4] suggest that to tackle this challenge, instead of only studying the
spread of resistant bacteria, we must understand the processes by which individ-
ual resistance genes spread. The first is ‘vertical gene transfer’, where genes are
passed from parent to progeny during bacterial replication. The second, which
is our focus here, is ‘horizontal gene transfer’ (HGT). This allows bacteria to
acquire genetic material, including AMR genes, from their environment or
other bacteria [5–7]. There are three mechanisms of HGT. First, ‘transformation’
is the capacity of bacteria to intake genetic material from their environment.
Second, ‘conjugation’ occurs when two bacteria come into contact with each
other and form a conjugative bridge, enabling direct exchange of genetic material.
Finally, ‘transduction’ occurs when a bacteriophage (a virus that can infect
bacteria) replicates and packages a bacterial gene instead of its own genetic
material and then acts as a vector and transfers this gene into another bacterium.

The consequences ofHGTofAMR in a bacterial population are varied and can
change depending on the setting where this process occurs. First, HGT can often
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be at the origin of new combinations of resistances to multiple
antimicrobials in single bacteria strains [8]. This is amplified by
the fact that HGT can occur both intraspecies and interspecies
[9], therefore allowing for mixing betweenmany different gene
pools. Fortunately, these resistancemechanisms often impose a
fitness cost that reduces the competitiveness of bacteria with
AMR genes in settings where antibiotics are absent [10],
thereby limiting the increase in the prevalence of these bacteria
in the environment. Studying HGT of AMR can be further
complicated by differences in transfer rates and importance
of transfer mechanisms between bacterial species [11], with
transformation, for example, being rare for Staphylococcus
aureus [12] but common for Neisseria gonorrhoea [13], and by
differences between rates estimated in vitro and in vivo, as
was seen with transduction in Staphylococcus aureus [14] and
conjugation in Klebsiella pneumoniae and Escherichia coli [15].
Finally, HGT dynamics appear to vary depending on the pres-
ence or absence of antibiotics in the surrounding environment
[16–20], therefore requiring studies to be conducted inmultiple
settings to fully capture this process.

It is essential to fully understand HGT of AMR since it
can impact the overall transmission of AMR, and therefore
the predicted effect of interventions against bacterial infections,
to varying degrees depending on the setting. A most striking
example of this is phage therapy, where bacteriophages are
proposed as antimicrobials. A risk is that therapeutic phages
could perform transduction and increase the proportion
of bacteria in the patient which carry a resistance gene. In
that case, if the phage therapy treatment fails to clear all the
bacteria, this could leave the patient at a higher risk of antimi-
crobial-resistant bacteria infection [21,22]. In addition to the
aforementioned differences between bacterial species, HGT
mechanisms themselves are biologically complex. For example,
the capacity to form a conjugative bridge generally requires the
presence of a specific set of ‘tra’ genes [23]. These can them-
selves be transferred, leading to an increase through time in
the prevalence of bacteria that can perform conjugation. Trans-
formation gene expression is extremely variable depending on
the environmental conditions that bacteria are exposed to [6],
and therefore we cannot realistically assume that bacteria are
able to perform transformation at all times. Finally, some
phages can undergo either a ‘lytic cycle’, where they immedi-
ately replicate upon infecting a bacterium, or a ‘lysogenic
cycle’, where they first integrate into the bacterial genome for
a variable duration [12]. Consequently, transduction dynamics
can be further complicated by the characteristics of the phage
life cycle.

Therefore, HGT is complex in its dynamics, and studying
these requires appropriate tools. Mathematical modelling is
often used to study infectious disease processes [24]. It pro-
vides a simulation environment that can be informed by
real-life data, in which dynamics can be disentangled and
easily studied. Mathematical models can be split into ‘deter-
ministic models’, which always generate the same results for
a given set of parameter values [24], and ‘stochastic models’,
which generate variability in their results using random
events [24]. Mathematical modelling is already being used
to study AMR dynamics and their public health implications
[25,26]. For example, it has been employed to study within-
host bacterial dynamics (i.e. the bacterial processes that
occur during colonization or infection of a host) and derive
conclusions on patterns of AMR seen in the host population
[27]. Consequently, it can provide novel insight into optimal
strategies to combat AMR spread by analysing the effect
that these have on the transmission dynamics [28]. However,
existing models may not always capture the relevant and
complex microbiological dynamics of HGT. In this systematic
review, we aimed to find modelling studies that focus on
HGT of AMR to record their methods and research questions
and, hence, to identify potential research gaps and areas for
improvement in this field.
2. Methods
The methodology of our systematic review follows the rec-
ommended PRISMA guidelines [29].

2.1. Inclusion criteria
In order to be included in this review, studies had to fulfil all of
the following criteria:

(1) Study the horizontal transfer of genes between bacteria.
(2) The genes studied must explicitly be identified as genes

encoding AMR.
(3) Use at least one dynamic population model. A model is

‘dynamic’ if it tracks the changes in the number of bacteria
belonging to various populations (e.g. antibiotic-resistant
and -susceptible bacteria) over time.

2.2. Screening process
The entire screening process is summarized in figure 1. We
searched two databases on 26 April 2019 using the following
terms:

— PubMed search: ‘(antimicrobial OR antibacterial OR antibiotic)
resist* AND (horizontal transferORmobile genetic element OR
plasmid OR transformation OR conjugation OR transduction
OR phage) AND (math* OR dynamic*) model*’, 171 results.

— Web of Science search: ‘TS = ((antimicrobial OR antibacterial
OR antibiotic) resist* AND (horizontal transfer ORmobile gen-
etic element OR plasmid OR transformation OR conjugation
OR transduction OR phage) AND (math* OR dynamic*)
model*), 185 results.

After removal of duplicates, these combined searches yielded
a list of 272 studies. Both Q.J.L. and G.M.K. independently
screened the titles and abstracts of all 272 studies. Fifty-four
studies were retained by both authors, and two more were dis-
cussed and retained after an additional screen of the methods
due to uncertainty, leading to a total of 56 studies retained
after the first screening step.

The full texts of these 56 studies were then screened by Q.J.L.,
leading to 34 studies being retained as relevant for this review.
Finally, by screening the reference lists in these 34 studies, 9
more were included, leading to a total of 43 studies to discuss
in this review.

2.3. Information extracted from the included studies
To maximize comparability between studies, we devised a list of
11 elements to extract from every study. These are summarized
and explained in table 1.

Note that in our analysis, ‘Type of parameter values’ and
‘Sensitivity analysis performed’ are two independent criteria.
Therefore,we can report that a studyonlyuses ‘Constant’parameter
values, yet still performs a sensitivity analysis. If a study is reported
to have ‘Sampled’ parameters, thismeans that the values of the par-
ameters vary for each model run and that this is represented in the



studies identified in
PubMed search:

171

studies identified in Web of
Science search:

185

studies after removal
of duplicates:

272

studies excluded after title
and abstract screening:

216

studies excluded after full
text screening:

22

full-text studies
assessed for eligibility:

56

studies meeting all
inclusion criteria:

34

further studies identified in
references of included papers:

9

total number of
included studies:

43

Figure 1. PRISMA flow diagram of the search and exclusion process.
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main results, with figures showing the model output with ranges
instead of single lines for example. If a sensitivity analysis was per-
formed, this means that the authors report conducting such a
procedure to support their findings (e.g. to argue that their choice
of ‘Constant’ parameter values is a reasonable assumption and
does not significantly affect their results).
3. Results
The table showing all of the recorded elements from the 43
included studies can be found in the electronic supplementary
material of this paper.

First, when looking at the transfer mechanismmodelled by
these studies, we observe that almost all exclusively focused on
conjugation (40 of 43) [30–69] (figure 2). Of the remaining three,
two focused on transformation [70,71] and one on transduction
[72]. Additionally, more than a third of the studies (16/43)
chose exclusively Escherichia coli as the bacteria in which to
model the transfer processes [30,34,36,41–46,52,53,
59,64,66,68,72] (figure 2). It is also worth noting that another
one-third of the studies (15/43) did not model a specific organ-
ism and instead indicate that they are looking at bacteria in
general [31,32,37,38,48,51,54,56–58,61,62,65,67,69]. Finally,
while eight studies applied their model to more than one bac-
terial species [33,35,39,40,47,49,60,63], only four of these
modelled two strains of bacteria simultaneously and captured
interspecies transfer of resistance genes [39,49,60,63].
In terms of the aims of these studies, all except eight studies
[32,55,58,60,63–65,69] used modelling approaches exclusively
to improve the understanding of bacterial evolutionary
dynamics (figure 3). This covered questions such as how the
prevalence of resistance genes in the bacterial population
changes over time (as in [34], for example), or how the rise of
multidrug-resistant bacteria varied under different environ-
mental conditions (as in [30], for example). Inversely, the
remaining eight studies [32,55,58,60,63–65,69] attempted to
place at least some of their results in a public health setting
by, for example, quantifying the impact of transfer on the inci-
dence of multidrug-resistant bacteria infection in humans
[32,69]. In accordance with this previous point, almost half of
the studies (20/43) modelled bacteria exclusively in culture
[33–42,47,49,50,52,53,58,59,66,70,71], and only seven modelled
bacteria in humans [30,32,55,60,63,65,69] (figure 3). In the
remaining studies, seven did not specify an environment for
their bacteria [31,48,56,57,61,62,67].

Almost all of the studies included a bacterial fitness cost for
the carriage of a resistance gene in theirmodels (table 2), except
for six [32,42,48,63,66,71]. On the other hand, despite the fact
that in reality bacteria can acquire multiple AMR genes inde-
pendently (i.e. the acquisition of each gene is a separate HGT
event), only four studies included this feature [30,32,60,69]
(table 2). Finally, it is important to note that almost half of the
studies did not model the presence of antibiotics and therefore
did not consider the effect of antibiotics on transfer rates
[33–36,39–42,47,52,53,59,63,66,68,71,72] (table 2).



Table 1. Elements recorded from all included studies. Where no ‘possible values’ are given in the table, this indicates that the values were not restricted to a
predetermined list.

recorded element signification possible values

transfer mechanism biological mechanism of horizontal gene transfer modelled ‘conjugation’ or ‘transformation’

or ‘transduction’

bacteria any species of bacteria explicitly modelled —

aim of the study whether the study looked at gene transfer to understand evolutionary trends seen in

the bacterial population or to understand its impact on public health, or both

‘evolutionary’ or ‘public health’

or ‘both’

bacterial environment any environment that contained bacteria in the model —

antibiotic effect

considered

whether one or more antibiotic(s) were present in the model(s) ‘yes’ or ‘no’

multiple resistances

considered

whether the model(s) tracked multiple resistance genes that could be transferred

separately

‘yes’ or ‘no’

fitness cost of

resistance considered

whether the model(s) included a fitness cost for bacteria carrying a resistance gene ‘yes’ or ‘no’

source of model

parameters

whether the study also generated its own experimental data to support its

parameter values, or chose values informed by previous studies (which could be

experimental studies or not), or assumed values

‘experimental’ and/or ‘external’

and/or ‘assumed’

type of model whether the structure of the model(s) was deterministic or stochastic, or both (if the

study presented more than one model)

‘deterministic’ or ‘stochastic’ or

‘both’

type of parameter

values

if the model(s) structure was ‘deterministic’, whether the parameter values were

constant or were sampled from distributions before each model run

‘constant’ or ‘sampled’

sensitivity analysis

performed

whether the study performed any type of sensitivity analysis of the effect of model

parameter values on the results

‘yes’ or ‘no’

0 1 1
1
1

1
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1
2

15

15

conjugation transformation

E. coli

E. coli and K. pneumoniae

E. coli and Ochrobactrum
E. coli and S. marcescens

E. coli, E. blattae, E. fergusonii and E. chrysantemi
E. coli, K. pneumoniae, E. faecium and P. aeruginosa

M. tuberculosis

P. aeruginosa
P. fluorescens and P. putida

A. vinelandii
B. subtilis

P. putida, P. koreensis, S. mathophilia,
P. plecoglossicida, P. veronii, O. tritici and E. adhaerens

transduction
transfer mechanism

2
4
6
8

10
12
14
16
18

no
. s

tu
di

es

20
22
24
26
28
30
32
34
36
38
40

none specified

Figure 2. Transfer mechanisms and bacterial species modelled in the 43 studies included in our review. (Online version in colour.)
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Almost half of these modelling studies (19/43) included
their own experimental work to generate data and estimate at
least some parameter values for their models [33–36,39–
42,47,49,51–54,59,66,68,70,71] (figure 4). On the other hand,
more than half (23/43) chose to assume the values of at least
some of their parameters, without explicitly citing any sources
to support their choices, and a quarter (12/43) assumed the
values of all of their parameters [31,32,37,38,65,67]. Finally, a
third (15/43) used previous studies to obtain at least some of
their parameter values. For these, except for three studies (two



36
34
32
30
28
26
24
22
20
18

no
. s

tu
di

es

16
14
12
10
8
6
4
2
0

evolutionary

1 1 1
23

1

1
1
1
1

4

7

19

public health
study aim

both

culture
none specified
cattle
human
culture and mice
manure
river
slurry tank
beef feedlot's pen
culture and human

Figure 3. Aims and environments modelled in the 43 studies included in our review. (Online version in colour.)

Table 2. Summary of the presence or absence of model characteristics in
the 43 studies we reviewed.

include
antibiotic
effect

include
multiple
AMR
genes

include
fitness
cost

include
sensitivity
analysis

yes 26 4 37 29

no 17 39 6 14

4 3

0

8

12

3

13

assume
experimental
external

(a)

(c) (b)

Figure 4. Sources of parameter values in the 43 studies included in our
review. ‘Assume’ ((a), green): no clear reference is given to support the
choice of parameter value; ‘Experimental’ ((b), orange): the study generated
its own experimental data to support the choice of parameter value; ‘Exter-
nal’ ((c) brown): the study references a previous study to support the choice
of parameter value. Studies in an overlap region used each of the correspond-
ing methods at least once to estimate the value of their parameters. (Online
version in colour.)
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of which were each the direct follow-up of another one on the
same topic [44,50], and one an analysis of data collected
during an outbreak [63]), more than one previous study was
taken to estimate the value of parameters, with a median
number of studies of 8 and a maximum of 42.

Finally, more than three quarters of the studies (33/43)
exclusively relied on deterministic models to obtain their
results [30,32,34,36–40,42,43,45–51,53–56,58,59,61,63–69,71,
72]. All of these deterministic models were composed of a
set of ordinary differential equations to track the different
subpopulations (susceptible bacteria, resistant bacteria, etc.)
through time. As for the ten studies that relied on stochastic
models [31,33,35,41,44,52,57,60,62,70], most of these were
agent-based models, where the bacteria were tracked indivi-
dually [31,33,41,52,57,60], while the remaining ones either
used stochastic differential equations [44,62,70] or difference
equations [35]. Of the studies that exclusively used determi-
nistic models, only eight acknowledge variability in the
parameter values by running their model multiple times
and sampling parameters from distributions instead of
assuming them to be constant [32,38,43,46,56,64,65,72].
Nevertheless, most studies performed sensitivity analyses of
the effect of their parameter values on their model results
(table 2). Overall, nine studies still relied solely on a determi-
nistic model without either sampling their parameter values
or performing sensitivity analyses [30,36,40,42,48,54,
55,58,68]. We also noted that except for the one study on
transduction [72], all the studies modelled transfer as a
mass action process. This assumes that the number of transfer
events is determined by multiplying the number of bacteria
that can receive the gene, the number of bacteria that can
transfer the gene and the rate at which transfer occurs. There-
fore, this is generally written as some form of β × S ×R/N,
where β is a rate of transfer, S is the number of bacteria that
can receive the resistance gene, R is the number of bacteria
that can provide the resistance gene and N is the total bac-
terial population in the system.
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4. Discussion
We used a systematic literature review of mathematical
models of HGT to determine our current understanding of
the dynamics of HGT of AMR. The first main observation
from our results is that the majority of studies assessed only
focus on HGT by conjugation (40 of 43). The likely reason for
this is the simplicity of conjugation dynamics. Effectively,
these are comparable to infections transmitted upon contact,
such as influenza, where established modelling exists using
mass action dynamics [24]. Consequently, modelling conju-
gation does not require much complexity to be added to
these models. However, we know that transformation and
transduction also contribute to HGT [7,14], and the lack of
studies on these mechanisms is worrying.

Conjugation, transformation and transduction fundamen-
tally differ in their biology, making it essential to study each
of them in their own modelling framework; it is unknown
whether models of conjugation could be directly applied to
transformation and transduction. When looking at the studies
that attempted to model these two processes, we first see that
the one that focused on transduction [72] attempted to place
it in a complex setting, with the phage able to undergo both
lytic and lysogenic cycles, and the possibility for some bacteria
to be resistant to phage infection. Transduction is represented
as a multistep process in this model, as opposed to relying
on a single rate. The phage must first successfully infect a bac-
terium and then pick up a resistance gene, before successfully
transferring this gene to a different bacterium. This model aims
to accurately represent most of the biological complexity of
transduction, which necessarily requires many assumptions
regarding parameter values. Further study of this trade-off
would be greatly beneficial; it is currently unclear whether
this complexity is required, at the cost of more assumptions,
or if the process of transduction could be simplified and mod-
elled using fewer parameters, which could be estimated from
the experimental data. The two studies that focused on trans-
formation [70,71] applied similar mass action dynamics to
this process to that which can be seen inmodels of conjugation.
However, this approach assumes that the number of resistance
genes available in the environment is equivalent to the number
of bacteria carrying these genes. This is questionable, as we
would only expect these genes to be available in the environ-
ment after the bacteria die and release their genetic material;
although it is possible for bacteria to actively release their
genetic material while still alive, the extent of this phenomenon
is unclear [6]. Further exploration of this assumption and per-
haps redesigns of model structures for transformation would
be of value.

E. coli is the most commonly studied model organism for
bacteria in general [73]. Its rapid growth and consistent behav-
iour in in vitro settings make it amenable to experimental work,
including transfer studies, and therefore its overwhelming pres-
ence as the organism of choice for the studiesmodellingHGTof
AMR genes is not a surprise. However, HGT is known to occur
with varying rates in multiple bacterial species, and conse-
quently it is unlikely that the rates of transfer estimated by
looking at E. coli are equally applicable to other bacterial species
[7]. In addition, HGT of AMR is a process that can also occur
between bacterial species [9,11], while most models here exclu-
sively focused on E. coli alone. Some resistances in bacterial
species are in fact thought to have been originally acquired fol-
lowing a gene transfer event with another species, such as the
mecA resistance gene in Staphylococcus aureus acquired from
Staphylococcus fleurettii [74].

Despite the fact that the carriage of an AMR gene often
imposes a reduction in the growth rate of the bacteria [10], a
few studies did not model this (6/43), but only one argued
that this element could be ignored after fitting their model to
the experimental data [66]. However, this was once more
only based on observations in vitro, which are likely to differ
from the in vivo reality. Including a fitness cost, while requiring
the estimation of an additional parameter, does not add any
particular complexity to the model structure itself, effectively
only requiring a reduced growth rate value for the bacteria car-
rying AMR genes as opposed to bacteria susceptible to the
modelled antibiotic (as can be seen in [68], for example), and
should therefore be included at least for sensitivity analyses.
In addition, although it is understandable that the first
models of HGT of AMR should focus on tracking single
genes to understand the basic dynamics of this process, in rea-
lity, many bacteria carry multiple AMR genes that can be
transferred independently [8]. However, we only identified
four studies in our reviewwhich includedmore than one inde-
pendent AMR gene in their model [30,32,60,69]. Thirteen
studies did model the transfer of multiple linked genes
[34,35,40–42,47,49,53,55,59,66,68,70]; however, in these cases,
a single HGT event causes the transfer of all of these genes,
and therefore, there is little difference between themodel struc-
tures of these 13 studies and those of other studies that
modelled the transfer of single genes.

Many studies did not allow for the presence of an antibiotic
in their model. However, antibiotics are likely to modify
HGT dynamics by directly affecting transfer rates, as well as
the survival of bacteria not carrying the AMR gene [16–20].
The former has been shown to occur for transduction in
S. aureus, where the addition of antibiotics induced a higher
proportion of transducing phage compared with lytic phage
[75]. On the other hand, some studies correctly argue that it
is equally important to understand the dynamics of HGT in
the absence of antibiotics. Effectively, it is common for bacterial
populations to rapidly transition between being exposed to
antibiotics or not, with the most obvious example being
individuals transiently consuming antibiotics. Consequently,
understanding the dynamics of HGT of AMR both in the
presence and in the absence of antibiotics is essential.

HGT of AMR has been studied in laboratory settings; con-
sequently data around which models can be built have been
generated and are available [7,76]. However, we note that, to
the best of our knowledge, most data appear to focus on conju-
gation in in vitro settings. The availability of the experimental
data on HGT of AMR by transformation or transduction, and
on any of the three HGTmechanisms in more complex settings
(such as in vivo), is unclear. This should be investigated in
future work to further refine the recommendations we make
here and identify where more data are needed to support the
development of mathematical models. This is essential to
understand which of the gaps we identify are due to theory
outpacing data collection and which are due to underutiliza-
tion of the available data. In any case, using these external
data sources for purposes they were not originally designed
for can require assumptions to be made in the model structure
and parameters. In addition, it is essential to bear in mind how
these datawere originally collected since, for example, combin-
ing sources that look at bacteria in multiple environments to
derive parameters in a single environment-specific model is
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far from ideal. On the other hand, the fact that a quarter of the
studies we reviewed (12/43) assumed all of their parameter
values is worrying. While the purpose of some of these studies
was to exclusively test a range of parameter values to identify
conditions for a specific event to occur (e.g. AMR prevalence
increases), the absence of any clear sources for the limits of
these ranges is questionable. Looking at studies that deter-
mined their parameter values experimentally, we see that
some of these also assume values such as the initial proportion
of bacteria capable of performing transformation and the rate at
which they can gain this ability [70], the bacterial growth rate
and the conjugation rate [40] or the fitness cost of carrying an
AMR gene and the rate at which such genes are lost by the
bacteria [34]. Informing models with data is essential to
ensure that they are accurate representations of reality; there-
fore, as stated above, we believe that further work is required
to review the availability of data on HGT of AMR and the
methods that could be used to generate them when they are
currently missing.

Regarding model structures, the majority of studies relied
on deterministic models. To allow variability in the dynamics
and therefore increased realism, studies more often chose to
sample their parameter values, run their deterministic model
and repeat this process a number of times (as can be seen in
[32,38,43,46,56,64,65,72]), a simpler alternative to developing
new stochastic models. Acknowledging stochasticity when
looking at HGT is essential; HGT rates are typically low (esti-
mates from studies in our review include for example 5.1 ×
10−15 (cells/ml)−1 h−1 for conjugation [49] and 10−16 (cells/
ml)−1 h−1 for transformation [70]). These are therefore models
of rare events which, by chance, might not always occur as
expected, a feature that deterministic models fail to capture
[24]. Sensitivity analysis is extremely important in any case
since a small change in parameter value can lead to a greater
change in the results. Despite this, nine studies exclusively
relied on a deterministic model without sampling parameters
or performing sensitivity analyses [30,36,40,42,48,54,55,58,68].
Interestingly, five of these nine studies also generated their
own parameter values experimentally [36,40,42,54,68].
Although they capture variation when measuring the par-
ameters experimentally, often providing distributions for
their values, they then only retain fixed-point estimates for
their corresponding model parameter values instead of
sampling them from these distributions and only use these
fixed estimates to derive their conclusions. Acknowledging
variability in microbiological observations by specifying distri-
butions rather than point estimates is essential, and this must
be represented in the corresponding mathematical models.

This also raises the question of how to best represent these
microbiological events in mathematical models. Effectively,
almost all of the models here describe transfer as a mass
action process (42/43). However, as stated above, this approach
is acceptable for conjugation, butmight not fully apply to trans-
formation, where transfer depends on the density of DNA in
the surrounding environment rather than the number of bac-
teria, and transduction, which follows vector-like dynamics
with the phage acting as carriers of resistance genes between
bacteria. Therefore, transformation dynamics might be better
represented bymodels of environmental transmission of infec-
tions (such as [77]) and transduction bymodels of vector-borne
diseases (such as [78]), as opposed to mass action models. The
degree of modelling complexity required to accurately rep-
resent HGT is therefore unclear. This is also true for models
designed to understand the public health implications of
HGTofAMR, forwhich the level of detail required to represent
within-host dynamics must be clarified. In addition, since
transfer dynamics have thus far been mostly studied in
bacterial culture, mostly ‘short’ time frames have been
explored (hours or days), with long-term dynamics remaining
unclear despite our knowledge that even resistant bacteria can
colonize us for weeks or months [79–81]. To best guide our
public health policies with mathematical modelling, we must
first clarify the complexity of the process we are actually
attempting to model and the time required to fully capture
its in vivo dynamics.

This is the first attempt at providing an overview of
existing mathematical modelling work on HGT of AMR.
Our systematic review methods, with two individuals separ-
ately screening the titles and abstracts of candidate studies,
allowed us to identify and bring together key studies on this
topic. By using our list of comparison elements, we extracted
and contrasted essential information between studies,
overall allowing us to obtain a broad overview of the field
and identify research gaps. However, our approach also has
some limitations. First, it was necessary for us to specify
‘(math* OR dynamic*) model*’ rather than just ‘model*’ in
the search, since otherwise it would have returned results on
experimental models (e.g. mice) as opposed to mathematical
models. Effectively, repeating our search with ‘model*’ instead
of ‘(math* OR dynamic*) model*’ yields 2360 and 1560 results
on PubMed andWeb of Science, respectively, as opposed to our
171 and 185 results. However, the consequence of our choice
was that nine relevant studies were missed in the search and
were only identified by screening the references of already
included studies. These nine studies were missed in the orig-
inal literature search due to the absence of at least one of the
search terms, with some studies for example referring to their
models as ‘mass action models’ instead of ‘mathematical
models’. In addition, we only searched for studies that mod-
elled transfer of AMR genes, as opposed to HGT of any gene.
This is first due to our specific research interest; horizontal
transfer of AMR genes is an especially strong evolutionary
driver for bacteria populations, compared with transfer of
other genes. This is because AMR genes can be strongly
selected for by environmental factors, such as the presence of
antibiotics, while many other genes are often not subject to
such selection pressures. In addition, AMR genes can be
selected in more settings compared with other genes; for
example, genes involved in immune evasion will be selected
only during infection of the host, while AMR genes can also
be selected for during asymptomatic colonization. The conse-
quences of HGT of AMR in the bacterial population can
therefore be greater than for other genes, which is why we
believe that it is important to study this process. Second,
repeating the search without ‘(antimicrobial OR antibacterial
OR antibiotic) resist*’ yields 12 236 and 38 148 results on
PubMed and Web of Science, respectively, which would be
too many to cover in a single systematic review. Nevertheless,
this suggests that there are other studies that model HGTmore
broadly. These could be a source of methodologies that could
be applied to further develop the specific field of HGT of
AMR modelling. In terms of the elements gathered from the
studies to compare them, we were unable to extract any mean-
ingful quantitative data (e.g. estimated gene transfer rates)
common to all studies due to the high variability of study
designs. This variability also prevented us from identifying
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commonmeasures of study quality we could report aside from
the presence or absence of sensitivity analysis.

Studying the effect of HGT of AMR on bacterial evol-
utionary dynamics is a necessary first step to understand
the overall importance of this process. This has been the
focus of the majority of the studies identified in this review;
however, the public health implications remain vastly
unknown. This is related to the observation that the majority
of studies model bacteria in an in vitro setting; to understand
the public health impact of HGT of AMR, it is essential to
expand this to include other bacterial environments such as
within humans and animals. In addition, important differ-
ences have been identified between transfer rates estimated
in vitro and in vivo, with in vivo transduction rates in
S. aureus and conjugation rates in K. pneumoniae and E. coli
for example being much higher than expected [14,15]. This
difference in dynamics is attributable to the fact that in vitro
conditions fail to capture essential biological mechanisms
influencing bacteria and therefore HGT [6,10]. Studying
HGT in vitro allows for a controlled environment to under-
stand the basic dynamics of this process and the factors
that might influence them (e.g. antibiotic exposure) and con-
sequently offers a starting point to inform in vivo models.
Therefore, we recommend that future modelling studies
should build upon the work of existing in vitro studies to
evaluate HGT of AMR in more complex scenarios, using par-
ameter estimates from in vitro studies as a baseline and
refining them using the data generated with in vivo model
organisms such as mice [68]. Owing to the added complexity
(e.g. immune system, simultaneous within-host and between-
hosts dynamics, rapidly varying host exposure to antibiotics
and therefore selection pressure on the bacteria), this will
require major extensions to existing models. However, we
believe that this is necessary to truly assess the potential
consequences of HGT of AMR on human well-being.

This systematic review allowed us to identify key research
gaps on the dynamics of HGT of AMR. First, we recommend
that future studies should focus on developingmodels of trans-
formation and transduction to determine the required
complexity to represent these dynamics. Since these mechan-
isms fundamentally differ in their biological characteristics,
this will likely require substantial, novel modelling work as
opposed to the extension of existing models of conjugation.
In parallel, since the basic dynamics of conjugation are already
reasonably well understood, future studies on this mechanism
should focus on other bacterial species than E. coli, preferably
in a settingwhere interspecific HGTand themovement ofmul-
tiple, separate AMR genes can be observed. This should be
achievable simply by re-parametrization or minor extension
of existing models; the greatest challengewould be to generate
new data on HGT in these currently unexplored settings. The
optimal solution to address these research questions would
be to design frameworks to study HGT of AMR that encom-
pass both laboratory and modelling work; this would ensure
that the data collected are appropriate for the modelling
needs and that the actual model is a good representation of
the situation measured in the laboratory. Therefore, we believe
that to fully understand the complexity of both the biology and
the dynamics of HGT, collaboration of both microbiologists
and mathematical modellers would be the best strategy for
future research on this topic and that studies should attempt
to generate both their own data and models to reduce the
assumptions they require.
While exclusively microbiological approaches have suc-
cessfully been used to identify when HGT occurs, combining
these with modelling has allowed us to estimate rates at
which these events occur and to disentangle the finer temporal
dynamics of this process. For example, some studies we
identified in our review, which combined microbiology and
modelling work, answered questions such as how changing
the exposure of bacteria to antibiotics influences the HGT
rates [49], how a bacterium interacts in space with its neigh-
bours to perform HGT [31] or how to adjust shaking speed
to maximize contact between bacteria, and thus the rate of
HGT, in a liquid culture [66]. Modelling also allows faster
exploration of situations that could be harder to test using
only microbiological methods, since an experiment where the
bacteria need to grow for 24 h in the laboratory could be com-
pleted in a few seconds using a mathematical model. Crucially,
this requires the model to be an accurate representation of
reality, which in turn requires it to be informed by themicrobio-
logical data to begin with. Therefore, our conclusion here is not
that either one of modelling or microbiology is superior to the
other, but that both approaches complement each other. Conse-
quently, we believe that close cooperation between these two
fields would allow us to greatly improve our understanding
of complex microbiological processes, such as HGT of AMR.
5. Conclusion
In this systematic review, we aimed to assess the current state
of mathematical modelling as a tool to improve our under-
standing of HGT of AMR. From the 43 studies identified, we
found that the majority focused on conjugation in E. coli,
exploring evolutionary dynamics of HGT in culture. While
this provides a solid base for a key method of HGT, future
work must also consider HGT by transformation and trans-
duction, which are also essential drivers of HGT in bacteria.
Importantly for public health implications, only one bacterial
species was considered in most models when we know that
interspecies transfer is responsible for many of our epidemic
AMR clones, and much of the work was fitted to data in the
absence of antibiotic exposure. Crucially, to answer these ques-
tions, we must first clarify the level of modelling complexity
required to accurately represent HGT dynamics, as well as
the availability and capacity to generate the experimental
data on these processes. This complex topic requires close
collaboration between mathematical modellers and microbiol-
ogists in order to determine the full impact of these processes
on our ability to control the public health threat posed
by AMR.
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