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Abstract

Background: Despite the availability of many ready-made testing software, reliable detection of differentially
expressed genes in RNA-seq data is not a trivial task. Even though the data collection is considered high-throughput,
data analysis has intricacies that require careful human attention. Researchers should use modern data analysis
techniques that incorporate visual feedback to verify the appropriateness of their models. While some RNA-seq
packages provide static visualization tools, their capabilities should be expanded and their meaningfulness should be
explicitly demonstrated to users.

Results: In this paper, we 1) introduce new interactive RNA-seq visualization tools, 2) compile a collection of
examples that demonstrate to biologists why visualization should be an integral component of differential expression
analysis. We use public RNA-seq datasets to show that our new visualization tools can detect normalization issues,
differential expression designation problems, and common analysis errors. We also show that our new visualization
tools can identify genes of interest in ways undetectable with models. Our R package “bigPint” includes the plotting
tools introduced in this paper, many of which are unique additions to what is currently available. The “bigPint” website
is located at https://lindsayrutter.github.io/bigPint and contains short vignette articles that introduce new users to our
package, all written in reproducible code.

Conclusions: We emphasize that interactive graphics should be an indispensable component of modern RNA-seq
analysis, which is currently not the case. This paper and its corresponding software aim to persuade 1) users to slightly
modify their differential expression analyses by incorporating statistical graphics into their usual analysis pipelines, 2)
developers to create additional complex and interactive plotting methods for RNA-seq data, possibly using lessons
learned from our open-source codes. We hope our work will serve a small part in upgrading the RNA-seq analysis
world into one that more wholistically extracts biological information using both models and visuals.
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Background
RNA-sequencing (RNA-seq) uses next-generation
sequencing (NGS) to estimate the quantity of RNA in
biological samples at given timepoints. In recent years,
decreasing cost and increasing throughput has rendered
RNA-seq an attractive form of transcriptome profil-
ing. Prior to RNA-seq, gene expression studies were
performed with microarray techniques, which required
prior knowledge of reference sequences. RNA-seq does
not have this limitation, and has enabled a new range
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of applications such as de novo transcriptome assembly
[1] and detection of alternative splicing processes [2, 3].
Coupled with its high resolution and sensitivity, RNA-seq
is revolutionizing our understanding of the intricacies of
eukaryotic transcriptomes [4, 5].
One common format of RNA-seq data is a matrix con-

taining mapped read counts for n rows of genes and
p columns of samples. These mapped read counts pro-
vide gene expression level estimations across samples.
Researchers often conduct RNA-seq studies to identify
differentially expressed genes (DEGs) between treatment
groups. In most popular RNA-seq analysis packages, this
objective is approached with models, such as the negative
binomial model [6–9] and linear regression models [10].
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Initially, it was widely claimed that RNA-seq produced
unbiased data that did not require sophisticated normal-
ization [4, 11, 12]. However, numerous studies have since
revealed that RNA-seq data is replete with biases and
that accurate detection of DEGs is not a negligible task.
Problems that complicate RNA-seq data analysis include
nucleotide and read-position biases [13], biases related to
gene lengths and sequencing depths [14, 15], biases intro-
duced during library preparation [16], and confounding
combinations of technical and biological variability [17].
In light of these complications, researchers should ana-

lyze RNA-seq data like they would any other biased
multivariate data. Solely applying models to such data is
problematic because models hold assumptions that must
be verified to ensure statistical soundness. Fortunately,
data visualization enables researchers to see patterns and
problems they may not otherwise detect with traditional
modeling. As a result, the most effective approach to
data analysis is to iterate between models and visuals,
and enhance the appropriateness of applied models based
on feedback from visuals [18]. With differential expres-
sion data, we primarily want to compare the variability
between replicates and between treatment groups. This is
visually best achieved by drawing the mapped read count
distributions across all genes and samples. To our knowl-
edge, the few plotting tools offered in popular RNA-seq
packages do not often allow users to effectively view their
data in this manner.
In this paper, we strive to remedy this problem by

highlighting the utility of new and effective differential
expression plotting tools. We use real RNA-seq data to
show that our tools can detect normalization problems,
DEG designation problems, and common errors in the
analysis pipeline. We also show that our tools can iden-
tify genes of interest that cannot otherwise be obtained by
models. We emphasize that interactive graphics should be
an indispensable component of modern RNA-seq analy-
sis. Here, we do not propose that users drastically change
their approach to differential expression analysis. Instead,
we propose that users simply modify their approach to
differential expression analysis by assessing the sensibility
of their models with multivariate graphical tools, namely
with parallel coordinate plots, scatterplot matrices, and
litre plots.

Results
Parallel coordinate plots
Parallel coordinate plots are essential to inform the rela-
tionships between variables in multivariate data. A paral-
lel coordinate plot draws each row (gene) as a line. For a
given gene, two samples with similar read counts will have
a flat connection and two samples with dissimilar read
counts will have a sloped connection. The ideal dataset
has more variability between treatments than between

replicates. Researchers can quickly confirm this with a
parallel coordinate plot: There should be flat connec-
tions between replicates but crossed connections between
treatments.
There are several packages within the Bioconductor

software [19] that provide graphics for RNA-seq data
analysis [20]. Two of the most common graphic tech-
niques are side-by-side boxplots and Multidimensional
Scaling (MDS) plots [9, 21–23]. Unfortunately, these plots
can hide problems that still exist in the data even after nor-
malization and that could be better detected with parallel
coordinate plots.
Figure 1 exemplifies this problem for two simulated

datasets, one displayed on the left half and the other dis-
played on the right half of the figure. Each dataset contains
two treatment groups (A and B) with three replicates.
The side-by-side boxplots (subplots A) both show fairly
consistent medians across the six samples in the left and
right dataset; the most prominent difference is the smaller
interquartile ranges in the right dataset. The left MDS
plot separates the treatment groups distinctively; the right
MDS plot suggests a similar separation but in a much
subtler manner (subplots B). In addition, the first repli-
cate from treatment A appears as an outlier in the right
MDS plot.
While the boxplots and MDS plots provide useful infor-

mation, the parallel coordinate plots (subplots C) show
an additional meaningful difference between the left and
right datasets. The left dataset has consistent (level)
lines between replicates and inconsistent (crossed) lines
between treatment groups. This suggests that some of the
genes (lines) have consistently low values for treatment
group A and consistently high values for treatment group
B, while some genes have the opposite phenomenon. As
a result, the majority of the plotted genes may be DEG
candidates. In contrast, the right dataset does not pos-
sess this ideal structure and suggests that the majority of
its genes may not be DEG candidates. We could not see
this important distinction as clearly using the side-by-side
boxplots or the MDS plots because they only provide data
summarization at the sample resolution, while the paral-
lel coordinate plots show the sample connections for each
gene in the data.
Please note that the example above was simulated for

didactic purposes. We will now examine the application
of parallel coordinate plots to real data from an RNA-seq
study that compared soybean leaves after 120 min of iron-
sufficient (group P) and iron-deficient (group N) hydro-
ponic treatments [24]. We filtered genes with low means
and/or variance, performed a hierarchical clustering anal-
ysis with a cluster size of four, retained only significant
genes, and visualized the results using parallel coordinate
lines (Fig. 2). For these visualizations, we standardized
each gene to have a mean of zero and standard deviation
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Fig. 1 Comparison of plotting methods using simulated data. One simulated dataset is shown on the left half and another simulated dataset is
shown on the right half of the figure. The parallel coordinate plots (subplots C) show a critical difference at the gene-level between the datasets.
Namely, the left dataset is composed of genes with small replicate variation and large treatment group variation (suggesting DEGs), while the right
dataset is composed of genes with similar variation between replicates and treatment groups (not suggesting DEGs). We cannot see this gene-level
difference with the boxplots and MDS plots

of unity [25, 26]. Then, we performed hierarchical cluster-
ing on the standardized DEGs using Ward’s linkage. This
process can divide large DEG lists into smaller clusters
of similar patterns, which allows us to more effectively
detect the various types of patterns within large DEG lists.
We note that the number and quality of clusters can vary
depending on the data.
The majority of significant genes were in Clusters 1 and

2, which for the most part captured the expected pat-
terns of differential expression (consistent replicates and
inconsistent treatments) in reverse directions. Only 17
significant genes belonged to Cluster 4 and they mostly
showed messy patterns with low signal to noise ratios.
Interestingly, Cluster 3 had a fairly large number of sig-
nificant genes (n=861). These genes mostly showed clean
differential expression profiles similar to Cluster 2 (large
values for group N and small values for group P), except

for unexpectedly large values for the third replicate of
group P. The reasons for a different response by these
genes on this replicate is unclear, but warrants further
study.

Scatterplot matrices
Overview of scatterplot matrices
A scatterplot matrix is another effective multivariate visu-
alization tool that plots read count distributions across
all genes and samples. Specifically, it represents each row
(gene) as a point in each scatterplot. With this method,
users can quickly discover unexpected patterns, recognize
geometric shapes, and assess the structure and association
between multiple variables in a manner that is different
from most common practices.
Clean data would be expected to have larger variabil-

ity between treatment groups than between replicates. As
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Fig. 2 Parallel coordinate plots of clustered significant genes in the soybean iron metabolism data. Parallel coordinate plots of significant genes after
hierarchical clustering of the soybean iron metabolism data [24]. We can quickly confirm that Clusters 1 and 2 show the typical pattern for
significant genes. Cluster 4 does not distinctively show the usual profile for significant genes. Cluster 3 looks similar to Cluster 2, except for
unexpectedly large P.3 values

Fig. 3 shows, researchers can quickly confirm this with
a scatterplot matrix. Within each scatterplot, most genes
should fall along the x=y line (in red) as we expect only
a small proportion of them to show differential expres-
sion between samples. However, a fraction of the genes
should have lower variability between replicates than
between treatments, and so we should expect the spread
of the scatterplot points to fall more closely along the x=y
relationship between replicates than between treatments.
Indeed, in Fig. 3, we created a scatterplot matrix for a
public RNA-seq dataset that contains three replicates for
two developmental stages of soybean cotyledon (S1 and
S2) [27]. We can immediately verify that the nine scatter-
plots between treatment pairs (the bottom-left corner of
the matrix encased in the blue square) have more spread
around the x=y line than the six scatterplots between
replicate pairs.
After confirming this expected trend, users can use the

scatterplot matrix to focus on subsets of genes: Outlier
genes that deviate from the x=y line in replicate scatter-
plots might be problematic, whereas outlier genes that
deviate from the x=y line in treatment scatterplots might
be DEGs. In order to achieve this functionality, the plots
must be rendered interactive. This way, users can hover
over and click on gene subsets of interest and view their
patterns from multiple perspectives while also obtaining
their identifiers.

Notice that each gene in our data is plotted once in
each of the 15 scatterplots. With 73,320 genes in our data,
more than one million points must be plotted. Render-
ing all points interactive would slow down the interactive
capabilities of the plot. To solve this, we can tailor the geo-
metric object of the scatterplots to be hexagon bins rather
than points. This dramatically reduces the number of geo-
metric objects to be plotted, and increases the interactivity
speed.
The interactive version of Fig. 3 is available online [28].

Readers can read the “About" Tab to fully understand how
to use the application. Essentially, the user can hover over
a hexagon bin to see how many genes it contains. When
the user clicks on a hexagon bin, the names of the genes
are listed and superimposed as orange points across all
scatterplots. The genes are also linked to a second plot
that superimposes them as parallel coordinate lines on a
side-by-side boxplot of all gene counts in the dataset. This
interactivity and linking allows users to quickly examine
genes of interest from multiple viewpoints superimposed
onto the summary of all genes in the dataset.

Assessing normalization with scatterplot matrices
There is still substantial discussion about the normal-
ization of RNA-seq data, and the scatterplot matrix can
be used to understand and assess various algorithms. To
exemplify this point, we will use a publicly-available RNA-
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Fig. 3 Expected structure of RNA-seq data plotted as a scatterplot matrix. Example of the expected structure of an RNA-seq dataset, using soybean
cotyledon data from [27]. Within a given scatterplot, most genes (points) should fall along the x=y line. We should see genes deviate more strongly
from the x=y line in treatment scatterplots (the nine scatterplots enclosed in the blue square) than in replicate scatterplots (the remaining six
scatterplots)

seq dataset on Saccharomyces cerevisiae (yeast) grown
in YP-Glucose (YPD) [22]. The data contained four cul-
tures from independent libraries that were sequenced
using two library preparation protocols and either one or
two lanes in a total of three flow-cells. This experimental
design allowed researchers to examine various levels and
combinations of technical effects (library preparation and
protocol and flow cell) and biological effects (culture).
The four cultures (Y1, Y2, Y4, and Y7) were treated as

biological replicates for which differential expression was
not expected. Hence, the authors could establish a false
positive rate in relation to the number of DEGs called

between these groups. They then demonstrated that
within-lane regression alone was insufficient in effectively
removing biases. Instead, aggressive corrections for both
within-lane (GC-content and gene length) and between-
lane (count distribution and sequencing depth) biases
were needed to effectively reduce the false-positive rate of
DEG calls.
Figure 4a shows the scatterplotmatrix of the read counts

from the Y1 and Y4 treatments after within-lane nor-
malization. As we stated earlier, we expect most genes
to show similar expression between samples, except for
the handful that are differentially expressed. However,
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Fig. 4 Assessing normalization of RNA-seq data using scatterplot matrices. Illustrating normalization checks with data from [22]. The collective
deviation of genes from the x=y line instantly reveals that the RNA-seq dataset was not thoroughly normalized using within-lane normalization
(subplot a). However, within-lane normalization followed by between-lane normalization sufficiently normalized the data (subplot b). The authors
who developed these normalization methods showed that the later approach generated a lower false-positive DEG call rate in this dataset

it is immediately clear that the data still was not suf-
ficiently normalized as the distribution of genes is not
centered around the x=y lines. In contrast, Fig. 4b shows

the scatterplot matrix of the read counts from the Y1 and
Y4 treatments after both within-lane and between-lane
normalization, as was recommended by the authors due
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to its reduced false-positive rate. Indeed, the scatterplot
matrix now follows the expected structure with most
genes falling along the x=y line with thicker deviations
from it between treatment groups than between replicate
groups.
Additionally, we can also confirm from Fig. 4b that the

read counts fall closer to the x=y line between the Y4
replicates (bottom-right scatterplot) than between the Y1
replicates (top-left scatterplot). This is expected because
the Y1 replicates had additional technical variability as
they used two different flow cells, whereas the Y4 repli-
cates were from the same flow cell. As such, the scatterplot
matrix can also be used to quickly inspect patterns of
biological and technical variability in the dataset.

Checking for common errors with scatterplot matrices
Irreproducibility is prevalent in high-throughput biologi-
cal studies. A study in Nature Genetics surveyed eighteen
published microarray expression analyses and reported

that only two were exactly reproducible [29]. The extent of
the problem has spawned a field called “forensic bioinfor-
matics" whereby researchers attempt to reverse-engineer
reported results back into the raw datasets simply to
derive the methodologies used in published studies [30].
Even though irreproducibility is merely cumbersome

when it masks methods, it is unquestionably hazardous
when it masks errors. With regards to personalized
medicine, for example, obscured errors may cause well-
intentioned researchers to present evidence for drugs that
are ineffective or even harmful to patients [30]. Forensic
bioinformaticians who have actively investigated common
errors in high-throughput biological studies have con-
cluded that the largeness of the data itself may hinder our
ability to detect errors [30]. They also discovered that the
most common errors are simple errors, such as mixing
up sample labels [30]. Collectively, these findings suggest
that simple errors can be difficult to detect using common
practices in high-throughput studies.

Fig. 5 Checking common errors of RNA-seq data analysis using scatterplot matrices. As expected, the scatterplot matrix of the coytledon data [27]
contains nine scatterplots with thicker distributions (should be treatment pairs) and six scatterplots with thinner distributions (should be replicate
pairs). However, a subset of scatterplots unexpectedly show thicker distributions between replicate pairs and thinner distributions between
treatment pairs. If we switch the labels of two suspicious samples (S1.3 and S2.1), the scatterplot matrix displays the anticipated structure we saw in
Fig. 3. At this point, we have evidence that these two samples may have been mislabeled, and we may wish to confirm this suspicion and correct it
before continuing with the analysis
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Fortunately, scatterplot matrices are a convenient tool
to check for common errors like sample mislabeling.
Figure 5 shows the resulting scatterplot matrix after we
deliberately swapped the labels of the third replicate of
the first treatment group (S1.3) with the first replicate
of the second treatment group (S2.1) in the previously-
mentioned cotyledon dataset [27]. We can immediately
see that, as expected, there are nine scatterplots with
thicker distributions around the x=y line and six scat-
terplots with thinner distributions around the x=y line.
However, we notice that a subset of these thick and thin
scatterplots appear outside of their expected locations
given the expected variability between treatments versus
replicates. Rearranging the columns of the two samples

that appear suspicious in Fig. 5 would indeed lead us back
to the clean-looking scatterplot matrix we saw in Fig. 3. T
he scatterplot matrix provides us convincing evidence of a
mislabeling problem even down to the gene level, which
cannot beconfirmedwith such detail using traditional plots
like the boxplots and MDS plots before sample switching
(left side of Fig. 6) and after sample switching (right side of
Fig. 6). While this method can inform suspicious patterns
in more detail than other means, users must still perform
extra steps to determine if these patterns more likely relate
to mislabeling or some real biological phenomenon. In the
case of suspected mislabeling, the user would still need
to substantiate this suspicion with decisive evidence and
should only use the visualization as a guide.

Fig. 6 Checking common errors of RNA-seq data analysis using side-by-side boxplots and MDS plots. Side-by-side boxplots and MDS plots are
popular plotting tools for RNA-seq analysis. This figure shows these traditional visualization methods applied to the soybean cotyledon data before
sample switching (left half) and after sample switching (right half) [27]. We cannot suspect from the right boxplot that samples S1.3 and S2.1 have
been swapped (subplots A). This is because all six samples have similar five number summaries. For the MDS plots, we do see a cleaner separation of
the two treatment groups across the first dimension in the left plot than in the right plot (subplots B). However, taking into account the second
dimension, both MDS plots contain three clusters, with sample S1.1 appearing in its own cluster. Without seeing one distinct cluster for each of the
two treatment groups, it is difficult to suspect that samples S1.3 and S2.1 have been swapped in the right MDS plot (subplots B). We can only derive
clear suspicion that the samples may have been switched by using less-popular plots that provide gene-level resolution like with the scatterplot
matrix from Fig. 5
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Finding unexpected patterns in scatterplot matrices
Most popular RNA-seq plotting tools display summaries
about the read counts, such as fold change summaries,
principal component summaries, five number summaries,
and dispersion summaries. In contrast to this trend, scat-
terplot matrices display the non-summarized read counts
for all genes. This trait allows for geometric shapes and
patterns relevant to the read count distribution to be
readily visible in the scatterplot matrix.
An example of how geometric shapes in the scatterplot

matrix can provide applicable information to researchers
is shown in Fig. 7, which uses the iron-metabolism soy-
bean dataset [24]. After normalizing the data, we see
the expected pattern of a scatterplot matrix, with more
variation around the x=y line between treatments than
between replicates (Fig. 7). However, one streak struc-
ture in the bottom right scatterplot stands out. A small
subset of transcripts between replicates of the iron-
sufficient group sharply deviates from the x=y line. By
interacting with the plot, we identified the five transcripts

that deviated the most from the expected pattern, and
searched for their putative functions. We discovered that
these transcripts are reportedly involved in biotic and
abiotic stress responses as well as the production of super-
oxides to combat microbial infections. It should be noted
that these five transcripts did not reach significance unless
the third replicate of the P group was removed. Therefore,
these genes will still be reported as non-significant in this
study.
Discussion with the authors of the study revealed that

a lab biologist documented a clean data collection pro-
cess. In the study, the authors determined the DEGs across
three times points (30 min, 60 min, and 120 min) after
exposure to the two iron condition levels. In order to
reduce variability caused by plant handling by different
researchers, the same researcher collected the samples
in succession. One major finding from their study was a
vast change in gene expression responses between these
three time points (Fig. 8). In light of these discoveries, the
authors tentatively suggest that the streak of genes shown

Fig. 7 Finding unexpected patterns in RNA-seq data using scatterplot matrices. Scatterplot matrix of RNA-seq read counts from soybean leaves after
exposure to iron-sufficient (treatment group P) and iron-deficient (treatment group N) hydroponic conditions [24]. We observe the expected
structure of treatment pairs showing larger variability around the x=y line than replicate pairs. However, we notice a pronounced streak structure in
the bottom-right scatterplot (green arrow) that compares two replicate samples from the iron-sufficient group. The genes in the streak structure
have large read counts that deviate in a parallel fashion from the x=y line
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Fig. 8 Gene expression responses across time points. The authors of the soybean iron metabolism study [24] determined the DEGs across three
times points (30 min, 60 min, and 120 min) in the leaves after onset of iron sufficient and deficient hydroponic conditions. They used the same
researcher to collect the samples in succession. One major finding from their study was a vaste change in gene expression responses between
these three time points. As a result, the streak observed in the scatterplot matrix containing the subset of data at the 120 min time point (Fig. 7) may
be due to the timing differences between replicate handling

in Fig. 7 may be due to the timing differences between
replicate handling.
In any case, scientists cannot observe such interesting

structures from any models. Hypothetically, these struc-
tures could lead to interesting post hoc analyses. For
instance, if a similar structure existed in data where the
authors had noted an inadvertent experimental or biolog-
ical discrepancy between those replicates, then a post hoc
hypothesis that these genes might respond to that dis-
crepant condition could be generated. We note this would
only serve as a hypothesis generator; conventional genetic
studies and additional evidence would be needed to con-
firm any possible role these genes have on this biological
activity.

Assessing DEG calls in scatterplot matrices
The scatterplotmatrix can also be used to quickly examine
the DEGs returned from a given model. Figure 9 shows

the DEGs from the soybean cotyledon dataset superim-
posed as orange points onto the scatterplot matrix [27].
We expect for DEGs to fall along the x=y line for scatter-
plots between replicates and deviate from the x=y line for
scatterplots between treatment groups, as is confirmed in
Fig. 9. As a side note, we could also link these DEGs as
parallel coordinate lines on a side-by-side boxplot to con-
firm the expected pattern of differential expression from
a second viewpoint. If we do not observe what should be
expected of DEGs, then the DEG calls from themodel may
need to be scrutinized further.

Litre plots
We demonstrated how to view DEGs onto the Carte-
sian coordinates of the scatterplot matrix in Fig. 9.
Unfortunately, this figure becomes limited when we
investigate treatment groups that contain a large num-
ber of replicates because we then have too many small
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Fig. 9 Assessing differential expression in RNA-seq data using scatterplot matrices. Example of the expected structure of DEG calls (in orange) from
the soybean cotyledon dataset [27]. In the scatterplot matrix (subplot A), DEGs should fall along the x=y line for replicates and deviate from it for
treatments. In the parallel coordinate plot (subplot B), DEGs should show levelness between replicates and crosses between treatments. These two
plotting types can be linked to quickly provide users multiple perspectives of their DEG calls

scatterplots for it to remain an effective visualization tool.
Moreover, researchers could benefit from additional plot-
ting tools that allow them to quickly verify individual
DEGs returned from a model. As a result, we devel-
oped a plot that allows users to visualize one DEG of
interest onto the Cartesian coordinates of one scatterplot
matrix.
The “replicate line plot" was developed by researchers

who demonstrated it could detect model scaling prob-
lems in microarray data [31]. Unfortunately, this plot
is only applicable on datasets where treatment groups

contain exactly two replicates. The plot we now intro-
duce is an extension of the “replicate line plot" that
can be applied to datasets with two or more repli-
cates. We call this new plot a repLIcate TREatment
(“litre") plot.
In the litre plot, each gene is plotted once for each pos-

sible combination of replicates between treatment groups.
For example, there are nine ways to pair a replicate from
one treatment group with a replicate from the other
treatment group in the soybean iron-metabolism dataset
(N.1 and P.1, N.1 and P.2, N.1 and P.3, N.2 and P.1, N.2.
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and P.2, N.2 and P.3, N.3 and P.1, N.3 and P.2, and N.3
and P.3) [24]. Hence, each gene in this dataset is plotted as
nine points in the litre plot.With 56,044 genes in this data,
we would need to plot 504,396 points. This would reduce
the speed of interactive functionality as well as cause

overplotting problems. As a result, we again use hexagon
bins to summarize this massive information (Fig. 10 shows
eight example litre plots).
Once the background of hexagons has been drawn to

give us a sense of the distribution of all between-treatment

Fig. 10 Example litre plots for clustered significant genes in the soybean iron metabolism data. Litre plots for representative genes from clusters
created in Fig. 2 [24]. Subplots a and b each show a gene from Cluster 1 overlaid as green points. Subplots c and d each show a gene from Cluster 2
overlaid as dark yellow points. Subplots e and f each show a gene from Cluster 3 overlaid as pink points. Subplots g and h each show a gene from
Cluster 4 overlaid as orange points
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sample pair combinations for all genes, the user can super-
impose the nine points of one gene of interest. We can
examine and compare litre plots using the clusters we cre-
ated in Fig. 2. Subplots A and B of Fig. 10 each show
a significant gene from Cluster 1 plotted as nine green
points, subplots C and D each show a significant gene
fromCluster 2 plotted as nine dark yellow points, subplots
E and F each show a significant gene from Cluster 3 plot-
ted as nine pink points, and subplots G and H each show
a significant genes from Cluster 4 plotted as nine orange
points.
For the case of Fig. 10a and b, the nine overlaid points

are superimposed in a manner we would expect from
a DEG: They are located far from the x=y line (differ-
ence between treatments) and are close to each other

(similarity between replicates). Figure 10c and d also show
expected patterns for DEGs, although the genes are now
overexpressed in the other treatment (groupN). The repli-
cates in subplot D are so precise that the overlaid points
almost entirely overlap each other. In contrast, Fig. 10e
and f do not seem to show as much replicate consistency.
Now, there seems to be a pattern in which one replicate
from the P group is larger than (and visually distanced
from) the other two replicates. In other words, litre plots
are able to capture the pattern differences in the signif-
icant genes from Cluster 2 and 3 that we saw back in
Fig. 2.
Moreover, in the case of Fig. 10g and h, the nine over-

laid points are not clearly superimposed in the distinct
pattern we expect of significant genes. While subplot

Fig. 11 Cluster 1 significant genes from the soybean iron metabolism data overlaid on a scatterplot matrix. Example of using a scatterplot matrix to
assess DEG calls from a model in the iron-metabolism soybean dataset. There were 2751 significant genes in Cluster 1 after performing a hierarchical
clustering analysis with a cluster size of four (Fig. 2). These significant genes are overlaid in green on the scatterplot matrix. They follow the expected
patterns of differential expression with most green points falling along the x=y line in the scatterplots between replicates, but deviating from the
x=y line in the scatterplots between treatments. The deviation consistently demonstrates higher expression in the P group than in the N group.
Hence, these green points seem to represent DEGs that were significantly overexpressed in the P group, which draws the same conclusion with
what we derived using the parallel coordinate plots in Fig. 2. One difficulty with plotting such a large number of DEGs onto the scatterplot matrix is
that overplotting can obscure our inability to determine how many DEGs are in a given location. This is why we should also view these genes
individually in litre plots (Fig. 10a and b)
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G shows a gene that has consistent replications, the dif-
ference between the treatment groups is so small that
the overlaid points cluster around the x=y line. Addition-
ally, the gene displayed in subplot H shows inconsistent
replications and consistent treatment groups, as the
spread-out overlaid points center on the x=y line. Despite
these genes being deemed significant by the model, the
litre plots call into question whether the genes from this
cluster show an expected profile of differential expression.
This is similar to the messy-looking parallel coordinate
plots we saw from these genes in Cluster 4 back in Fig. 2.
As a result, litre plots can detect odd and questionable
patterns in individual “significant genes" that cannot be
detected numerically through models. If this happens, the
user may wish to further investigate these DEG calls.

Interactive litre plots are available online for the Cluster
1 significant genes (Fig. 10a and b) [32], Cluster 2 sig-
nificant genes (Fig. 10c and d) [33], Cluster 3 significant
genes (Fig. 10e and f) [34], and Cluster 4 significant genes
(Fig. 10g and h) [35]. As can be verified in the interactive
versions of the litre plot, users are provided several input
fields that tailor the plot functionality. For instance, the
user can easily select which treatment pair to explore (for
data that contains more than two treatment groups) and
can quickly scroll through significant genes one by one in
order of increasing FDR values. Please read the “About”
tab in the interactive links for more information.
Corresponding scatterplot matrices with the DEGs from

these four clusters overlaid can be viewed in Figs. 11,
12, 13, 14. Readers can verify that the parallel coordinate

Fig. 12 Cluster 2 significant genes from the soybean iron metabolism data overlaid on a scatterplot matrix. Example of using a scatterplot matrix to
assess DEG calls from a model in the iron-metabolism soybean dataset. There were 2009 significant genes in Cluster 2 after performing a hierarchical
clustering analysis with a cluster size of four (Fig. 2). These significant genes are overlaid in dark yellow on the scatterplot matrix. They follow the
expected patterns of differential expression with most dark yellow points falling along the x=y line in the scatterplots between replicates, but
deviating from the x=y line in the scatterplots between treatments. The deviation consistently demonstrates higher expression in the N group than
in the P group. Hence, these dark yellow points seem to represent genes that were significantly overexpressed in the N group, which draws the
same conclusion with what we derived using the parallel coordinate plots in Fig. 2. One difficulty with plotting such a large number of DEGs onto
the scatterplot matrix is that overplotting can obscure our inability to determine how many DEGs are in a given location. This is why we might also
view these genes individually in litre plots (Fig. 10c and d)
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Fig. 13 Cluster 3 significant genes from the soybean iron metabolism data overlaid on a scatterplot matrix. Example of using a scatterplot matrix to
assess DEG calls from a model in the iron-metabolism soybean dataset. There were 861 significant genes in Cluster 3 after performing a hierarchical
clustering analysis with a cluster size of four (Fig. 2). These significant genes are overlaid in pink on the scatterplot matrix. For the most part, they
follow the expected patterns of differential expression with pink points falling along the x=y line in the scatterplots between replicates, but
deviating from the x=y line in the scatterplots between treatments. The deviation consistently demonstrates higher expression in the N group than
in the P group. The scatterplot between replicates P.1 and P.3 shows slightly higher expression in P.3, and the scatterplot between replicates P.2 and
P.3 also shows slightly higher expression in P.3. Hence, these pink points seem to represent genes that were significantly overexpressed in the N
group, but with slight inconstencies in the replicates in the P group, which matches what we saw in the parallel coordinate plots in Fig. 2. One
difficulty with plotting such a large number of DEGs onto the scatterplot matrix is that overplotting can obscure our inability to determine how
many DEGs are in a given location. This is why we might also view these genes individually in litre plots (Fig. 10e and f)

plots, litre plots, and scatterplot matrices tell a similar
story about the DEG patterns in these four clusters.

Closing case study
We briefly discuss an additional example that merges
many of the topics addressed in this paper. The pub-
licly available data for this example contain technical
replicates of liver and kidney RNA samples from one
human male [12]. We first calculate DEG calls for this
data using the normalization method of library size
scaling, where the number of total reads in each sam-
ple are normalized to a common value across all sam-
ples. This process leads to 9018 DEGs, with most of

them (∼78%) showing higher expression in the kidney
group.
Although we could finish our analysis at this point and

draw conclusions based on this list of DEGs that came
from the model, it would be wise to also visualize this
dataset. Viewing this data as a scatterplot matrix confirms
the expected pattern with treatment scatterplots show-
ing larger variation than technical replicate scatterplots
(Fig. 15). However, it also uncovers a hidden pattern in
the treatment plots: There is a pronounced streak of genes
with higher expressions in the liver group (highlighted
with a blue oval in Fig. 15). We should also view the DEGs
from the model using parallel coordinate plots: Upon
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Fig. 14 Cluster 4 significant genes from the soybean iron metabolism data overlaid on a scatterplot matrix. Example of using a scatterplot matrix to
assess DEG calls from a model in the iron-metabolism soybean dataset. There were 17 significant genes in Cluster 4 after performing a hierarchical
clustering analysis with a cluster size of four (Fig. 2). These significant genes are overlaid in orange on the scatterplot matrix. For the most part, they
do not seem to follow the expected patterns of differential expression: In many of the scatterplots between treatments, the orange points do not
seem to deviate much from the x=y line. Moreover, in the scatterplots between P.1 and P.2 as well as P.1 and P.3, the orange points seems to
indicate an underexpression of the P.1 replicate. We similarly saw somewhat messy looking DEG calls in Cluster 4 in the form of parallel coordinate
plots (Fig. 2) and litre plots (Fig. 10g and h)

doing so, we notice that while the 1968 liver-specific DEGs
follow the expected pattern of significant calls, a sub-
stantial fraction of the 7050 kidney-specific DEGs appear
comparatively noisy (Fig. 16a).
Taking both of these observations into account, we

may need to reconsider our normalization technique.
Some authors have argued that library size scaling
method is not adequate in all cases, especially when
the underlying distribution of reads between samples is
inconsistent. In the current data, the observed streak
of outlier genes that are highly expressed in the liver
samples (Fig. 15) reduces the sequencing quota avail-
able to the remaning genes in these samples, which
could create an articial inflation of the kidney-specific
DEG calls. These authors have recommended trimmed
mean of M values (TMM) normalization for such cases

(including for this particular dataset) as this technique
generates sample scaling factors that consider sample
distributions [15].
In light of all this, we re-start the analysis and now

apply TMM normalization to this data. This process
leads to 7520 DEGs that have a more level distribution
between the kidney (∼53%) and liver (∼47%) groups. The
scatterplot matrix did not appear differently from what
we saw in Fig. 15 as both of these normalization methods
are scaling procedures. However, we should visualize the
new DEG calls. Plotting these DEGs as parallel coordinate
lines paints a much cleaner picture from what we saw
earlier, with most genes following the expected pattern
of significance (Fig. 16b). Of the 7050 kidney-specific
DEGs we saw previously with library size scaling nor-
malization, only a much cleaner-looking subset (n=3974)
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Fig. 15 Scatterplot matrix detects unexpected structure in liver and kidney technical replicate RNA-seq dataset. Scatterplot matrix of liver and kidney
technical replicates [12]. The technical replicate scatterplots look precise as is expected, with little variability around the x=y line. The treatment group
scatterplots have muchmore variability around the x=y line, as we would expect. However, each treatment group scatterplot contains a pronounced
streak of highly-expressed liver-specific genes, which deviates from the expected distribution (shown in blue oval in one example scatterplot). Some
researchers have suggested that differences in the distribution of reads between groups may require particularly stringent normalization

Fig. 16 Comparing normalization method effect on significance designation using parallel coordinate plots. Subplot a shows parallel coordinate
plots of the DEGs from liver and kidney technical replicates [12] after library size scale normalization. The division of DEGs between the two groups
was rather disparate, with ∼78% of the DEGs being kidney-specific and only ∼22% of the DEGs being liver-specific. Also of note, while the parallel
coordinate patterns of the liver-specific DEGs appear as expected, the patterns of the kidney-specific DEGs seem to show comparatively larger
variability between the replicates. Subplot b shows parallel coordinate plots of the DEGs from liver and kidney technical replicates after TMM
normalization. The division of DEGs between the two groups is more balanced than in Subplot a, with ∼53% of the DEGs being kidney-specific
and ∼47% of the DEGs being liver-specific. Additionally, the parallel coordinate patterns of the kidney DEGs is vastly improved. However, the parallel
coordinate patterns of the liver DEGs is slightly more messy looking. As a result, we investigate the effects of normalization on this data more
thoroughly
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Fig. 17 Parallel coordinate plots for gene clusters that remained as kidney-specific DEGs after TMM normalization. Parallel coordinate plots showing
eight hierarchical clusters from the 3974 genes that remained in the kidney-specific DEGs after TMM normalization. We see that, for the most part,
the parallel coordinate patterns follow the expected patterns across the clusters. The ideal pattern of DEGs is especially captured in the first cluster
(the largest one with 1136 genes). We applied ombre coloring across the clusters in order of cluster size. We used hierarchical clustering to tease
apart subtle pattern differences and to mitigate additional overplotting that would occur if we were to plot all genes onto only one parallel
coordinate plot. The side-by-side boxplots represent all gene counts in the dataset

of them remained as such using TMM normalization.
TMM normalization kept the original 1968 liver-specific
DEGs from library size scaling but added 1578 more for

a total of 3546 liver-specific DEGs. As such, it appears
that the liver-specific DEGs may be slightly less clean-
looking with TMM normalization. We emphasize that
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Fig. 18 Parallel coordinate plots for gene clusters that remained as liver-specific DEGs after TMM normalization. Parallel coordinate plots showing
eight hierarchical clusters from the 1968 genes that remained in the liver-specific DEGs after TMM normalization. We see that, for the most part, the
parallel coordinate patterns follow the expected patterns across the clusters. The ideal pattern of DEGs is especially captured in the first cluster (the
largest one with 933 genes). We applied ombre coloring across the clusters in order of cluster size. We used hierarchical clustering to tease apart
subtle pattern differences and to mitigate additional overplotting that would occur if we were to plot all genes onto only one parallel coordinate
plot. The side-by-side boxplots represent all gene counts in the dataset

the 3974 kidney-specific DEGs from TMM normalization
are a proper subset of the 7050 kidney-specific
DEGs from library scale normalization, and the 1968

liver-specific DEGs from library scale normalization are a
proper subset of the 3546 liver-specific DEGs from TMM
normalization.
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Fig. 19 Parallel coordinate plots for gene clusters that were removed from kidney-specific DEGs after TMM normalization. Parallel coordinate plots
showing eight hierarchical clusters from the 3076 genes that were removed from the kidney-specific DEGs after TMM normalization. The patterns in
almost all clusters do not resemble the expected DEG format; instead, they show large variability between replicates and small variability between
treatments. This plot provides additional statistical evidence that the application of TMM normalization successfully removed genes that were
previously mislabeled as kidney-specific DEGs with library size scaling normalization. We used hierarchical clustering to tease apart subtle pattern
differences and to mitigate overplotting. The side-by-side boxplots represent all gene counts in the dataset

We therefore perform a deeper investigation of the
effects of normalization on this data. To do this, we
thoroughly explore four subsets of genes from this case

study in the form of parallel coordinate plots, scatterplot
matrices, and litre plots. We also demonstrate the use
of data standardization for scatterplot matrices and litre
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Fig. 20 Parallel coordinate plots for gene clusters that were added as liver-specific DEGs after TMM normalization. Parallel coordinate plots showing
eight hierarchical clusters from the 1578 genes that were added as liver-specific DEGs after TMM normalization. We see that the parallel coordinate
lines somewhat follow the expected patterns across the clusters, better than what we saw in the red (Fig. 19) gene subsets, but not as precisely as
we saw with the purple (Fig. 17) and orange (Fig. 18) gene subsets. We applied ombre coloring across the clusters in order of cluster size. We used
hierarchical clustering to tease apart subtle pattern differences and to mitigate additional overplotting that would occur if we were to plot all genes
onto only one parallel coordinate plot. The side-by-side boxplots represent all gene counts in the dataset

plots as a means to magnify certain informative patterns.
In this thorough examination, we will use consistent color-
coding when plotting example genes from each of the four
gene subsets. The four gene subsets and their color-codes
are as follows:

1 The 3974 kidney-specific DEGs from library size
scale normalization that remained as DEGs even
after TMM normalization. These DEGs will be
plotted in purple. As these genes were declared
significant with both library size scale normalization
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and TMM normalization, we expect them to follow
the expected patterns of DEGs.

2 The 1968 liver-specific DEGs from library size scale
normalization that remained as DEGs even after
TMM normalization. These DEGs will be plotted in
orange. As these genes were declared significant with
both library size scale normalization and TMM
normalization, we expect them to follow the
expected patterns of DEGs.

3 The 3076 kidney-specific DEGs from library size
scale normalization that were removed as DEGs
using TMM normalization. These DEGs will be
plotted in red. As these genes were removed from
DEG designation with the more-appropriate TMM
normalization, we expect them to not convincingly
follow the expected patterns of DEGs.

4 The 1578 liver-specific genes that were not detected
as DEGs with library size scale normalization but
were then added as such using TMM normalization.
These DEGs will be plotted in pink. As these genes
were not declared significant with library size scale

normalization but were then declared as significant
using the more-appropriate TMM normalization, we
expect them to somewhat convincingly follow the
expected patterns of DEGs.

Webegin by plotting the four gene subsets in the form of
parallel coordinate plots after application of hierarchical
clustering analysis (Figs. 17 18, 19 through 20). Each sub-
set is grouped into eight clusters, not only to separate
the genes into any subtle pattern differences, but also to
reduce any overplotting that would occur should they all
be viewed together as one large cluster. Figures 17 and 18
show that the genes designated as DEGs in both forms
of normalization (purple and orange) have clean-looking
patterns (especially in their largest cluster), Fig. 19 shows
that the genes removed with TMM normalization (red)
have messy-looking parallel coordinate plots, and Fig. 20
shows that the genes added with TMM normalization
(pink) have parallel coordinate plots that are less clean
than those in Figs. 17 and 18 but more clean than those in
Fig. 19.

Fig. 21 Standardized scatterplot matrix for gene cluster that remained as kidney-specific DEGs after TMM normalization. Scatterplot matrix of the
standardized 1136 genes that were in the first cluster (Fig. 17) from genes that remained as kidney-specific DEGs even after TMM normalization. Even
though the standardization process removes the interesting geometrical features we would otherwise see, it amplifies DEG patterns more clearly.
Here, the highlighted genes appear more clustered and separated from the x=y line in the treatment scatterplots, and more clustered and
connected to the x=y line in the replicate scatterplots. We can also now see more clearly in the replicate scatterplots that the kidney expression is
higher than the liver expression
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We continue our visualization study by overlaying genes
from the largest cluster of the four gene subsets in the
form of standardized scatterplot matrices (Figs. 21 22, 23
through 24). Notice that standardization causes the whole
dataset to appear as oval-shapes that are almost identical
across all scatterplots. In other words, when we standard-
ize our scatterplot matrices, we lose geometric structures
that can elicit meaningful information about the dataset as
a whole like we saw in Figs. 3, 4, 5, 7, 9, and 15. However,
in compensation for losing useful information about the
whole dataset, standardization often amplifies meaningful
patterns in the overlaid DEGs. Should the reader be inter-
ested, Additional files 1, 2, 3, 4 show the same scatterplot
matrices as the current case study below (Figs. 21, 22, 23
through 24) only not standardized. The reader can verify
that the overlaid DEG patterns are more spread out in the
standardized version, allowing for better interpretation.
In general, we see that the genes that were called DEGs

in both forms of normalization (purple and orange) have
the expected differential expression profiles in the stan-
dardized scatterplot matrices, deviating from the x=y line

in the treatment scatterplots in the anticipated direction
(Figs. 21 and 22). The standardized red gene profiles show
widely dispersed genes that sometimes deviate from the
x=y line in the replicate scatterplots and cross both sides
of and sometimes stick to the x=y line in the treatment
scatterplots (Fig. 23). In other words, the red gene profiles
often show patterns not akin to differential expression,
which we would expect from genes that were removed
as DEGs with TMM normalization. In contrast, the stan-
dardized pink gene profiles show less-widely dispersed
genes that deviate less from the x=y line in the repli-
cate scatterplots and deviate more from the x=y line in
the treatment scatterplots (Fig. 24). In other words, the
pink gene profiles show patterns more akin to differen-
tial expression than the red genes, which we would expect
from genes that were added as DEGs with TMM nor-
malization. At the same time, the pink gene profiles are
not as clean-looking as the purple and orange genes that
were designated as DEGs in both forms of normaliza-
tion. Overall, in these standardized scatterplot matrices,
the pink genes appear as an intermediate between the

Fig. 22 Standardized scatterplot matrix for gene cluster that remained as liver-specific DEGs after TMM normalization. Scatterplot matrix of the
standardized 933 genes that were in the first cluster (Fig. 18) from genes that remained as liver-specific DEGs even after TMM normalization. Even
though the standardization process removes the interesting geometrical features we would otherwise see, it amplifies DEG patterns in meaningful
ways. Here, the highlighted genes appear more clustered and separated from the x=y line in the treatment scatterplots, and more clustered and
connected to the x=y line in the replicate scatterplots. We can also now see more clearly in the replicate scatterplots that the liver expression is
higher than the kidney expression
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Fig. 23 Standardized scatterplot matrix for gene cluster that were removed from kidney-specific DEGs after TMM normalization. Scatterplot matrix
of the standardized 529 genes that were in the first cluster (Fig. 19) from genes that no longer remained as kidney-specific DEGs after TMM
normalization. Even though the standardization process removes the interesting geometrical features we would otherwise see, it amplifies DEG
patterns in meaninful ways. Namely, the genes of interest are now spread out more, and the replicate and treatment scatterplots are almost
indistinguishable from each other, with both of them showing genes of interest crossing both sides of the x=y line. In other words, standardization
of the data provides clear visualization evidence that TMM normalization was justified in removing these genes from DEG designation

Fig. 24 Standardized scatterplot matrix for gene cluster that were added as liver-specific DEGs after TMM normalization. Scatterplot matrix of the
standardized 317 genes that were in the first cluster (Fig. 20) from genes that were added as liver-specific DEGs after TMM normalization. Even
though the standardization process removes the interesting geometrical features we would otherwise see, it amplifies DEG patterns in meaningful
ways. Namely, the genes of interest are now spread out more, and we can now distinguish the replicate and treatment scatterplots more clearly. For
the most part, the genes of interest deviate from the x=y line in the treatment scatterplots more so than in the replicate scatterplots, and hence
display somewhat of the pattern of differential expression. In fact, the pink genes again appear as an intermediate between the purple and orange
genes that clearly display differential expression (Figs. 21 and 22) and the red genes that clearly do not display differential expression (Fig. 23). In
other words, standardized scatterplot matrices provide additional visualization evidence that TMM normalization was justified in removing the red
genes from and adding the pink genes to DEG designation
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clean-looking purple and orange genes and the messy-
looking red genes, which we might expect.
We end our investigation by overlaying example genes

from the largest cluster of the four gene subsets in
the form of standardized litre plots (Figs. 25, 26, 27
through 28). Similar to what we saw earlier, standardiza-
tion causes the dataset to appear as an oval-shape and
removes the original geometric structure in the hexago-
nal binning. Should the reader be interested, Additional
files 5, 6, 7, 8 show the same litre plots as the cur-
rent case study below (Figs. 25, 26, 27 through 28) only
not standardized. The reader can verify that the overlaid
DEG patterns are more spread out in the standardized
version in the current case study below, allowing for better
interpretation.
Overall, we see that the example genes that were called

DEGs in both forms of normalization (purple and orange)
have the expected profiles in the litre plots, deviating as

concentrated bundles away from the x=y line (Figs. 25
and 26). The standardized litre plots for the nine genes
with the lowest FDR values for both the red (Fig. 27) and
pink (Fig. 28) groups allow us to quickly determine that
the pink profiles show patterns more akin to differen-
tial expression than the red groups. Namely, the overlaid
pink points deviate more from the x=y line in a tight
cluster than the overlaid red points. At the same time,
the overlaid pink points show patterns less akin to differ-
ential expression than the purple and orange points. All
together, the pink gene profiles again appear as interme-
diates between the clean-looking purple and orange genes
and the messy-looking red genes in the standardized litre
plots, which is to be expected if TMMnormalization is the
more appropriate technique.
Our in-depth analyses in this case study collectively

suggest that this datasest indeed requires more than just
library size scaling for reliable analysis. This case study

Fig. 25 Example standardized litre plots for genes that remained as kidney-specific DEGs after TMM normalization. Example standardized litre plots
from the 1136 genes that were in the first cluster (Fig. 17) of genes that remained as kidney-specific DEGs even after TMM normalization. With
standardization, we immediately note that meaningful information about the dataset as a whole (variation between treatments and replicates,
normalization, sample mislabeling, and unexpected patterns like streaks) is now gone. In any case, we confirm that these standardized litre plots
corroborate that these purple genes demonstrate the expected patterns of DEGs
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Fig. 26 Example standardized litre plots for genes that remained as liver-specific DEGs after TMM normalization. Example litre plots from the 933
genes that were in the first cluster (Fig. 18) from genes that remained as liver-specific DEGs even after TMM normalization. With standardization, we
immediately note that meaningful information about the dataset as a whole (variation between treatments and replicates, normalization, sample
mislabeling, and unexpected patterns like streaks) is now gone. In any case, we confirm that these standardized litre plots corroborate that these
orange genes demonstrate the expected patterns of DEGs

was meant to underscore the overarching theme of this
paper that iteration between models and visualizations
is crucial to achieve the most convincing results and
conclusions in RNA-seq studies.

Plot scalability
All visualization plots discussed in this paper have limita-
tions based on the number of samples in the data. Plots
that appear messy, regardless of sample numbers, indicate
the presence of data quality problems. In general, MDS
plots, boxplots, and parallel coordinate plots can remain
effective with fairly large sample numbers, particularly

if one switches to an aggregate plot rather than points.
We note that parallel coordinate plots should be sorted
with some metric to help place similar variables near each
other, especially when scaling to larger data sets.
Scatterplot matrices usually lose their efficiency at

smaller sample numbers due to restricted space: n2 scat-
terplots must be drawn for n-dimensional data, where n
is the number of total samples. One remedy is for users
to subset their data and plot several smaller scatterplot
matrices. We used this technique in our recent honey
bee RNA-seq paper where we investigated 2 groups of
12 replicates (24 samples total) [36]. Plotting all samples
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Fig. 27 Example standardized litre plots for genes that were removed from kidney-specific DEGs after TMM normalization. Standardized litre plots
for the nine genes with the lowest FDR values out of the 529 genes that were in the first cluster (Fig. 19) of genes that no longer remained as
kidney-specific DEGs after TMM normalization. We verify from an additional perspective that the red genes do not demonstrate the expected
patterns of DEGs. The example red genes here are show much larger inconsistencies between replicates than what we saw with the purple (Fig. 25)
and orange (Fig. 26) genes. This provides additional evidence that TMM normalization removing these genes from DEG status may be valid

onto one scatterplot matrix would have required a pro-
hibitive 24 × 24 = 576 scatterplots. Instead, we divided
the data into four subsets, each with 2 groups of 3 repli-
cates (6 samples total) so that each scatterplot matrix only
required 6 × 6 = 36 scatterplots. See additional files
11-14 of [36].
Litre plots are another remedy for large data sets and

can often accommodate more samples than scatterplot
matrices. Indeed, in our honey bee RNA-seq paper, we
successfully applied litre plots to our full data that con-
tained 2 groups of 12 replicates (24 samples total). In cases
where there are two treatment groups with an equal num-
ber of replicates, the litre plot draws n2 number of points,
where n is the number of replicates in each group. Hence,
we were able to draw 12 × 12 = 144 dots on the litre plot

successfully in our previous paper. See additional file 4 of
[36]. We note that the litre plot is more suitable for large
datasets than the replicate line plot, which is ideal for 2
groups of 2 replicates (4 samples total).

Discussion
In this paper, we strived to convince readers that effec-
tive visualization should be a crucial part of two-group
differential expression analysis. We used real data to
demonstrate that scatterplot matrices, parallel coordinate
plots, and litre plots help users check for normalization
problems, catch common errors in analysis pipelines, and
confirm that the variation between replicates and treat-
ments is as expected. We also showed that these graphical
tools allow researchers to quickly explore DEG lists that
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Fig. 28 Example standardized litre plots for genes that were added as liver-specific DEGs after TMM normalization. Standardized litre plots for the
nine genes with the lowest FDR values out of the 317 genes that were in the first cluster (Fig. 20) from genes that were added as liver-specific DEGs
after TMM normalization. We can quickly determine that the pink profiles in this figure show patterns more akin to differential expression than the
red profiles in Fig. 27. That is, the overlaid pink points deviate more from the x=y line in a tight cluster than the overlaid red points. At the same time,
the overlaid pink points here show patterns less akin to differential expression than the purple (Fig. 25) and orange (Fig. 26) points. In sum, the
standardized litre plots again place the pink gene profiles as an intermediate

come out of models and ensure which ones make sense
from an additional and arguably more intuitive vantage
point. Moreover, we demonstrated that our plotting tools
allow researchers to discover genes of interest through
visual geometric patterns that would otherwise remain
undiscovered with models.
In general, scientists might uncover surprising patterns

lurking in their data with plots in ways that cannot be
achieved with any formulas or models. Researchers from
all statistical backgrounds can use graphical tools to bet-
ter understand (if not demystify) how the application of
various normalization techniques and/or models affect
their results. All in all, scientists can gain more confi-
dence in the data analysis pipelines they choose and in the

results they draw at the mere cost of briefly creating and
exploring graphical outputs during their analyses.

Conclusions
Modern data analysis is most reliable when models and
visuals are used congruently. Unfortunately, there is a
propensity for researchers to overtrust model results
without confirming them with graphics. This, as we have
shown, calls into question the soundness of results derived
from differential expression studies. Solving this prob-
lem is straightforward and does not require scientists to
drastically change their differential expression analyses.
Instead, scientists simply need to incorporate effective
plotting tools during their usual analysis pipelines. The
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main motivation of this paper was to provide a collec-
tion of examples that show why visualization tools should
be an integral part of two-group differential expression
analysis. We hope our work may motivate researchers
to take into account plotting tools that are conveniently
and freely available for differential expression analysis.
We also hope our work may influence developers to cre-
ate additional RNA-seq plotting tools that can be applied
outside of the case of two-group differential expression.
This could include plotting tools for cases that contain
many groups, cases of single-cell analysis, and cases where
researchers are looking for specificity rather than differ-
ential expression.
We strive to serve another small role in this solution

with our R software package called “bigPint” that includes
the plotting techniques introduced in this paper, many of
which are unique additions to the array of plotting tools
currently available in differential expression analysis pack-
ages. The “bigPint” website is available online [37]. To
encourage scientists to use our resource, we include short
vignette articles on our website that introduce users to our
package. One article provides a recommended pipeline
for iterating between models and visualizations when per-
forming differential expression analysis [38]. There is a
need to make it easier for researchers to use models and
visuals in a complimentary fashion when analyzing RNA-
seq data. Our software incorporates data structures that
allow users to transition smoothly between our plots and
popular models from packages like edgeR [9], DESeq2
[21], and limma [23]. We demonstrate the ease of tran-
sition between models and visualizations in the articles
of our website. All articles are written using reproducible
code that new users can follow. It is our hope that such
work will serve a small part in upgrading the RNA-seq
analysis world into one that more wholistically extracts
meaningful biological information using both models and
visuals.

Methods
Four public RNA-seq datasets were studied in this paper.
R [39] was used to conduct analyses. Packages html-
widgets [40], ggplot2 [41], shiny [42], and plotly [43]
were used to build the graphics. The pkgdown [44]
package was used to construct the “bigPint” software
webpage. Our interactive applications were deployed on
shinyapps.io [45].

Additional files

Additional file 1: Scatterplot matrix for gene cluster that remained as
kidney-specific dEGs after tMM normalization. Scatterplot matrix of the
1136 genes that were in the first cluster (of Fig. 17) from genes that
remained as kidney-specific DEGs even after TMM normalization. With this
scatterplot matrix, we verify from an additional perspective that these
genes demonstrate the expected patterns of DEGs.(JPG 140 kb)

Additional file 2: Scatterplot matrix for gene cluster that remained as
liver-specific dEGs after tMM normalization. Scatterplot matrix of the 933
genes that were in the first cluster (of Fig. 18) from genes that remained as
liver-specific DEGs even after TMM normalization. With this scatterplot
matrix, we verify from an additional perspective that these genes
demonstrate the expected patterns of DEGs. (JPG 140 kb)

Additional file 3: Scatterplot matrix for gene cluster that were removed
from kidney-specific dEGs after tMM normalization. Scatterplot matrix of
the 529 genes that were in the first cluster (of Fig. 19) from genes that no
longer remained as kidney-specific DEGs after TMM normalization. With
this scatterplot matrix, we verify from an additional perspective that these
genes do not demonstrate the expected patterns of DEGs too strongly
(they do not deviate much from the x=y line in the treatment scatterplots).
This provides additional evidence that TMM normalization removing these
genes from DEG status may be valid. (JPG 135 kb)

Additional file 4: Scatterplot matrix for gene cluster that were added as
liver-specific dEGs after tMM normalization. Scatterplot matrix of the 317
genes that were in the first cluster (of Fig. 20) from genes that were added
as liver-specific DEGs after TMM normalization. With this scatterplot matrix,
we see that the genes do not demonstrate the expected patterns of DEGs
too strongly (they do not deviate much from the x=y line in the treatment
scatterplots). In fact, these pink genes appear similarly to what we saw
from the scatterplot matrix of the red genes (Additional file 3). This is
somewhat of a surprise, given that the pink genes were added by TMM
normalization, while the red genes were removed by TMM normalization.
Stated differently, we would expect the pink genes to appear more like
differentially expressed genes if TMM normalization is appropriate, but we
could not confirm this expectation. We solved this problem using
standardization techniques (Figs. 23 and 24).(JPG 135 kb)

Additional file 5: Example litre plots for genes that remained as
kidney-specific dEGs after tMM normalization. Example litre plots from the
1136 genes that were in the first cluster (Fig. 17) of genes that remained as
kidney-specific DEGs even after TMM normalization. With these litre plots,
we verify from an additional perspective that these genes demonstrate the
expected patterns of DEGs.(JPG 666 kb)

Additional file 6: Example litre plots for genes that remained as
liver-specific dEGs after tMM normalization. Example litre plots from the
933 genes that were in the first cluster (Fig. 18) from genes that remained
as liver-specific DEGs even after TMM normalization. With these litre plots,
we verify from an additional perspective that these genes demonstrate the
expected patterns of DEGs. (JPG 651 kb)

Additional file 7: Example litre plots for genes that were removed from
kidney-specific dEGs after tMM normalization. Example litre plots from the
529 genes that were in the first cluster (Fig. 19) of genes that no longer
remained as kidney-specific DEGs after TMM normalization. With these litre
plots, we verify from an additional perspective that these genes do not
demonstrate the expected patterns of DEGs. This provides additional
evidence that TMM normalization removing these genes from DEG status
may be valid. (JPG 654 kb)

Additional file 8: Example litre plots for genes that were added as
liver-specific dEGs after tMM normalization. Example litre plots from the
317 genes that were in the first cluster (Fig. 20) from genes that were
added as liver-specific DEGs after TMM normalization. With these litre plots,
we see that the genes do not demonstrate the expected patterns of DEGs
in a trustworthy manner. In fact, these pink genes appear similarly to what
we saw from the example litre plots of the red genes (Additional file 7). This
is somewhat of a surprise, given that the pink genes were added by TMM
normalization, while the red genes were removed by TMM normalization.
Stated differently, we would expect the pink genes to appear more like
differentially expressed genes if TMM normalization is appropriate, but we
could not confirm this expectation. We solved this problem using
standardization techniques (Figs. 27 and 28). (JPG 653 kb)
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