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Visual Abstract

Hypersynchronous network activity is the defining hallmark of epilepsy and manifests in a wide spectrum of
phenomena, of which electrographic activity during seizures is only one extreme. The aim of this study was to
differentiate between different types of epileptiform activity (EA) patterns and investigate their temporal succes-
sion and interactions. We analyzed local field potentials (LFPs) from freely behaving male mice that had received
an intrahippocampal kainate injection to model mesial temporal lobe epilepsy (MTLE). Epileptiform spikes
occurred in distinct bursts. Using machine learning, we derived a scale reflecting the spike load of bursts and
three main burst categories that we labeled high-load, medium-load, and low-load bursts. We found that bursts
of these categories were non-randomly distributed in time. High-load bursts formed clusters and were typically

Significance Statement

It is a major challenge in epilepsy research to understand how different types of epileptiform activity (EA)
interact and whether epileptiform spikes prevent or promote major epileptic events. In our mouse model for
mesial temporal lobe epilepsy (MTLE), epileptiform spikes occurred in bursts. Increased rates of bursts with
low spike load were clearly associated with extended phases lacking high-load bursts, which is in line with
the view that low-level activity could promote network stability in epilepsy. Low-load bursts, however, also
occurred during transition phases to clusters of high-load bursts. Both findings are consistent with the
hypothesis that low-level EA could reduce the excitability of the network but that its impact depends on the
current state of the network.
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surrounded by transition phases with increased rates of medium-load and low-load bursts. In apparent contra-
diction to this, increased rates of low-load bursts were also associated with longer background phases, i.e.,
periods lacking high-load bursting. Furthermore, the rate of low-load bursts was more strongly correlated with the
duration of background phases than the overall rate of epileptiform spikes. Our findings are consistent with the
hypothesis that low-level EA could promote network stability but could also participate in transitions towards
major epileptiform events, depending on the current state of the network.

Key words: electrographic seizures; epileptic spikes; epileptiform activity; hippocampus; interictal activity; me-
sial temporal lobe epilepsy

Introduction
Epilepsy is a disease of hypersynchronized brain activ-

ity that can be monitored electrophysiologically as epilep-
tiform activity (EA) in local field potentials (LFP). Aside
from EA accompanied by behavioral symptoms, e.g., as in
clinical seizures, the EA patterns that have received
the most attention thus far are epileptiform spikes and
compound events termed “electrographic seizures.” The
exact definition and even the existence of purely electro-
graphic seizures, however, is being debated. There seems
to be no clear boundary between electrographic seizures
and other compound events, which can differ widely in
spike rate and duration (Gotman, 2011). Although the
evolution of spikes within larger bursts has been analyzed
(Chauvière et al., 2012), a systematic quantitative time
series analysis of compound events is lacking. In fact,
clustering of seizures in patients (Osorio et al., 2009;
Karoly et al., 2017) suggests that the incidence of other
compound events might also fluctuate over time. This
raises the questions whether information about the state
of epileptic networks could be read from the time series of
compound events and whether the occurrence of one
type of EA pattern influences the occurrence of other
patterns. The aim of this study was to identify different

types of compound events, investigate their temporal
succession and analyze interactions between different
types of events in an animal model for mesial temporal
lobe epilepsy (MTLE).

In MTLE, the most common form of focal epilepsy,
partial seizures are frequent, while generalized convulsive
seizures are rare (Engel, 2001). The intrahippocampal kai-
nate mouse model is a well-accepted animal model to
investigate MTLE because it exhibits several phenomena
similar to the human condition, e.g., spatially localized EA
and histologic changes (Riban et al., 2002; Guillemain
et al., 2012; Häussler et al., 2012; Krook-Magnuson et al.,
2013; Twele et al., 2016; Janz et al., 2017). While large
behavioral seizures are as rare in this as in other rodent
models of epilepsy (Cavalheiro et al., 1991; Rattka et al.,
2013), events that have been labeled “electrographic sei-
zures,” “hyperparoxysmal discharges,” or “high voltage
sharp waves” recur particularly frequently in kainate-
injected mice (Klee et al., 2017; Kilias et al., 2018). As
detailed in Twele et al. (2016), previous studies using this
model identified and classified these large EA events
based on heuristic criteria and experts applied these cri-
teria with highly divergent results. The same study dem-
onstrated that even slight changes in event definition can
have a critical impact on whether a candidate drug is
found to be anti-epileptic or not. This highlights the need
for a more data-driven and reproducible approach to
identify different patterns of EA and their interaction dur-
ing epileptiform dynamics.

Interactions between EA event types have mostly been
addressed based on the incidence of individual epilepti-
form spikes and seizures. While specific sub-types of
spikes are thought to be involved in seizure onset (De
Curtis and Avoli, 2016), several studies interpreted inter-
ictal spiking as preventing seizure generation (Engel and
Ackermann, 1980; Librizzi and De Curtis, 2003; Gon-
charova et al., 2016). Other reports proposed either that
changes in interictal spike rate are governed by seizure
dynamics (Jensen and Yaari, 1988; Gotman, 1991) or
found the two phenomena to be independent from each
other (Selvitelli et al., 2010). Recently, Chang et al. (2018)
suggested that epileptiform spikes stabilize network ac-
tivity in states of low excitability while the same events
precipitate seizures if they occur during transition phases
of excitability. Hence, temporal context should be consid-
ered when interpreting the role of EA events.

In this study, we systematically describe patterns of EA
in the kainate mouse model of MTLE using a data-driven
approach and investigate how such patterns interact.
Motivated by the observation that spikes preferentially
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occurred in bursts, we developed a method that automat-
ically transformed hippocampal LFPs into a time series of
solitary spikes and bursts. These bursts were classified
using machine learning techniques according to a com-
posite measure that could best be summarized as spike
load. In these time series, bursts of different categories
aggregated and thus formed phases reflecting slow fluc-
tuations of EA dynamics. We delimited these phases and
found that the relationship between low-load and high-
load bursting depended on temporal context. Our results
suggest that the burst structure of EA plays an important
role in epileptiform dynamics, that different burst patterns
of EA interact and that these interactions vary over time.

Materials and Methods
Animals and kainate injection

Data originated from 18 adult male C57BL/6N mice
(age 9–12 weeks, Charles River, Sulzfeld, Germany) that
were part of previous studies and in which a detailed
description of the surgical and electrophysiological pro-
cedures can be found (dataset A with N � 7 from Janz
et al., 2017; dataset B with N � 12 from Froriep et al.,
2012). Briefly, mice were anesthetized (ketamine hydro-
chloride 100 mg/kg, xylazine 5 mg/kg, atropine 0.1 mg/kg
body weight, i.p.) and kainate solution (50 nl, 20 mM in
0.9% NaCl, Tocris) was injected unilaterally into the dorsal
right hippocampus. After kainate injection, all mice showed
symptoms of status epilepticus, such as convulsions, chewing
and immobility (Riban et al., 2002; Heinrich et al., 2006). All
animal procedures were in accordance with the German Ani-
mal Welfare Act and were approved by the regional council in
Freiburg, Germany.

Electrophysiological recordings
Starting two weeks after kainate injection, when recur-

rent EA occurred reliably, mice were re-anesthetized to
implant platinum-iridium wire electrodes into both dorsal
hippocampi (dataset A) or steel electrodes at the ipsilat-
eral dorsal hippocampus and medial entorhinal cortex
(dataset B). Signals were amplified 1000�, filtered at
1–5000 Hz (MPA8I and PGA32; Multi Channel Systems),
and sampled at 10 kHz (Power 1401 ADC; Spike2 soft-
ware, RRID: SCR_000903, Cambridge Electronic Design).
Data were recorded in the molecular or granule cell layer
of the dentate gyrus at 14–39 d after kainate injection
from awake, freely behaving, chronically epileptic animals
(three to nine sessions per mouse, each lasting 1.5–3 h,
105 sessions total). Mice from dataset A were recorded on
consecutive days, mice from dataset B every other day.
Large, putative behavioral seizures (compare Zeidler
et al., 2018) were identified visually based on morphology
and correlated EA across at least two different brain
regions (dataset A: ipsilateral dentate gyrus and contralat-
eral dentate gyrus; dataset B: ipsilateral dentate gyrus
and entorhinal cortex).

Histology
After recording was completed, mice were transcardi-

ally perfused and their brains were sectioned with a vi-
bratome (set A: 50 �m, coronal sections; dataset B: 70

�m, sagittal sections). Sections were stained with 4=,6=-
diamidino-2-phenylindole (DAPI; set A; 1:10,000; Roche
Diagnostics GmbH) or cresyl violet (dataset B; as in
Heinrich et al., 2006) to verify electrode positions.

Data analysis
Overview

We delimited bursts of epileptiform spikes as EA events
(Fig. 1) and classified them according to spike load (Fig. 2)
using a machine learning algorithm. From the succession
of classified EA events we derived phases of larger tem-
poral scale (Figs. 3, 4; workflow in Extended Data Fig.
4-1A). LFPs obtained from ipsilateral septal recording
sites were analyzed in detail. The first 10 min of each
recording were discarded to avoid residual influence of
the brief isoflurane anesthesia applied to connect the
headstage. Periods with movement or other recording
artifacts were identified visually and masked before fur-
ther analysis.

Detecting epileptiform spikes in the LFP
LFPs were downsampled to 500 Hz. We then calculated

spectrograms (fast Fourier transform, 256 ms sliding win-
dows, normalized per frequency bin) and averaged the
spectrograms in the 4–40 Hz band. We detected peaks in
this activity band as epileptiform spikes. The dead time
before a new spike could be detected was 0.0833 s. In
addition, we identified slow high-amplitude deflections
that escaped the spectrogram-based detection. Such
peaks were detected if they crossed a threshold of �4.5�
the SD of the LFP baseline, which consisted of episodes
where no peaks had been detected in the spectrogram.
Cutouts around detections were then sorted according to
their waveform by principal component analysis (five clus-
ters identified by a Gaussian mixture model on the first
three components, separately for positive and negative
spikes). Events in the cluster with the lowest average
peak-to-peak amplitude did not conform to the typical
morphology of epileptiform spikes and were discarded.
Overlapping peaks within dense bursts were directly in-
cluded into the pool of spikes without prior sorting.

The spike detection algorithm was validated by a hu-
man expert who manually marked spikes in 197 randomly
selected 20-s epochs (1550 spikes in total). Automatically
detected spikes that occurred within a 150-ms tolerance
window around the manually selected spikes were con-
sidered as true positives (TPs) and spikes outside this
window as false positives (FPs). Manually selected spikes
without corresponding automatically detected spikes
within the tolerance window were considered false nega-
tives (FNs). The spike detection algorithm had a sensitivity
score [TP/(TP�FN)] of 0.87 and a precision score [TP/
(TP�FP)] of 0.90. The average FP rate was 1.9 FP/min.

Delimiting bursts
A popular method to delimit bursts is based on inter-

spike interval distributions: When these distributions are
bimodal, the valley can be used to separate short in-
traburst intervals from long interburst intervals (Selinger
et al., 2007). The interspike interval distributions of our
recording sessions showed valleys or plateaus at around
2.5 s (Fig. 1D). We therefore used this value as a threshold
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to delimit spike bursts. Spikes closer than 2.5 s were
grouped into the same event. Bursts closer than 3.5 s
were joined. Our dataset contained 22,578 bursts and
17,814 solitary spikes.

Classification of bursts
To classify bursts and derive a measure of spike load

we used a self-organizing map (SOM; Kohonen, 2013). A
SOM can transform a high-dimensional feature space into
a two-dimensional map of nodes such that neighboring
nodes represent similar feature combinations. The map
thus creates a, not necessarily linear, continuous repre-
sentation of the dataset in feature space that can be
readily visualized and interpreted.

Feature selection and SOM training To develop a mea-
sure of spike load, we exclusively used features associ-
ated with the time series of spikes contained in a burst.
Since subtle differences in electrode placement and re-
cording quality can affect signal amplitude, we did not use
measures related to LFP amplitude. The feature vectors
contained values of the following weighted quantities for
each burst: [log(number of spikes) � 2; log(median inter-
spike interval) � 2; (SD of interspike interval) � 1]. Feature
values were z-scored across all bursts from all animals
and sessions (N � 12,373) and then used to train the SOM
with the batch algorithm provided by Carrasco Kind and
Brunner (2014)

Spike load index The node representing the highest
spike count and lowest median interspike interval (H�)
was located at the top left. For each node, we calculated
the Euclidean distance between its feature vector and the

vector of H�. We then converted these distances to values
between 0 and 1 to define a spike load index, with spike
load index � 1 assigned to H�.

Categories To identify groups of nodes with similar
features we hierarchically clustered the feature vectors
corresponding to the nodes (Fig. 2C) and selected an
appropriate number of categories according to the
Thorndike criterion (Thorndike, 1953; Extended Data Fig.
2-1). The dendrogram was constructed using Ward’s
method (Ward, 1963) implemented in the Python package
scipy.cluster.hierarchy (version: 0.17.0). We thus derived
three categories and labeled them according to the aver-
age spike load index of their nodes “high-load,” “medium-
load,” and “low-load.”

Re-mapping spike load index and categories to
bursts Each burst inherited cluster affiliation and spike
load index from its best matching node, i.e., the node of
the SOM whose features were most similar to the features
of the burst (criterion: smallest Euclidean distance in fea-
ture space). High-load and low-load bursts gathered in
opposite regions of the SOM (Fig. 2A,B).

Bursts with less than five spikes Bursts with less than five
spikes were not used to train the SOM because preliminary
tests had shown that they would disrupt the continuous
representation of the map due to their high internal variability
with respect to the features used. Across sessions, the rates
of burst with less than five spikes strongly correlated with the
rates of low-load bursts (N � 105, Kendall’s � � 0.43, p� �
6.6 � 10�11) and they were therefore assigned to the low-
load category (Fig. 2B,E).

Figure 1. Epileptiform spikes come in bursts. A, LFP recording from a kainate-treated mouse during chronic epilepsy. B, Epileptiform
spikes (tick marks) were detected in the LFP and used to delimit burst events (red horizontal bars). C, Distribution of burstiness scores.
Burstiness scores can adopt values ranging from –1 (indicating completely regular interevent intervals) over 0 (Poissonian interval
distribution) to 1 (extreme burstiness of events). Spike series in the recording sessions (black, N � 105) have distinctly higher
burstiness than their Poissonian surrogates (gray, N � 105,000). D, Defining bursts. Interspike intervals from three sessions
representing the 5th (deep purple), 50th (green), and 95th (yellow) percentile of spike rates. Spike rates are displayed next to the percentiles.
We interpreted the location of the valley/plateau in these distributions as separating short intraburst intervals from long interburst intervals
and grouped spikes closer than 2.5 s (red vertical line) into the same burst event. Interspike interval distributions of surrogates generated
with matching spike rates are shown as dotted lines in the color of their reference recording. E, We thus converted continuous LFP patterns
into time series of discrete EA events: bursts (red) and solitary spikes (black ticks). Extended Data Figure 1-1 compares the succession of
spikes and bursts to a rate profile generated from spike timings and shows that bursts match distinct peaks in the rate profile.
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Figure 2. Classification of epileptic bursts. A, A SOM was used to transform burst features (number of spikes in a burst, median
interspike interval, SD of interspike intervals) into a spike load index. Each node (hexagon) represents a combination of features.
Bursts were assigned to nodes that match their features best (letters refer to the examples shown in B). The spike load index (gray
scale) captures the proximity to the node containing the bursts with the highest spike loads (�). Colored lines enclose nodes grouped
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Defining phases
Transforming the LFP into a sequence of classified EA

events and silent periods allowed us to discern their patterns on
a larger scale. In a series of processing steps, we identified and

delimited three main temporal phases (Extended Data Fig.
4-1A): (1) clusters of high-load bursts, (2) transition phases
around these high-load clusters, and finally (3) background
phases. The burst categories (high-load, medium-load, and

continued
into categories by a dendrogram analysis (see C). B, Examples of EA events after classification. Vertical ticks above the LFP
traces mark individual spikes found by our detection algorithm. Horizontal bars delimit the extent of spike bursts, with color
indicating the category assigned to the burst. Lower case letters (a–i) refer to their placement on the SOM. Bursts with less than
five spikes were not classified on the SOM and later added to the category low-load bursts. The inset shows how many bursts
of each category were present in the dataset. Participation of the contralateral DG and ipsilateral EC varied for bursts of different
categories (Extended Data Figure 2-2). C, Nodes of the SOM were hierarchically clustered using Ward’s dendrogram method
(Ward, 1963). To create the dendrogram, nodes were successively merged according to their proximity in feature space. The
y-axis shows the distance in feature space between merges. The gray dotted line indicates the threshold used to obtain the three
categories as suggested by Thorndike’s criterion (Extended Data Figure 2-1). D, Spike rate against duration of bursts. Each dot
marks one burst and is colored according to its category. Bursts of the same duration or spike rate can belong to different
categories. Purple crosses mark visually identified, putative behavioral seizures. E, Overview of terminology and event rates. The
population of EA events had been split into spike bursts and solitary spikes (so.sp.) by burst detection (Fig. 1). Bursts with more
than four spikes were classified using a SOM (A) and subsequent hierarchical clustering (C), resulting in three main categories.
The category high-load bursts included events with the highest spike load index (idx. � 1; inset). Seizures that had been
identified visually beforehand all scored spike load index � 1 in the SOM. Numbers indicate median and 10th–90th percentile
range of event counts per hour across sessions (N � 105).

Figure 3. Clusters of high-load bursts. A, Sample sequence of classified EA events. The purple asterisk marks a putative behavioral seizure.
Black bars below the time series indicate high-load clusters defined according to D. Our definition allowed for high-load clusters to consist
of a single high-load burst. B, Burstiness calculated from the intervals between all high-load bursts in the full dataset (value marked by red
triangle) and for each session separately (distribution shown in black, N � 87, including only sessions with at least five intervals between
high-load burst). The distribution of surrogate burstiness scores (gray) was derived from surrogate series of high-load bursts matching the
rate of high-load bursts in the whole dataset (N � 1000). C, Number of sessions scoring burstiness values significantly below (“regular”),
significantly above (“clustered”), or not significantly different from surrogate interval distributions. For each recording, we generated 1000
surrogate interval distributions of matching rate and compared their burstiness distribution to the original data. Significance level: � � 0.05.
D, The distributions of intervals between high-load bursts were used to define clusters of high-load bursts. Colored lines indicate
distributions for individual animals; the average distribution across animals is shown in black. High-load bursts separated by �3 min (vertical
line) were grouped into the same high-load cluster. E, Distribution of cluster size, i.e., the number of high-load bursts within high-load
clusters. F, Distribution of duration of high-load clusters. Gray, high-load clusters consisting of a single high-load burst; black, clusters
containing more than one high-load burst. G, Fraction of time spent in high-load clusters for all sessions (circles, colors as in D). Horizontal
dashes indicate medians across recording sessions of the same mouse (separated by vertical lines).
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low-load bursts) used to define these phases are described in
detail in the results section.

High-load clusters As high-load bursts clustered tem-
porally (Fig. 3A–C), we defined the temporal extent of
these aggregations as high-load clusters. To delimit high-
load clusters, we analyzed the distribution of intervals
between high-load bursts. At 3 min, the peaks of these
distributions had leveled off (Fig. 3D). Hence, high-load
bursts closer than 3 min were grouped into the same
high-load cluster. A high-load cluster started with the
onset of its first high-load burst and ended with the offset
of its last high-load burst. High-load clusters could con-
sist of individual high-load bursts.

Transition phases with increased burst rate We observed
that the probabilities for low-load and medium-load
bursts were increased around high-load clusters. To de-
tect putative transition phases we z-scored the intervals
between bursts and applied the CUSUM algorithm
(Gustafsson, 2001) to identify change points in the inter-
burst interval sequence between two high-load clusters
(threshold: cumulative sum of change larger than 1.5; drift
compensation: 0.1). We then selected the last change
point toward shorter intervals before a high-load cluster to
delimit the beginning of the pre-phase. Similarly, the first

change point toward longer intervals following a high-load
cluster was defined as the end of the post-phase. Tran-
sition phases were not assigned when (1) the CUSUM
algorithm did not detect a change point or when (2) the
fraction of time spent in bursts during a candidate transi-
tion phase was less than the fraction of time occupied by
such events in the remaining unassigned portion of the
recording session. We thereby ensured that bursting in
transition phases was above the average of the session
excluding high-load clusters.

Transitions with depression of bursting after high-load
clusters Some high-load clusters were followed by ex-
tended burst-free periods, reminiscent of post-ictal de-
pression. These periods could be components of the
transitions from high-load clusters. To identify depression
periods, we pooled interburst intervals from unassigned
periods of all recordings. We assigned burst-free periods
longer than the 95th percentile (112 s) of the interburst
interval distribution to post-phases (Extended Data Fig.
4-1B).

Exclusion of session borders and regions around arti-
facts To avoid potential contributions of ongoing post-
phases at the beginning of a recording to the analyses of
background phases, we excluded the first 3 min of each

Figure 4. Transition phases surround high-load clusters. A, Two example sequences with increases of low-load and medium-load
bursts during transitions before (“pre”) and after (“post”) high-load clusters. Background phases (white bars) were defined by
exclusion (neither high-load cluster nor transition phase, see Extended Data Fig. 4-1 for the step-wise definition of these phases).
Post-phases could also consist of a depression of EA that was sometimes followed by a rebound of EA (Extended Data Fig. 4-2). B,
Distributions of the start of pre-phases (left) and end of post-phases (right) with respect to the onset (left), respectively, offset (right)
of high-load clusters. These distributions are equivalent to the duration of the phases. Note that the y-axis is scaled logarithmically.
C, Spike rates for pre-phases (N � 347), post-phases (N � 311), and background phases (N � 340).b Within each box the middle bar
indicates the median, while the lower and upper boundaries mark the 25th and 75th percentiles, respectively. Whiskers extend 1.5
times the range from the 25th to 75th percentiles. Crosses show data points outside of the whisker range. D, Burstiness of spikes in
all phases combined, i.e., the whole dataset (“whole”) and calculated for each type of phase separately. Significance was derived by
comparison to 1000 spike trains with interspike intervals generated from a Poissonian distribution and matching rate. All phases
scored burstiness values higher than any of their Poissonian surrogates (���p � 0.001). E, Rates of medium-load (left) and low-load
(right) bursts in pre-phases, post-phases, and background phases.c,d Statistics: Kruskal–Wallis test for differences across groups (p
� 0.001; C, E), followed by pairwise Mann–Whitney test with Bonferroni correction (���p � 0.001; C, E).
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recording (following the 10 min excluded to avoid the
effects of anesthesia) unless a high-load cluster ended in
this window. To avoid contributions of putative pre-
phases ending after the recording, we likewise excluded
the last 5 min of a session from background phases.
These settings were derived from the distributions of
pre-phase and post-phase durations (Fig. 4B). We further
excluded phases rendered ambiguous by movement-
induced artifacts.

Background phases To avoid misidentification of short
lapses between high-load dynamics as background ac-
tivity, we excluded periods �90 s (“short”) from back-
ground phases (Extended Data Fig. 4-1C). Since medium-
load bursts were strongly associated with transition

dynamics, we further excluded periods with �15% of
their time occupied by medium-load bursts (Extended
Data Fig. 4-1C). All remaining periods not classified as any
of the above were considered background phases. Re-
cording time was spent mostly in background phases
(43%) and high-load clusters (40%; Extended Data Fig.
4-1E). Only complete high-load clusters were used to
calculate the statistics of high-load clusters (data pre-
sented in Fig. 3E,F). Likewise, only data of background
phases of known duration is shown in Figure 5B–G.

Code accessibility
Data analysis was conducted using a custom algorithm

developed in Python (optimized for versions 2.7 and 3.4)

Figure 5. Background phases with a high rate of low-load bursts last longer. A, Example sequences of EA events (colored bars:
bursts; solitary spikes: black tick marks) and background phases (white boxes). B, Burstiness of spikes within a background phases
against duration of that background phase. Only background phases of known duration and with at least five interspike intervals were
included (N � 197, � � 0.27, psurrogate � 0.009). C, Relation between duration and burstiness of background phases per animal. Each
line shows the least-squares regression across background phases for each animal individually (same data as in E but analyzed per
animal). The slopes were positive in 15 out of 18 animals. Line width indicates the number of background phases (thin: N � 5, medium:
N � 5–10, thick: N � 10). Inset: Number of background phases per animal. D, Overall burstiness plotted against average duration of
background phases per animal. The correlation was not significant (N � 18, � � 0.07, psurrogate � 0.3). Note that burstiness was
calculated from interspike intervals of all background phases pertaining to an animal. Hence background phases with more intervals
had a greater influence on overall burstiness of an animal. Because longer background phases, i.e., those with more intervals and/or
higher spike rates, scored higher burstiness, the center of mass of the burstiness distribution per animal is shifted toward higher
burstiness values compared to the center of mass of the distribution per background phase shown in B. E, Correlation between
duration of background phase and rate of low-load bursts during background phase. Only background phases of known duration
were included (N � 240, � � 0.28, psurrogate � 0.001). F, Relation between background rate of low-load bursts and duration of
background phase per animal. Each line shows the least-squares regression across background phases for each animal individually
(same data as in E but analyzed per animal). G, Correlation between average duration of background phase and average background
rate of low-load bursts per animal (N � 18, � � 0.20, psurrogate � 0.5). The slopes were positive in 15 out of 18 animals. The fraction
of time spent in background phases per session/animal and the survival function of background phases are shown in Extended Data
Figure 5-1. Surrogate tests based on Poissonian event trains for the relationships across background phases (B, E) and permutation
tests for the relationships calculated across the set of animals (D, G) are shown in Extended Data Figure 5-2. In Extended Data Figure
5-3, we compared the correlation shown for low-load bursts (E) with correlations for spikes and solitary spikes and assessed the
robustness of these correlations against changes in burst definition.
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on Linux and Windows machines. The code for detecting
and classifying EA and delimiting phases is available on
reasonable request. The Python code for simulating rate-
modulated spike trains (Extended Data Fig. 6-3) is freely
available at doi:10.5281/zenodo.3376778.

Statistics
Statistical tests and data analyses were performed with

Python 2.7 (RRID: SCR_008394, Python Software Foun-
dation). Since most variables were not normally distrib-
uted, statistical dependence was assessed using the non-
parametric correlation coefficient Kendall’s tau (�, p value
indicated as p�) in all cases. Correspondingly, regression
lines show the Theil-Sen estimator (median of slopes
through all pairs of sample points), unless stated other-
wise. Burstiness was defined as standarddeviation �
mean / standarddeviation � mean of interevent intervals
(Goh and Barabási, 2008). Survival functions were calcu-
lated according to the Kaplan–Meier method (Lifelines Py-
thon package, version: 0.9.4, doi:10.5281/zenodo.805993).
Differences between groups were tested with the Kruskal–
Wallis test. Differences between pairs of independent
groups were tested by a Mann–Whitney U test. For pairwise
comparison of dependent samples, we used Wilcoxon
signed-rank test; p values were corrected for multiple testing
with the Bonferroni method. A one-sample t-test was used
to assess whether the distribution of fitted regression slopes
significantly deviated from a random population with mean
� 0. Statistical power was assessed with G�Power 3.1 (Faul
et al., 2009). Observed power and exact p values are re-
ported in Table 1. Datasets A and B yielded comparable
results throughout this study and were therefore pooled. All
value ranges reported in this study are given as the 10th–
90th percentile. Per-session background rate of events was
calculated by counting events within all background phases

of a session and dividing by the total time spent in back-
ground phases in a session. We defined the rate of high-load
bursts as the count of all high-load bursts in a session
divided by the total duration of that session excluding ses-
sion borders and periods spent with movement artifacts.
Averages per animal were computed as weighted averages,
with duration of background phase (Fig. 5D,G) or time spent
in background phases in a session (Fig. 6C,F) as a weighting
factor.

Surrogate tests
Significance of burstiness scores (Figs. 1C, 3B,C, 4D)

and of the correlations shown in Figures 5, 6 was as-
sessed using surrogate tests. Surrogate event series were
generated by concatenating intervals derived from Pois-
son processes. The rate parameter rateadjusted of the Pois-
son process was set to yield surrogate series matching
the event rates in the original data (rateobserved) after ad-
justment for dead time (Tdead) and event duration (Tevent)
as rateadjusted � rateobserved / 1 � rateobserved·�Tdead � Tevent� ,
with Tdead � 0.0833s and Tevent � 0 s for surrogate spike
series. For surrogate burst series we used Tdead � 3.5 s
and defined Tevent as the mean duration of burst events
occurring during all episodes for which the surrogate was
generated. rateobserved was a constant calculated as a
duration-weighted average of event rates from all epi-
sodes considered, e.g., when assessing burstiness of
spikes in all background phases rateobserved was defined
as the average rate of spikes across all background
phases, weighted by background phase duration. The
duration of surrogate bursts was randomly drawn from the
pool of burst events in the respective episodes. Surrogate
tests based on event series are shown and further de-
scribed in Extended Data Figures 5-2A–C, 6–2A–C.

Table 1. Power analyses and exact p values

Reference test Sample size Observed power (� � 0.05) p value
a Text ANOVA a.m: 53

p.m: 52
0.15 0.65

b Fig. 4C KW Pre: 347
Post: 311
Back: 340

1.0 3.3e-78

MW U See previous Pre vs post: 1.0
Pre vs back: 1.0
Post vs back: 1.0

Pre vs post: 4.2e-08
Pre vs back: 1.8e-81
Post vs back: 4.9e-29

c Fig. 4E, left KW See previous 1.0 2.5e-34
MW U See previous Pre vs post: 0.75

Pre vs back: 1.0
Post vs back: 1.0

Pre vs post: 8.9e-04
Pre vs back: 2.1e-38
Post vs back: 3.3e-11

d Fig. 4E, right KW See previous 1.0 1.6e-40
MW U See previous Pre vs post: 1.0

Pre vs back: 1.0
Post vs back: 1.0

Pre vs post: 7.1e-08
Pre vs back: 1.2e-44
Post vs back: 3.3e-10

e Text WSR 340 1.0 6.1e-43
f Fig. 5C t-test 18 0.57 7.8e-03
g Fig. 5F t-test 18 0.68 3.1e-03
h Fig. 6B t-test 17 0.98 2.8e-05
i Fig. 6E t-test 17 0.54 1.0e-02
j Extended Data Fig. 6-1B 	2 2631 1.0 1

Lower case letters in first column are used as superscripts in text and figure captions. KW, Kruskal–Wallis test; MW U, Mann–Whitney U test; WSR, Wilcoxon
signed-rank test; t test, one-sampled t test against zero-mean distribution; p values in rows b–d were corrected using the Bonferroni method.
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Significance of correlations across the set of animals
was assessed with a permutation test. To generate sur-
rogate animals, we randomly permuted episodes, i.e.,
background phases (Extended Data Fig. 5-2B,D) or ses-
sions (Extended Data Fig. 6-2B,D), from the pool of all
episodes such that each surrogate animal was randomly
assigned as many episodes as it originally contributed to
the dataset.

To test significance, the original values were compared
to distributions of 1000 surrogate values. The p value
psurrogate was defined as the fraction of surrogate values
above (right-tailed) or below (left-tailed) the original value.

Results
This study addresses the question what patterns of EA

occur in LFPs recorded from the hippocampus of kainate-
injected mice and how these patterns interact.

Epileptiform spikes come in bursts
As is typical for this animal model, epileptiform spikes

were frequent in our recordings. These spikes occurred
mainly as components of larger bursts or aggregated
loosely into smaller bursts that contained fewer spikes. In

contrast, large, putative behavioral seizures were rare
(estimated range: 0.0–9.6/d).

To describe burst patterns systematically, we first de-
tected spikes using a custom algorithm and transformed
LFPs into spike trains (Fig. 1A,B). Spike trains in all ses-
sions had burstiness scores (0.37–0.70) significantly
higher than Poissonian surrogate trains (burstiness –0.04
to 0.00; p � 0.001 for all recordings; Fig. 1C) and non-
normal interspike interval distributions (Fig. 1D). This cor-
roborated our observation that spikes preferentially
occurred in bursts. We then delimited bursts by grouping
spikes (Fig. 1D), thereby creating time series of two gen-
eral types of EA events: Bursts and solitary spikes (Fig.
1E). Such a time series approach captures the discrete
nature of the process more directly and requires fewer
parameters compared to an analysis of continuous rate
profiles (Extended Data Fig. 1-1).

Categories of bursts
We observed that bursts did not simply differ in a single

property but rather in a composite of multiple features. To
classify bursts according to features associated with
spike load we used a machine learning algorithm (SOM;

Figure 6 High background rates of low-load bursts, reduced susceptibility to high-load bursts. A, Correlation across sessions
between the average rate of low-load bursts during background phases and the rate of high-load bursts. Only sessions with
background phases were included (N � 91, � � –0.43, psurrogate � 0.001). B, Relation between background rate of low-load bursts
and rate of high-load bursts per animal. Each line shows the least-squares regression across all sessions of each animal individually
(same data as in A but analyzed per animal). The slopes were negative in 15 out of 17 animals. Line width indicates the number of
background phases (thin: N � 5, thick: N 
 5). C, Correlation between the average background rate of low-load bursts and the
average rate of high-load bursts per animal (N � 18, � � –0.33, psurrogate � 0.31). The gray dot shows data for an animal that had
only one session containing background phases. D, Correlation across sessions between the average rate of low-load bursts during
background phases and the percentage of time spent without EA (N � 91, � � 0.39, psurrogate � 0.001). EA-free episodes were defined
as periods within the background phase lacking EA events. Long EA-free episodes occurred throughout the extent of interictal phases
(Extended Data Fig. 6-1).j E, Relation between background rate of low-load bursts and percentage of time spent without EA per
animal. Each line shows the least-squares regression across all sessions of an animal (same data as in D but analyzed per animal).
The slopes were positive in 14 out of 17 animals. F, Correlation between the average background rate of low-load bursts and the total
percentage of time spent without EA per animal (N � 18, � � 0.29, psurrogate � 0.32). Surrogate tests based on Poissonian event trains
for the relationships across sessions (A, D) and permutation tests for the relationships across the set of animals (C, F) are shown in
Extended Data Figure 6-2. In Extended Data Figure 6-3, we compare our results to simulations of rate-modulated spiking processes.

New Research 10 of 14

September/October 2019, 6(5) ENEURO.0299-18.2019 eNeuro.org

https://doi.org/10.1523/ENEURO.0299-18.2019.f5-2
https://doi.org/10.1523/ENEURO.0299-18.2019.f6-2
https://doi.org/10.1523/ENEURO.0299-18.2019.f1-1
https://doi.org/10.1523/ENEURO.0299-18.2019.f6-1
https://doi.org/10.1523/ENEURO.0299-18.2019.f6-2
https://doi.org/10.1523/ENEURO.0299-18.2019.f6-3


Fig. 2A,B) and assigned a spike load index ranging from 0
(loose aggregation of spikes) to 1 (long spike burst with
high rate) to each burst. A hierarchical clustering analysis
(Fig. 2C; Extended Data Fig. 2-1) allowed us to distinguish
three distinct burst categories: low-load, medium-load
and high-load bursts. Spike load was loosely linked to
spike rate and duration in that high-load bursts showed
elevated values for both. Short low-load bursts could also
have high spike rates (Fig. 2D), whereas long low-load
bursts tended to have low spike rates. Medium-load
bursts covered intermediate ranges of duration and spike
rate in highly variable combinations. Bursts correspond-
ing to visually identified behavioral seizures had some of
the highest spike rates and longest durations.

Although this classification was based specifically on
the spike statistics of the bursts, bursts within a category
showed consistent morphologic features (Fig. 2B; Ex-
tended Data Fig. 2-2). Bursts corresponding to visually
identified large behavioral seizures had spike load index �
1 (N � 18). During such bursts, we observed highly syn-
chronous activity on the contralateral side and in the
entorhinal cortex (Extended Data Fig. 2-2A). The remain-
ing bursts with spike load index � 1 (N � 125) and the
other high-load bursts with spike load index �1 were
accompanied by intense EA in the contralateral dentate
gyrus but only sparse spiking in the entorhinal cortex
(Extended Data Fig. 2-2B,C). In low-load bursts, the spike
component was typically followed by a clearly discernible
wave of opposite polarity, smaller amplitude, and longer
duration, similar to a spike-wave discharge (comparable
to type 1 spikes in Chauvière et al., 2012). During low-load
bursts, contralateral and entorhinal activity was sparse or
absent (Extended Data Fig. 2-1D). Medium-load bursts
often contained periods in which spikes were more
densely packed than in low-load bursts and where the
wave component was less salient or absent. During
medium-load bursts, contralateral activity was typically
more pronounced than during low-load bursts.

High-load bursts form clusters
The temporal succession of the three burst types sug-

gested patterns of higher order: Periods dominated by
high-load bursts appeared to alternate with extended
phases containing only low-load bursts (Fig. 3A). In line
with this observation, we found that high-load bursts
clustered significantly across all sessions pooled (p �
0.001 burstiness; Fig. 3B) as well as in most sessions
individually (64 sessions significantly clustered with p �
0.05, 20 not clustered; Fig. 3C). We delimited clusters of
high-load bursts as the temporal extent of high-load
bursts connected by intervals shorter than 3 min (Fig. 3D).
Note that within such clusters intervals between high-load
bursts were typically not devoid of EA but could contain
additional bursts of lower load and solitary spikes (Fig.
3A). For consistency, we treated isolated high-load bursts
(36%; Fig. 3E) as high-load clusters. High-load clusters
with more than one high-load burst could last from 20 s
up to 	 50 min (Fig. 3F). The fraction of time spent in
high-load clusters fluctuated considerably from session to
session (Fig. 3G) and was independent of the time

elapsed since injection of kainate (� � 0.01, p� � 0.8) and
of the daytime of the recording (ANOVAa contrasting the
morning and afternoon group).

Transitions are rich in low-load and medium-load
bursts

High-load clusters were often preceded and followed
by aggregations of low-load and medium-load bursts (Fig.
4A). We identified these pre-phases and post-phases
through change points in the interburst interval series
(Extended Data Fig. 4-1A). Depressions following high-
load clusters were also considered as post-phases and
could be concluded by rebound bursts (Extended Data
Figs. 4-1B, 4–2). Of all high-load clusters, 86% were
preceded by pre-phases and 81% followed by post-
phases.

After delimiting high-load clusters and transition
phases, we defined background phases by exclusion (Ex-
tended Data Fig. 4-1A). Median spike rate was more than
twice as high in the pre-phase and post-phase than in the
background phase (Fig. 4C).b Spikes in each of the phase
types had a strong tendency to occur in bursts (Fig. 4D),
corroborating that even during background phases spik-
ing was not random but structured in bursts.

Median burst rate was significantly higher in the pre-
phase than in the post-phase (Fig. 4E).c,d During back-
ground phases, low-load bursts occurred at substantially
higher rates than medium-load bursts (median rate and
range for low-load bursts: 0.84/min, 0.00–1.90/min; for
medium-load bursts: 0.06/min, 0.00–0.53/min).e Transi-
tion phases thus appeared to be more specifically asso-
ciated with medium-load bursts than with low-load
bursts.

Background phase duration is positively correlated
with burstiness and the rate of low-load bursts

Duration and EA content of background phases varied
(Fig. 5A, Extended Data Fig. 5-1). We therefore asked,
whether there was a connection between the duration of
background phases and the rate and structure of EA
within them. Across the pool of background phases, the
burstiness of spikes within a background phase corre-
lated positively with its duration (� � 0.27, psurrogate �
0.009; Fig. 5B; Extended Data Fig. 5-2A), i.e., burstier
background phases lasted longer. To test whether this
relationship held for each animal individually, we calcu-
lated least-squares regressions between burstiness and
duration across all background phases per animal (Fig.
5C). The distribution of regression slopes significantly
differed from random (t-testf, p � 7.8 � 10�3) and most
slopes were positive (15 out of 18 mice), demonstrating a
consistently positive relationship between burstiness and
duration of background phases. However, animals with
on average longer background phases did not score sig-
nificantly higher overall burstiness (� � 0.07, psurrogate �
0.3; Fig. 5D; Extended Data Fig. 5-2B). Hence, while
overall burstiness of background spiking in a mouse did
not indicate the average duration of its background
phases, burstiness and background phase duration were
positively correlated across background phases of most
mice individually.
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Background phases also lasted longer if they had
higher rates of low-load bursts (� � 0.28, psurrogate �
0.001; Fig. 5E; Extended Data Fig. 5-2C). This relationship
was reproduced for most animals individually (15 out of
18; Fig. 5F).g However, the average background rate of
low-load bursts of a mouse did not indicate the average
duration of its background phases (� � 0.20, psurrogate �
0.5; Fig. 5G; Extended Data Fig. 5-2D).

Sessions with higher rates of low-load bursts in
background phases have lower rates of high-load
bursts

Longer background phases in a recording session
would leave less time available for high-load bursts. Al-
ternatively, the fact that long background phases were
associated with increased background rates of low-load
bursts could be due to higher excitability, which in turn
might lead to higher rates of high-load bursts. The former
situation would lead to an anti-correlation between the
background rates of low-load bursts and the rates of
high-load bursts across sessions, whereas the latter
would result in a positive correlation. In addition, the
clustering of high-load bursts makes it difficult to predict
the specific relation between these EA patterns. We found
that across sessions, the average background rate of
low-load bursts was significantly anti-correlated to the
rate of high-load bursts (� � –0.43, psurrogate � 0.001; Fig.
6A; Extended Data Fig. 6-2A). Regressions across ses-
sions had negative slopes in 15 out of 17 mice (t-testh

against random distribution of slopes: p � 2.8 � 10�5;
Fig. 6B). This indicates that the inverse relationship be-
tween the background rate of low-load bursts and the rate
of high-load bursts is robust across mice. Again, there
was no significant (anti-)correlation between the average
rate of high-load bursts and the average background rate
of low-load bursts of a mouse (� � –0.33, psurrogate � 0.05;
Fig. 6C; Extended Data Fig. 6-2B). The background rate of
low-load bursts thus more closely reflected the state of a
mouse during a session than its overall condition.

Although elevated background rates of low-load bursts
were linked to fewer high-load bursts in a session, low-
load bursts themselves are also pathologic activity. We
therefore tested whether the increased rates of low-load
bursts in longer background phases would increase the
overall time spent with EA. Across sessions, the percent-
age of time spent without EA in background phases was
larger in sessions with higher background rates of low-
load bursts (� � 0.39, psurrogate � 0.001; Fig. 6D; per
animal: Fig. 6Ei; across animals: Fig. 6F; survival proba-
bility of EA-free episodes: Extended Data Fig. 6-1A). In
addition, the probability for long EA-free episodes did not
decrease with increasing background phase duration (Ex-
tended Data Fig. 6-1B). We thus rejected the hypothesis
that elevated background rates of low-load bursts curtail
the overall time spent without EA.

In summary, the background rate of low-load bursts
was significantly correlated to (1) the duration of the back-
ground phase and (2) to the percentage of time spent
without EA, but was (3) significantly anti-correlated to rate
of high-load bursts. We found that the background rate of

low-load bursts more strongly correlated with these sig-
natures of susceptibility than the background rate of
spikes or solitary spikes and that these results were ro-
bust against changes in event definition (Extended Data
Fig. 5-3).

Discussion
We analyzed the temporal structure of epileptiform

spiking in LFPs recorded in a mouse model of MTLE.
Since large parts of EA consisted of well-defined spike
bursts, we chose an approach based on time series. Time
series are well suited for correlation analyses to investi-
gate statistical interactions between event types.

In previous studies, large EA events have been de-
scribed by features such as duration, spike rate, spike
amplitude, spike wave form, and the evolution of these
parameters over time (Twele et al., 2016). To avoid effects
resulting from variations in recording conditions across
animals and time, such as electrode properties, glial scar-
ring, etc., we classified bursts based on a set of features
best summarized as spike load. Importantly, spike load
was only loosely correlated to burst duration and spike
rate within a burst; it could differ considerably for bursts of
the same duration or spike rate.

Although they were classified according to statistical
measures of their spike structure, events in a burst cate-
gory were morphologically similar. Low-load bursts typi-
cally consisted of spikes followed by longer deflections of
opposite polarity with lower amplitudes. These bursts
were similar to trains or groups of spike-wave discharges
reported previously for this animal model (Riban et al.,
2002; Twele et al., 2016). Medium-load bursts typically
comprised spike trains with higher rates, where wave
components were less apparent or obfuscated by subse-
quent spikes.

In high-load bursts, most spikes were densely packed.
High-load bursts often started with loosely spaced spike-
wave discharges and evolved into dense spiking with
progressively lower amplitudes, like type A bursts de-
scribed by Chauvière et al. (2012) for kainate injected rats.
In terms of both morphology and incidence, high-load
bursts were similar to what other studies using our animal
model labeled as hyperparoxysmal discharges, high volt-
age sharp waves, or electrographic seizures based on
visual inspection and manual classification (Riban et al.,
2002; Twele et al., 2016; Zeidler et al., 2018). With respect
to long-term dynamics, the clustering of high-load bursts
appeared similar to seizure clusters commonly described
in rodent models (Lim et al., 2018) and in patients (Karoly
et al., 2017). A small fraction of high-load bursts were
similar to large behavioral seizures described elsewhere
based on their characteristic, stereotypical wave form and
highly synchronous activity across recording sites (Riban
et al., 2002; Zeidler et al., 2018). Their incidence was
comparable to other reports on various rodent models of
epilepsy (Rattka et al., 2013; Klee et al., 2017). We did not
investigate these in further detail because they were too
rare for a meaningful correlation analysis.

Differences between burst categories also manifested
in their temporal occurrence. Clusters of high-load bursts
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were often preceded by aggregations of low-load and
medium-load bursts and alternated with phases popu-
lated almost exclusively by low-load bursts. This temporal
cohesion of morphologically similar events substantiates
our classifications and suggests distinct temporal dynam-
ics dominated by different types of bursts. Segregating
such temporal phases of distinct EA dynamics is crucial to
evaluate relationships between different types of EA. Sep-
arating transition phases rich in low-load and medium-
load bursts enabled us to specifically address EA in
background phases and to investigate how background
activity relates to the rate of high-load bursts.

Our findings indicate that the interpretation of low-load
bursts should depend on temporal and functional context:
While the rates of low-load and medium-load bursts in-
creased before the onset of high-load dynamics, back-
ground rates of low-load bursts were anti-correlated to
rates of high-load bursts. We further found that higher
rates of low-load bursts during background phases were
associated with an increased duration of the background
phase and a larger relative amount of time spent without
any EA. This antagonistic relationship between low-load
bursts and susceptibility to high-load bursts is in agree-
ment with the hypothesis that epileptiform spikes could
reduce seizure susceptibility (Barbarosie and Avoli, 1997;
De Curtis and Avanzini, 2001; Khosravani et al., 2003;
Muldoon et al., 2015; Goncharova et al., 2016). On a
mechanistic level, epileptiform spikes, and especially the
wave component following the sharp spike during spike-
wave discharges, have been proposed to reflect GABAe-
rgic inhibitory processes (De Curtis and Avanzini, 2001;
Muldoon et al., 2015). In our recordings, low-load bursts
mostly consisted of spike-wave discharges and thus
might be interpreted as a signature of boosted inhibition.
Conversely, in medium-load bursts, the wave was often
less prominent and spikes were more densely packed.
While this could be due to an overlap on the signal level,
the increase of medium-load bursts preceding high-load
clusters could also indicate a gradual breakdown of inhi-
bition. Along the same line, high rates of low-load and
medium-load bursts during transition phases could pro-
mote high-load dynamics through excessive GABAergic
input: high rates of spikes might increase the intracellular
chloride concentration and hence make GABA act depo-
larizing (Pallud et al., 2014; Magloire et al., 2019), thereby
enhancing excitability and facilitating high-load bursts.
Alternatively, an increase of intracellular chloride concen-
tration could trigger potassium extrusion into the extra-
cellular space and thus enhance excitability (De Curtis
and Avoli, 2016; Librizzi et al., 2017).

One could argue that the existence of different catego-
ries of bursts with lower or higher spike load and the
alternation we observe between background, transition
phases and high-load clusters is governed by modula-
tions of the spike rate. Such modulations and an accom-
panying buildup in susceptibility have been suggested to
be due to slowly changing variables such as extracellular
ion concentrations or metabolic factors. For example, a
slow “permittivity variable” has been used in computa-
tional models of seizure generation (Jirsa et al., 2014).

While it is possible that underlying slow modulations con-
tributed to transitions from background to high-load dy-
namics observed in our data, such modulations alone
cannot explain the antagonistic relationship between the
rate of low-load bursts in background phases and the
susceptibility to high-load bursts. When simulated as
rate-modulated Poisson processes (Extended Data Fig.
6-3), nested modulations indeed reproduced high-load
bursts and clusters of high-load bursts (Extended Data
Fig. 6-3A–F) but they did not result in an anti-correlation
between the rate of high-load bursts and the background
rate of low-load bursts found in our data (compare Fig.
6A, Extended Data Fig. 6-3H). Neither did this spike rate
modulation replicate the observed positive correlation be-
tween the rate of low-load bursts in the background
phase and the duration of background phases (compare
Fig. 5E, Extended Data Fig. 6-3I). To reproduce the cor-
relation statistics we observed would require an additional
interaction between the rate of low-load bursts in back-
ground phases and high-load dynamics.

The ideas of a slow process modulating excitability and a
context-dependent interaction between high-load dynamics
and background bursting, however, may be reconciled.
Based on experiments and computational modeling, Chang
et al. (2018) recently proposed that epileptiform spikes in-
teract with slowly increasing network excitability in a
context-dependent manner: When the excitability of the
network was low, epileptiform spikes further reduced ex-
citability and thus lengthened interictal states. In a transi-
tion range of excitability, sufficiently strong, synchronized
firing of a population of neurons could prematurely trigger
seizures. In analogy to Chang et al. (2018), high rates of
low-load bursts could stabilize background phases in our
animals, counteracting a continuous increase of network
excitability. Low rates of low-load bursts, however, would
allow a net increase of excitability. In the transition range
of excitability, increased rates of low-load events could
then eventually facilitate high-load dynamics. Since
bursts of spikes were a more powerful correlate to high-
load susceptibility, we hypothesize that spikes grouped
into bursts might be particularly effective in keeping ex-
citability in check and thus prolong background dynam-
ics.

In summary, we characterized the nested structure of
EA patterns in the kainate mouse model of MTLE using
time series analyses and machine learning techniques.
Systematically segregating periods of intense high-load
bursting and transition phases from background phases
allowed us to address the relationship between different
types of EA specific to temporal context. Our study cor-
roborates the hypothesis that the role of low-level EA
depends on the current state of network dynamics and
suggests that the rate of bursts with low spike load could
be a powerful correlate of susceptibility dynamics.
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