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Physical manifestations of linguistic units include sources of
variability due to factors of speech production which are by
definition excluded from counts of linguistic symbols. In this
work, we examine whether linguistic laws hold with respect
to the physical manifestations of linguistic units in spoken
English. The data we analyse come from a phonetically
transcribed database of acoustic recordings of spontaneous
speech known as the Buckeye Speech corpus. First, we verify
with unprecedented accuracy that acoustically transcribed
durations of linguistic units at several scales comply with a
lognormal distribution, and we quantitatively justify this
‘lognormality law’ using a stochastic generative model.
Second, we explore the four classical linguistic laws (Zipf’s
Law, Herdan’s Law, Brevity Law and Menzerath–Altmann’s
Law (MAL)) in oral communication, both in physical units and
in symbolic units measured in the speech transcriptions,
and find that the validity of these laws is typically stronger
when using physical units than in their symbolic counterpart.
Additional results include (i) coining a Herdan’s Law in
physical units, (ii) a precise mathematical formulation of
Brevity Law, which we show to be connected to optimal
compression principles in information theory and allows to
formulate and validate yet another law which we call the size-
rank law or (iii) a mathematical derivation of MAL which also
highlights an additional regime where the law is inverted.
Altogether, these results support the hypothesis that statistical
laws in language have a physical origin.
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1. Introduction

The so-called linguistic laws—statistical regularities emerging across different linguistic scales (i.e.
phonemes, syllables, words or sentences) that can be formulated mathematically [1]—have been
postulated and studied quantitatively over the last century [1–5]. Notable patterns which are nowadays
widely recognized include Zipf’s Law which addresses the rank-frequency plot of linguistic units,
Herdan’s Law (also called Heaps’ Law) on the sublinear vocabulary growth in a text, the Brevity Law
which highlights the tendency of more abundant linguistic units to be shorter, or the so-called
Menzerath–Altmann Law (MAL) which points to a negative correlation between the size of a construct
and the size of its constituents.

Despite the fact that spoken communication pre-dates written communication, the vast majority of
studies on linguistic laws have been conducted using written corpora or transcripts [6,7]—to the neglect
of oral communication—with some notable exceptions [8–11]. As a matter of fact, linguistics and
cognitive science are traditionally based on a foundation of symbolic representation. For instance, Harley
states that language itself is ‘a system of symbols and rules that enable us to communicate’ [12], and
Chomsky assumes that the symbolic nature is presupposed to construct linguistic models [13]. Chomsky
goes even further, adding that ‘it is tacitly assumed that the physical signal is determined, by language-
independent principles, from its representation in terms of phonetic symbols’ [13, p. 107]. In some sense,
this perspective intends to construct their linguistic models focusing on symbols, giving more credit to
the visual communication underlying writing than the orality and the acoustic origin of language—as if
symbolism preceded acoustics. Under such a paradigm [14] that we could term as the symbolic hypothesis,
the above-mentioned statistical laws would emerge in language use as a consequence of its symbolic
representation.

However, language use also has important non-symbolic aspects like variations in acoustic duration,
prosody and speech intensity, which carry non-verbal information complementing the (purely symbolic)
transcribed text [15] with well-known acoustic implications in e.g. clinical linguistics [16]. For instance, a
given word or sentence can be spoken in different ways, with different intonations, and therefore its
duration admits a certain variability [8] that could have semantic consequences [17]. These variations
cannot be explained—by construction—using symbolic language representations, and therefore one
would not expect physical measures to follow the linguistic laws without an additional explanation.

To address this important issue, here we have conducted a systematic exploration of linguistic laws in
a large corpus of spoken English (Buckeye corpus) [18,19] which has been previously manually
segmented, hence having access at the same time to both (i) symbolic linguistic units (the
transcription of phonemes, words and breath-groups (BG), defined by pauses in the speech for
breathing or longer and (ii) the physical quantities attached to each of these units, which altogether
allow a parallel exploration of statistical patterns of oral communication in both the actual physical
signal and its text transcription.

We first explore the time duration of linguistic units at several scales and are able to verify with
unprecedented accuracy that these systematically comply with a lognormal distribution (LND). This
apparently universal regularity—which we might even call a lognormality law—is then justified in the
light of a simple stochastic model that is able to explain quantitatively the onset of LNDs at word and
BG linguistic scales just assuming lognormality at the phoneme scale.

In a second step, we address the parallel investigation of classical linguistic laws in oral
communication in both the actual acoustic signal and its text transcription. We certify that the classical
Zipf’s Law emerges in oral transcribed communication at word and phoneme level, establishing that
we are facing a ‘standard’ corpus. We then find that Herdan’s Law holds in physical magnitudes of
time duration and we are able to analytically link the exponent of this law with the one found for the
case of symbolic units. We subsequently show that Zipf’s Law of abbreviation also holds in spoken
language, and to the best of our knowledge we obtain for the first time experimental evidence of an
exponential law dependency between the frequency of a linguistic element and its size, a relation
which we mathematically explain invoking information-theoretic arguments [20]. This new
mathematical formulation of Zipf’s Law of abbreviation in turn enables the mathematical formulation
of yet another law relating the size and the rank of words.

Notably, such patterns are boosted when measuring size using physical magnitudes (time duration)
rather than written magnitudes (number of phonemes or characters). This emphasis is even stronger
for the MAL, which we show to hold better only if size of linguistic units is measured in physical
terms (time duration) rather than in symbolic units. We also include a model that explains the origin
of this fourth law.
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Figure 1. Sketch of the database and analysis. (a) We show the waveform of a speech sample and the alignment for three linguistic
levels of symbolic transcription: phonemes, words and BG. (b) We showcase how the same symbolic unit (the word okay) may show
a wide diversity within speech communication (number of phonemes, phoneme type, duration, etc.). We combine all this
information in order to (c) characterize statistical patterns and linguistic laws in both symbolic and physical magnitudes at
three different levels, and discuss the relationship between them.
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We end up discussing the relevance of each of our results and finally briefly analyse the implication of
these on the validity of the symbolic hypothesis versus a novel ‘physical hypothesis’, and the
consequences of this potential paradigm shift within theoretical linguistics.
2. Material and methods
The so-called Buckeye corpus database contains conversational speech by native English speakers gathering
approximately 8 × 105 phonemes, 3 × 105 words and 5 × 104 BGs with time-aligned phonetic labels
[18,19,21]. Recordings are based on interviews with 40 native central Ohio speakers and balanced for
age, gender and gender of interviewer (interviews are essentially monologues of each interviewee), and
technical details on the phonetic segmentation are reported in the electronic supplementary material.

Accordingly, we had access to speech recordings segmented with their symbolic transcriptions at the
phoneme and word levels. The corpus also included transcriptions of pauses that we used to define a third,
larger unit of analysis, roughly corresponding to the so-called BG. BGs are typically defined by pauses in
the speech for breathing or longer [22], a fundamental quantity, for example, in the study of verbal fluency
[23]. While one can a priori assume that punctuation in written texts could drive pauses and therefore help
to define BGs directly from written texts, such an issue is not so clear in spontaneous communication, and
in general BGs cannot be directly inferred from transcribed speech. Transcribed breaks in the Buckeye
corpus included pauses, silences, abrupt changes in pitch or loudness, or interruptions [18,19]. Each
segmented unit included physical magnitudes such as time onset and time duration.

We then use this manual segmentation to make a parallel analysis of linguistic patterns based on
(classical) symbolic units and—when possible—complementing those with analysis of the respective
patterns based on physical (time duration) magnitudes. In figure 1, we depict an example for
illustration purposes, where we show a manually segmented word (okay) which is described by
standard linguistic measures such as the precise list of phonemes composing it. The particular nature
of oral communication sometimes allows a given word to be composed by different sets of phonemes
(figure 1 shows several different phonetic transcriptions of the word okay found in the corpus). Note
that this source of variability is by construction absent in written texts and clearly enriches oral
communication. On top of this, note that the same word can be spoken with different time duration
along speech, due to different factors including prosody, conversational context, etc. [8]. For instance,
the word okay is found a number of times over the corpus, and for each event we annotate its time
duration. We can therefore estimate a time distribution for this word, from which a mean or median
value can be extracted. In general, every phoneme, word and BG which is manually segmented has
an associated time duration, hence empirical time duration distributions can be estimated for these



Table 1. Parameters across linguistic levels. Number of elements considered (N), mean, standard deviation (s.d.), mode, median
and percentiles 10 (p10) and 90 (p90) of a physical magnitude (time duration distribution) versus symbolic ones (number of
characters, number of phonemes and number of words) for the three linguistic levels (phoneme, words and BGs). Since speakers
sometimes omit or add phonemes to the same word, the number of characters per phoneme is obtained indirectly averaging
number of phonemes and number of characters in the word. The p10 and p90 percentiles give us an account of the range of
durations, without considering outliers.

time duration t (seconds)

N mean 〈t〉 s.d. mode median p10 p90

phoneme 8 × 105 0.08 0.06 0.05 0.07 0.03 0.14

words 3 × 105 0.24 0.17 0.12 0.2 0.08 0.45

BG 5 × 104 1.4 1.2 0.4 1.1 0.3 3.1

mean s.d. mode median p10 p90

number of characters

phoneme 1.4 0.5 1 1.3 2 2

words 4 2 4 4 2 7

BG 24 23 2 17 3 54

number of phonemes

words 3 1.6 2 3 1 5

BG 18 17 2 13 2 40

number of words

BG 6 6 1 4 1 13
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different linguistic scales. The mean, mode and median of the time duration distribution of phonemes,
words and BGs are reported in table 1. Taking advantage of the segmentation and alignment of the
oral corpus with the corresponding text [18,19], we have also computed the statistics referring to
the number of characters of each linguistic level, of phonemes per word and BG, and of words per BG.

Aswewill show in the next section, the probability distributions of phoneme, word and BG size (in time
duration or other magnitudes) are heavy-tailed (more concretely subexponential in the classification of
Voitalov et al. [24]) so the mean or the standard deviation are not necessarily informative enough, this is
why we also report the most frequent value (mode) and the median. Due to the inherent uncertainties in
the segmentation and the known existence of outliers, extreme cases are better represented by percentiles
10 and 90 than by the minimum and maximum values. See the electronic supplementary material for a
thorough discussion on how basic speech metrics collected in this corpus compare with the ones found
in other works.

The number of words per BG, of phonemes per word and BG, and of characters per phoneme, word
and BG are also depicted in table 1. The fact that the most common BG is formed by a single word—with
the dubious element um as the most frequent—influences our results (i.e. the mode of the number of
phonemes per word and per BG is 2), reflecting nevertheless the characteristics of spontaneous speech
where discursive markers abound: they are key elements in verbal fluency, many of which are brief
linguistic elements (so, okay, well, etc.) [25]. Furthermore, the conditions of the Buckeye corpus are
interview-like conversational speech (where interviewer makes questions and the analysis is then
performed on the interviewee): this significant trait probably makes the abundance of dubious elements
[25] (e.g. um) large.
3. Results
3.1. Lognormality law
Here we analyse the marginal distribution of the physical magnitude under study: the time duration each
segmented linguistic unit, at all scales (phonemes, words and BGs). For a given linguistic level—e.g.
words—we measure the time duration of all events (different words and repetitions) found in the
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corpus. That is to say, we do not use the time average of each word, but consider each event as a different
sample. In the main panel of figure 2, we then show the time duration distributions for phonemes
(orange squares), words (blue circles) and BG (green diamonds) in the Buckeye corpus (see also
figures 3–5). Using the method of maximum-likelihood estimation (MLE) [26], we have fitted the data
to five possible theoretical distributions: lognormal (LND), beta, gamma, Weibull and normal (we use
Kolmogorov–Smirnov distance Dks for goodness of fits, and mean loglikelihood for model selection,
see table 2). We have confirmed that both phonemes and BG are best explained by LNDs

lognormal(x; m, s) ¼ 1

xs
ffiffiffiffiffiffi
2p

p e�(( ln (x)�m)2=2s2),

whereas for the case of words, LND, beta and gamma are similarly plausible statistical fits. In the inset
panel of figure 2, we re-scale all the time duration variables t0 = (log (t)− 〈log (t)〉/σ(log (t))). If all
distributions are well described by LNDs, the resulting data should collapse to a standard Gaussian
N (0, 1), in good agreement with our results. Note at this point that the Buckeye corpus is multi-
speaker, hence data come from a variety of speakers. Nevertheless, the lognormality law still holds for
individual speakers (see the electronic supplementary material).
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LNDs are indeed very commonly found across natural and behavioural sciences [27–29], and it is well
known [30,31] that the frequency distribution of string length in texts (in both letters and phonemes) is
well approximated at every level by the LND (see [28] and references therein). Previous studies have
proposed that LND is indeed consistent for spoken phonemes in several languages [30,32–35], and
this distribution has also been found, although overlooked, in the distribution of word durations for
English [8]. However, to the best of our knowledge this is the first study in which LNDs have been
reported at various linguistic levels at the same time.

Can we justify the onset of clear LNDs for the time duration of phonemes, words and BGs? To date,
most of the theoretical work connecting the presence of LND for the time duration of linguistic units
reduce to an extremely vague analogy and reminiscence of stochastic multiplicative processes and the
central limit theorem (CLT) in logarithmic space [27,32]. The mechanistic origin for the robust duration
distribution of phonemes is therefore an open problem which we would not address here, although it
could be speculated that this is a consequence of some underlying physiological or cognitive process
[36]. We now assume LND for the time duration of phonemes as a working hypothesis (nonetheless
validated by the experimental evidence reported in figure 2), and we provide a (mechanistically
justified) mathematical model that explains why, in that case, both words and BG should have a
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duration which themselves approximates a LND, which we show to be not just qualitatively correct but

also offers an excellent quantitative agreement with the empirical results.

3.1.1. A simple stochastic model

Consider a random variable (RV) Y∼ lognormal (μ, σ) that models the time duration tph of a given
phoneme. Since words are constructed by concatenating a certain number of phonemes n, the
duration of a given word tw can then be modelled as another RV Z such that

Z ¼
Xn
i¼1

Yi, (3:1)

wherewe assume Yi∼ lognormal (μ, σ) and n∼ P(n) is in general yet another RV. For the sake of parsimony,
we initially consider the case of independent RVs: how is Z distributed when the RVs Yi and n are sampled
independently? Since the lognormal distribution has finite mean and variance, the CLT should hold and Z
should be Gaussian as n→∞. Interestingly, this is a limit theorem and thus the Gaussian behaviour is only
deemed to be recovered in the limit of large n. However, this is quite not the case in our context: not is only n
a finite yet fluctuating RV, furthermore, according to table 1, the average number of phonemes per word is
just 〈n〉phon = 〈tw〉/〈tph〉 = 0.24/0.08≈ 3, whereas in the case of the average number of words per (oral) BG,
we find 〈n〉words≈ 6, both in principle sufficiently far from the large n limit where CLT holds in the
lognormal case (see the electronic supplementary material for an exploration). While for small n, there is
no closed form for P(Z) in the general case, it is agreed that the CLT does not kick in [37] and actually
the LND is often a good approximation for P(Z) (see [38] and references therein), and one can
approximate the first two moments of Z using e.g. the so-called Fenton–Wilkinson approximation [39].
We have numerically checked that this is indeed the case provided that Yi are sampled from reasonably
similar LNDs (see the electronic supplementary material for details). In other words, this simple
stochastic model can already explain the emergence of LND for the duration of words solely based on
the assumption that phoneme durations also follow a LND. Subsequently, one can redefine Yi = tw with
the time duration of a word—which now is justified to follow a LND—and Z = tBG with the time
duration of a BG, hence this very same model also explains the emergence of LNDs of BG durations.

Moreover, in order to be quantitatively accurate, instead of sampling n from a synthetic probability
distribution we can sample it from the actual distribution of phonemes per word P(n) (reported in the
inset panel of figure 4). In other words, in order to construct words according to equation (3.1), each
Yi is sampled from the phoneme time distribution P(tph), whereas the number of phonemes per word
n is sampled from the real distribution P(n) instead of a synthetic one. The results of this version of
the model is plotted, for the case of words, as a dashed blue curve in figure 4, finding an excellent
quantitative agreement with the empirical distribution.

One could proceed to do a similar exercise for the case of BGs, where the number of words per BG n is
an RV which is sampled from the actual distribution W(n), as reported in semi-log scales in the inset of
figure 5. Note, incidentally, that W(n) is exponentially decaying, suggesting that the segmentation of BGs
is statistically analogous to a (memoryless) Poisson process. In any case, such procedure is, in this case,
problematic: observe that manual segmentation tends to have a systematic error which is more prominent
in the case of BGs due to the fact that one needs to determine the transition points between speech and
silence (i.e. errors do not cancel out in this case.1) This is indeed known to be a non-trivial problem due to
the so-called VOT effect at the beginning of some BGs and other phonetic phenomena, possibly amplified
by the fact that manual segmentation tends to be conservative (see the electronic supplementary material
for details). These sources of error will thus systematically add a small positive bias to the true time
duration of each BG. Thus, we decide to model this bias by a Gaussian error term with (small)
positive mean, which is systematically added to the time duration RV Z, so that Z→Z + ξ, where
j � N (mj, sj). In the main panel of figure 5, we report the prediction of this model when
j � N (0:14, 0:07) (green dashed curve), showing excellent agreement with the empirical distribution
(note that mj and sj can safely vary within a 20% range and the agreement would still be remarkable).

3.1.2. Tackling non-independence

The stochastic model discussed above is already able to quantitatively reproduce the time duration
distributions of words and BGs, even if we assumed that the RVs Yi and n were independent. This is,
1Note that segmentation errors might take place when segmenting words as well; however, in this case they tend to cancel out—what is
erroneously added to one word is removed from the subsequent segmented word—and thus these errors have zero mean.
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however, a rather strong assumption which is not true in general: it is easy to see that if these were

independent, then e.g. MAL should not hold. Possible sources of interaction between RVs include
dependence between n and Yi and serial correlations between Yi and Yi+1. To assess the case of serial
correlations, we have estimated the mutual information I(t, t + 1) between duration of subsequent
linguistic units for both phonemes inside a word and words inside a BG. The mutual information
I(X1, X2) is an information-theoretic measure that evaluates lack of independence by quantifying how
much information is shared by two RVs X1 and X2:

I(X1, X2) ¼
X
xi[X1

X
x j[X2

p(xi, x j) log
�

p(xi, x j)
p(xi)p(x j)

�
, (3:2)

such that I(t1, t2)→ 0 if t1 and t2 are independent. In practice, finite-size effects prevent this quantity from
vanishing exactly, so a robust analysis requires comparing the numerical estimate with respect to a proper
null model. Note that we use here I instead of other methods such as Pearson or Spearman correlation
coefficients because we cannot assume a priori any particular dependence structure (such as linear
correlation or monotonic dependency).

We found I(t1, t2)phon = 3 × 10−2 and I(t1, t2)words = 2 × 10−2 for phonemes and words, respectively, to be
compared with the results for a null model where we keep fixed the number of words and phonemes per
word but we shuffle the phoneme allocation, hence breaking possible correlations. We find Irand(t1,
t2)phon = 3 × 10−4 ± 2 × 10−5 and Irand(t1, t2)word = 2 × 10−4 ± 3 × 10−5 for phonemes and words, respectively.
In both cases, mutual information is two orders of magnitude stronger than what is expected due to
chance, safely concluding that the RVs Yi in equation (3.1) are indeed not independent. In the section
devoted to Menzerath–Altmann, we further examine the properties of these correlations for the case of
words, and in the electronic supplementary material, we exploit these to build an independent model that
also accounts for experimental time duration distribution of BGs once we add such dependence structure.

Importantly, as opposed to the previous case, there do exist limit theorems for Z and small n when
{Yi} are not independent. A theorem of Beaulieu [40] states that the probability distribution of a sum of
positively correlated lognormal RVs having a specified correlation structure approaches a LND with
probability one, so we safely conclude that equation (3.1) provides a sound justification for the
emergence of LND regardless of the underlying correlation structure. Incidentally, this limit theorem
is also valid for some joint lognormal RVs having dissimilar marginal distributions, as well as
identically distributed RVs, hence we do not require that the intraphonemic time duration of all
phonemes be identical for this theorem to hold (we acknowledge that intraphonemic variability exists
but leave this fine-grained structure for a future work).
3.2. Zipf’s Law
We now turn to explore the emergence of linguistic laws in oral communication, and start our analysis
with Zipf’s Law. After some notable precursors [41–43], George Kingsley Zipf formulated and explained
in [44,45] one of the most popular quantitative linguistic observations known in his honour as Zipf’s Law.
He observed that the number of occurrences (frequency f ) of words with a given rank r is well
approximated by a power-law dependence

f(r) � r�a: (3:3)

This is a solid linguistic law proven in many written corpora [5] and in spoken language [6], even though
its variations have been discussed [46], as is the case of the evolution of the exponent in the ontogeny of
language [7] or even in aphasia [47].

Zipf originally proposed a theoretical exponent α∼ 1 [45], but other authors have shown that α may
vary for oral English typically between 0.6 and 1.5 [6,7] (note that the actual fitting of a power law is not
trivial, and different proposals coexist [48,49], here we use MLE). Other authors have further justified the
existence of two different scaling regimes: one kernel of very versatile communication elements and one
set of almost unlimited lexicon [50,51], whereas other authors support that this is an artefact of mixing
texts [52].

Here, we analyse the written transcriptions of the Buckeye corpus, and summarize our results for the
frequency-rank word plot in figure 6, finding that our results in spontaneous conversation agree with
previous studies. We indeed find that a double power law scaling should be preferred from a model
selection point of view according to a Bayesian information criterion (BIC, see the electronic
supplementary material for details), with exponents α1∼ 0.63 and α2∼ 1.41 with breaking point in
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rank r = 49 (the precise breaking point is found using MLE). We also find, in compliance with Williams
et al. [52], that when we disentangle contributions from different speakers, the double power law seems
to smear out (see the electronic supplementary material).

The relationship between the exponent of Zipf’s Law and syntax has been discussed previously [7,53].
Accordingly, the exponents found in the Buckeye corpus would be in the range expected for a low
syntactic complexity, typical of spontaneous speech, with a predominance of discursive markers [25],
although more research is needed in this regard.

In figure 6, we have also analysed Zipf’s Law at phoneme level. While the limited number of
phonemes precludes the onset of distributions ranging over one decade—and therefore limits the
interpretability of these results—some previous studies [54] have stretched the analysis and proposed
the onset of Zipf’s Law in phoneme distributions, proposing a fit of this frequency-rank plot in terms
of a Yule distribution f (r)∼ r−b cr (note that a power-law distribution is a particular case of Yule
distribution which can also be explained as a power law with exponential cut-off ). Accordingly, we
have fitted the transcribed phonemes to a Yule distribution using MLE, finding b = 0.25, and c = 0.96.
3.3. Herdan’s Law
We now move to the second linguistic law under study. Although with little-known precedents [55],
Herdan’s Law [56] (also known as Heaps’ Law [57]) states that the mean number of new different
words V grows sublinearly with the size of the text L : V∼ Lβ, β < 1. Interestingly, some scholars have
derived an inverse relationship between Zipf’s and Herdan’s exponents β = 1/α2 using different
assumptions (see [58] or [59] for a review). As Zipf’s Law, Herdan’s Law is robust although there are
slight deviations that have been well explained by new formulations [6,58–60].

Here we explore the emergence of Herdan’s Law by measuring the appearance of new words as
conversations draw on using either total number of words L (classical approach) and elapsed time T,
and we report our results in figure 7. Since the corpus is multi-author, we have performed several
permutations of the order in which the corpus concatenates each of the individual speakers, and plot
each of these permutations as a different line (10 permutations). Results hold independently of the
permutation so we can rule out that such arbitrary ordering is playing any role in the specific value
of the exponents.

Green diamonds depict the increase of vocabulary as a function of the total number of words
appearing in the conversation as it draws on. For words, we find a first linear regime where each
word is new, followed up by a transition into a stable sublinear regime that holds for about three
decades with exponent β≈ 0.63. This evidence is in agreement with previous results [6]. Note that
the exponent β is approximately consistent with the one found for the second regime of Zipf’s Law
(1/1.41≈ 0.7) and others reported for different corpora [6,58,61].

In the same figure, we also depict (blue circles) the vocabulary growth as a function of the time elapsed
T, i.e. we count how many new words appear in a given conversation as the conversation draws on, and
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we measure the size of the vocabulary V as a function of the elapsed time T. Note that this formulation is
strongly related with the speech rate of conversation which might vary greatly between speakers, context
or intentionally of the speaker. Whereas here we find that the transient is dependent on the specific
permutation of speakers, all curves then transition into a permutation-independent, stable and robust
sublinear regime V � Tg with approximately the same exponent γ≈ β≈ 0.63.

This later result can be explained analytically in the following terms. Consider equation (3.1) and
concatenate a total of L words, each having a duration modelled by a RV Y (which we know is
lognormal according to previous sections). Assuming there are no silences between words, the
concatenation variable t ¼ PL

i¼1 Y is a RV that can be identified with the elapsed time of a
conversation after L words. The average time T ¼ E(t) and, since the expected value is a linear
operator, it follows that T ¼ PL

i¼1 E(Y) ¼ E(Y) � L (note that taking expected values is justified when L
is large by virtue of the law of large numbers, see electronic supplementary material, figure S7 for an
empirical validation). Since we find T∝ L, this implies that if Herdan’s Law holds for L, a similar law
with the same exponent should hold for T, i.e. β = γ.

3.4. Brevity Law
The third linguistic law under analysis is Brevity Law, also known as Zipf’s Law of abbreviation.
It qualitatively states that the more frequently a word is used, the ‘shorter’ that word tends to be
[44,45,62]. Word size has been measured in terms of number of characters, according to which the law
has been verified empirically in written corpora from almost a thousand languages of 80 different
linguistic families [63], and similarly logograms tend to be made of fewer strokes in both Japanese and
Chinese [64,65]. The law has also been observed acoustically when word size is measured in terms of
word time duration [8,66,67], and recent evidence even suggests that this law also holds in the acoustic
communication of other primates [68]. Despite all this empirical evidence, and while the origin of Zipf’s
Law of abbreviation has been suggested to be related to optimization principles [45,69–71], to the best of
our knowledge the law remains qualitative and a precise mathematical formulation is lacking.

Here, we start by studying Brevity Law qualitatively in oral speech at the level of phonemes and
words (it is not possible to check at BG level due to lack of statistics).

At word level, we consider three cases: (i) the tendency of more frequent words to be composed of
less characters, (ii) the tendency of more frequent words to be composed by a smaller number
of phonemes and finally, (iii) the tendency of speakers to articulate more frequent words in less time
(i.e. the more frequent a word, the shorter its duration). Results are summarized in figure 8, showing
that Brevity Law indeed holds in all three cases. In these figures, we scatter-plot the frequency of each
word versus the three different definitions of word size (median time duration, number of phonemes,
number of characters). Blue dots are the result of applying a logarithmic binning over the frequencies
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axis in order to counterbalance low sampling effects (see the electronic supplementary material for
additional details on this procedure).

At the phoneme level, we compare the frequency of phonemes with their median time duration in
figure 9. As suggested by Spearman correlation test, we find that Zipf’s Law of abbreviation holds
even at such a low linguistic level. In this way, the more frequent is a phoneme, the shorter it will be
in terms of duration. We have not addressed the law at the phoneme scale with respect to the number
of characters as this assignation is ambiguous due to the fact that a given word can have different
phonetic transcriptions (figure 1a), and it is not obvious how to assign the number of characters to the
phoneme composition of each of these.

3.4.1. A mathematical formulation of Brevity Law

An information-theoretic principle of compression [20] has been recently invoked to elucidate the origin
of Zipf’s Law for the frequency of words [72]. A similar approach can be undertaken here. In order to



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191023
13
compress information, a classical rule of thumb is to codify information by assigning shorter labels to

more frequent symbols (e.g. the most frequent symbol shall be assigned the shorter label, the second
most frequent symbol shall be assigned the second shorter label, and so on). The size of this label is
called the description length, which here we associate with either of the three possible definitions of
size we have considered (median time duration, number of phonemes and number of characters).
In information-theoretic terms, if a certain symbol i has a probability pi of appearing in a given
symbolic code with a D-ary alphabet, then its minimum (optimal) expected description length
‘�i ¼ � logD (pi) [20]. Deviating from optimality can be effectively modelled by adding a pre-factor,
such that the description length of symbol i is ‘i � �(1=lD) logD (pi), where 0 , lD � 1. Identifying pi
with the frequency of a given word and ℓ with its ‘size’, the derivation above directly yields a
mathematical formulation of Zipf’s Law of abbreviation as

f � D�lD‘, 0 , lD � 1, (3:4)

where f is the frequency of a linguistic element, ℓ is its size in whichever units we measure it (some
property of the time duration distribution, number of phonemes and number of characters), D is the
size of the alphabet (the number of different linguistic elements at the particular linguistic level under
study), and lD an exponent which quantifies deviation from compression optimality (the closer this
exponent is to one, the closer to optimal compression).

A fit to equation (3.4) is shown (red dashed lines) in the upper right and lower left inset panel of
figure 8. When word size is measured in number of characters (i.e. the alphabet consists of letters and
thus D ¼ 26), we find lD � 0:6, whereas for word size measured in terms of number of phonemes
(i.e. for an alphabet with D ¼ 64 phonemes consisting in 41 phonemes plus 23 phonetic variations
including flaps, stops and nasals, see the electronic supplementary material), we find lD � 0:5. Note
that both fits are performed to the data (not to the binned data), but these are in turn in excellent
agreement to the binned data (blue circles).

On the other hand, when word size is measured in terms of time duration, there is no natural
alphabet, so D is a priori not well defined (time is a continuous variable). We can nonetheless express
equation (3.4) as

f � exp (�l‘), l . 0 (3:5)

where λ is now just a fitting parameter not directly quantifying the distance to optimal compression, and
ℓ is some measure of ‘centrality’ of the time duration distribution. In the main panel of figure 8, we plot
(red dashed line) a fit of equation (3.5) to the data when ℓ is measured in terms of the median time
duration, finding λ≈ 20.6 (again, the fit is performed to the noisy data cloud, but the result is in
excellent quantitative agreement to the binned data). A similar fit to the case of phonemes is
presented in figure 9.
3.4.2. Connecting Brevity Law and Zipf’s Law: the size-rank law

Zipf and Herdan Laws are known to be connected and under certain conditions their exponents are
related via α = 1/β [59,60]. Now since Zipf’s Law and the newly formulated Brevity Law involve word
frequencies, we can now connect these to propose an additional law. Putting together equations (3.3)
and (3.5), our theory predicts that the ‘size’ ℓi of word i is related with its rank ri

‘i ¼ a

l
log (ri)þ K ¼ u log (ri)þ K, (3:6)

where α and λ are Zipf and Brevity Laws exponents, respectively, and K a normalization constant. θ is
therefore a parameter combining Zipf and Brevity exponents in a size-rank plot, and equation (3.6)
can indeed be understood as a new linguistic law by which the larger linguistic units tend to have a
higher rank following a logarithmic relation.

In the case of double power-law Zipf Laws (figure 6), we would have different exponents for r≥ 50 or
r < 50 so equation (3.6) would reduce to

‘i ¼ u1 log (ri)þ K1, if ri � r�

‘i ¼ u2 log (ri)þ K2, if ri . r�,

�
(3:7)

where θ1 = (α1/λ), θ2 = (α2/λ), and α1 and α2 are the exponents before and after the breaking point r*,
respectively. We illustrate the validity of equation (3.7) by considering time duration as ℓ. In this
scenario, λ≈ 20, α1≈ 0.63 and α2≈ 1.41, so θ1≈ 0.03 and θ2≈ 0.07. In figure 10, we depict a r versus ℓ
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scatter plot of all the words, where blue dots are the result of applying a logarithmic binning (again, to
counterbalance low sampling effects). The black line is equation (3.7) with θ1 = 0.03 and θ2 = 0.07,
showing an excellent agreement with the binned data.
3.5. Menzerath–Altmann Law
To round off, we finally consider the fourth classical linguistic law. After some precedents in
experimental phonetics [73], Paul Menzerath experimentally observed a negative correlation between
the ‘length’ of a phonetic constructs and the length of its constituents [10,11]. Later Gabriel Altmann
formalized this observation for various linguistic levels [74,75], proposing a mathematical formulation
called MAL, which in its most popular form relates the size n of a language construct (the whole) and
the size y of its constituents y (the parts) via

y(n) ¼ anb exp (�cn), (3:8)

where a, b, c are free parameters that depend on language [5,76] (see also [77,78] for subsequent attempts
of reformulation).

The interpretation and justification of this formulation remains unclear [76], and while this law was
originally explored phonetically [10], most of the works address written texts [1,68,76,79–82].
3.5.1. Two different regimes

As an initial comment, note that when both exponents b, c < 0, equation (3.8) has always a finite
minimum at n* = b/c above which the tendency inverts, i.e. the law would be a decreasing function
for n < n* and an increasing function for n > n*, leading in this latter case to a ‘the larger the whole,
the larger the size of its constituents’ interpretation. This rather trivial observation seems to have been
unnoticed, and the right end of MAL’s standard formulation has been systematically overlooked in
the literature—perhaps due to the fact that this regime is hard to find experimentally—even if
Menzerath himself already observed this tendency in his seminal works [10,11].
3.5.2. A mechanistic model for Menzerath–Altmann’s Law

Second, and before addressing to which extent MAL holds in oral communication, we now advance a
model that provides a mechanistic origin for its precise mathematical formulation. Let t(n) be the
average time duration of a construct (BG) formed by n constituents (words). Then the mean duration
of a word inside that construct is y(n) = t(n)/n. Let us assume that a BG formed by n words can be
generatively explained by adding a new word to a BG formed by n− 1 words. Under no additional
information, one can trivially express that the new word has a duration equivalent to the average
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duration of words in the BG, i.e.

t(n) ¼ t(n� 1)þ t(n� 1)
n� 1

¼ (1þ 1
n� 1

)t(n� 1): (3:9)

This defines a simple multiplicative process which can be solved as

t(n) ¼ t(1)
Yn
j¼2

(1þ 1
j� 1

) ¼ nt(1),

yielding y(n) = t(1), i.e. a constant quantity. We can call this the ‘order-0 approximation’ to MAL. Now, in
§3.1 we found that word time duration is indeed correlated within a BG, as the mutual information
between the duration of a given word and the subsequent one is much larger than expected by chance.
One can take into account this correlation in several ways. The simplest way is to assume a linear
relation by which the size of the nth constituent of a construct is just a constant fraction 0 < κ2 < 1 of the
average of the previous n− 1 constituents (i.e. the size of the construct grows slower than linearly with
the number of constructs due to linear correlations). Then equation (3.9) is slightly modified into

t(n) ¼ t(n� 1)þ k2
t(n� 1)
n� 1

¼ (1þ k2
n� 1

)t(n� 1), (3:10)

such that

t(n) ¼ t(1)
Yn
j¼2

(1þ k2
j� 1

):

The expression above is in total agreement with eqn 12 in [78], although the authors in [78] do not solve this
equation and simply propose it as a ‘formula’. Now it is easy to see using gamma functions that

Yn
j¼2

(1þ k2
j� 1

) ¼ G(nþ k2)
G(1þ k2)G(n)

,

where Γ(z) is the gamma function. Invoking the fact that 8a [ C, limn!1 G(nþ a)=[G(n)na] ¼ 1, we can
approximate in this case

y(n) ¼ t(n)
n

� t(1)
G(1þ k2)

nk2�1, (3:11)

which for κ2 < 1 is a decaying power-law relation, sometimes called the restricted MAL [83]. This would be
the ‘order-1 approximation’ to MAL.

We can continue the procedure and in the next level of simplicity (‘order-2’), we can add another pre-
factor κ1, such that the generative model reads then

t(n) ¼ k1(1þ k2
n� 1

)t(n� 1),

such that

t(n) ¼ t(1)
Yn
j¼2

k1(1þ k2
j� 1

): (3:12)

Note that if κ1 < 1 we can risk eventually finding an average time duration t(n) smaller than t(n− 1),
which is unphysical, so a safe assumption is setting κ1≥ 1. While equation (3.12) does not have an
easy closed-form solution, we can analytically approximate it. By taking logarithms and Taylor-
expanding log (1 + κ2/( j− 1)) ≈ κ2/( j− 1), equation (3.12) reads

log t(n) � log (t(1)kn�1
1 )þ

Xn
j¼2

k2
j� 1

:

Using harmonic numbers Hn [84], we have

Xn
j¼2

k2
j� 1

¼ k2 Hn
�1
n

� �
� lognk2 þ k2gþO

�
1
n

�
,

where γ = 0.5772… is the Euler–Mascheroni constant. Putting these results altogether, taking
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exponentials and using y(n) = t(n)/n, we end up with

y(n) � t(1) exp (k2g)
k1

nk2�1kn1 ,

which is indeed MAL (equation (3.8)) with a = t(1)exp(κ2γ)/κ1, b = κ2− 1 and c =−logκ1. Note that since
0 < κ2 < 1, then necessarily b < 0, and since we had set κ1≥ 1, that also means that c < 0, and therefore we
expect in full generality that MAL displays its two regimes.

Furthermore, the model we provide not only gives a mechanistic interpretation for the origin of
equation (3.8), but also shows that actually two parameters (κ1, κ2) are enough to fit the law instead
of three, and these two parameters quantify the way correlations between the duration of words
take place.

As an additional comment, note that if instead of equation (3.12) we decide to model correlations by
exponentiating by a factor κ2, i.e.

t(n) ¼ t(1)
Yn
j¼2

k1(1þ 1
j� 1

)k2 , (3:13)

then this equation is exactly solvable as
Qn

j¼2 (1þ 1=[j� 1])k2 ¼ [G(nþ 1)=G(n)]k2 ¼ nk2 , hence in this
latter case there is no approximation and we find

y(n) ¼ t(1)
k1

nk2�1kn1 ,

i.e. again equation (3.8) with a = t(1)/κ1, b = κ2− 1, c =−log (κ1). Notice, however, that equation (3.13) is
probably harder to interpret than equation (3.12) (see the electronic supplementary material, figure S7 for
a successful prediction of BGs time duration distribution solely based on the models above).

3.5.3. Menzerath–Altmann’s Law is fulfilled better in physical units

Once the origin of equation (3.8) has been clarified, we now explore to what extent MAL holds in oral
communication at two linguistic levels: (i) BG versus word and (ii) word versus phoneme. For case (i),
we measure the size of each BG in terms of number of words and then compare this quantity against
the size of the constituents (words) using three different measures: (a) mean number of characters in
the constituent words, (b) mean number of phonemes in the constituent words and (c) mean time
duration of the constituent words. Accordingly, cases (i.a) and (i.b) relate different linguistic levels,
whereas (i.c) provides a link with quantities which are inherently ‘oral’.

Results for the BG versus word scale are shown in figure 11. In all cases, we have plotted each
individual instance of a BG as grey dots, and blue circles correspond to linear binned data. For the



Table 3. Parameter fits of the Buckeye corpus to MAL (equation (3.8)) for different linguistic levels (BG, words and phonemes).
Fitting of MAL to the mean values (mean size of constituent versus mean size of linguistic construct) has been done using
Levenberg–Marquardt algorithm (note that blue circles in figure 11 are the result of a linear binning). R2 (coefficient of
determination) is used to determine the goodness of the fit. Accordingly, MAL only holds most significantly when measuring
constituent size in time units.

a b c R2

BG versus word size (in time units) 0.364 − 0.227 − 6.7 × 10−3 0.7

BG versus words (in number of phonemes) 3.22 − 4.7 × 10−2 − 1.85 × 10−4 0.05

BG versus word size (in number of chars) 4.16 − 2.14 × 10−2 − 7.4 × 10−4 0.05

words versus phoneme size (in time units) 0.18 − 0.23 − 7 × 10−3 0.9
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Figure 12. MAL: words–phonemes. We show the relation between word size (measured in number of phonemes) and the mean
time duration of those phonemes. Orange squares are mean duration of words with that size. Each grey point represents one word
and dotted line is a fit to MAL (equation (3.8)).
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sake of exposition, we have further applied a linear binning of the data with 10 bins (see the electronic
supplementary material for the more standard plots using non-binned data and additional details).
This additional binning helps to visually reveal the emergence of the second MAL regime. The red
dashed line is a fit of the data to equation (3.8) using a Levenberg–Marquardt algorithm (see table 3
for fitting parameters). We find that MAL between a construct and its constituents is only shown to
hold significantly when the constituent size is measured in physical (time) units according to R2

(when the law is measured in symbolic units, one could even say that the order-0 approximation
provided by equation (3.9) is the adequate model). We find b, c < 0 so equation (3.8) indeed is non-
monotonic in this case and, interestingly, the law fits indeed the whole range including the regime
where the interpretation of MAL inverts, with a transition located at a BG size b/c≈ 34 words.

For case (ii), we ensemble words with the same number of phonemes and then compute mean time
duration of those phonemes; see figure 12 for results. Again in this case MAL is found to hold.
3.5.4. Average speech velocity

Finally, observe that when word size is measured in time duration, y(n) in equation (3.8) is indeed the
average time duration per word in a BG with n words, hence we can define an average speech velocity
v(n) = n/[ny(n)] = 1/y(n). Different speakers will therefore have different speech velocity, and this can
also vary along their speech. Now, for the range of parameters where y(n) is non-monotonic, v(n) will be
non-monotonic as well, and the critical point n* = b/c which fulfils v0(n*) = 0 defines, assuming MAL, a
maximal limit (optimal efficiency limit) for the number of words per second. For the fitted parameters
found in the corpus, we plot v(n) in figure 13, finding an optimal efficiency limit at around 4.8 words per
second, achieved when BGs last about n*≈ 34 words. The average number of words in a BG in the
Buckeye corpus is, however, around 6 (for which the speech velocity is only about 4 words per second),
meaning that on average speakers chat more slowly. We can imagine a number of reasons why speakers
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in the Buckeye corpus have on average a slightly suboptimal efficiency, from obvious ones where
conversational speech is performed in a relaxed environment where the speakers do not need to
optimize information transmission per unit time, to more speculative ones where lung capacity (which
imposes a physiological limit to BG size) plays a limiting role.
4. Discussion
Linguistic laws—traditionally explored in the context of written communication—are validated here
with unprecedented accuracy within oral communication, both in the acoustic space spanned by time
duration and in symbolically transcribed speech. Since oral communication pre-dates written
communication, it is sensible to wonder whether the emergence of linguistic laws in the latter context are
indeed just a consequence of their emergence in the former. In that case, the question of why and how
these complex patterns first emerged in orality would directly point towards investigating how the
cognition and physiology of human beings evolved according to, among other gradients, an evolutive
pressure driven by human interaction and their need to communicate. These questions also suggest the
need to perform comparative studies [68,85] that explore the emergence of similar complex structures in
the oral communication of other species, a task which is theoretically possible even if the underlying
language code is unknown [86].

It is nowworth discussing the breadth and depth of our specific results. The first one deals with the time
duration distribution of linguistic units in oral communication. We have certified that the time duration of
phonemes, words and BGs in our database are lognormally distributed, and coined this universal character
as the lognormality law. Furthermore, wewere able tomechanistically explain these traits at theword and BG
level through the introduction of a stochastic generative model, which is able to hierarchically explain the
time duration distribution at a certain linguistic level from the one emerging at the linguistic level
immediately below. Remarkably, this model also predicts the correct quantitative shape of the word and
BG time duration distributions, and the sole assumption we make is that phonemes themselves are also
lognormal, a hypothesis that we empirically validate and is supported by previous analysis [8]. Note
that lognormality of phonemes has been discussed previously in the context of multiplicative processes
[87] and Markov chains [32]; however, we consider that a sound explanation for its origin is still lacking,
an issue—which we speculate is a by-product of underlying physiological processes [36]—that is left as
an open problem for future work. Finally, note that our models do not require a multi-speaker context:
while the Buckeye corpus is multi-speaker, individual analyses are also in agreement with the model (see
the electronic supplementary material).

On a second step, we turned to investigate more traditional linguistic laws in the context of oral
communication, and started with Zipf’s Law. Our results for this case, where we find two scaling
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regimes (figure 6), in agreement with [6,50] and in line with [52], which claims that double power-law

scalings are expected in multi-author corpus (see the electronic supplementary material for a clarification
of this aspect). Since each word can be spoken in different ways (e.g. with different time durations and
energy release), it is not obvious how to explore Zipf’s Law in physical units; however, see [86].

Then we turned to Herdan’s Law, where we found that the standard law V � Lb holds also in oral
communication, and that a newly defined one—where we use accumulated time elapsed T (in seconds)
instead of total number of words L—holds as well and with the same exponent, an observation that we
were able to analytically justify. These findings reinforce the idea that statistical patterns observed in
written language naturally follow from analogous ones emerging in oral speech. As a detail, note that
the transition towards the stable regime relates to the fact that the Buckeye corpus consists of
concatenating multi-author corpus and therefore requires a speaker-dependent transient until the system
reaches a stable state, as previously found in some other studies [6].

Subsequently, we considered the third classical linguistic law: the Brevity Law or Zipf’s Law of
abbreviation, where shorter words tend to be used more frequently. To the best of our knowledge, here
we introduce for the first time an explicit mathematical formulation of this law (equations (3.4) and (3.5))
which we justify based on optimal compression principles [20,72]. This information-theoretic formulation
predicts that the law should emerge in both symbolic and physical magnitudes. We were able to show
that this law (and its novel mathematical formulation) indeed holds in oral communication when
measured both in the traditional setting (using number phonemes or characters as a proxy for word size)
and when using physical magnitudes (using time duration to measure word size). Since both Brevity
and Zipf’s Law address the frequency of linguistic units, we have also been able to mathematically
connect them to propose a new size-rank law which we have also shown to hold (figure 10).

The principle of optimal compression provides yet another reason why patterns in the acoustic setting
underpin the more commonly observed ones in written texts: on average a word is composed by a small
number of phonemes or characters because this word—which is a symbolic transcription of a spoken
word—was originally spoken fast (short time duration), not the other way around. All the above
notwithstanding, and although the tendency to Brevity is probably a universal principle [69], we should
also acknowledge that in certain communicative contexts it may not be fulfilled if there are other
conflicting pressures such as sexual selection [88], noise [89], long-distance calls [9] or other energetic
constraints [90].

We finally addressed MAL in oral communication at different scales (BG versus words, and words
versus phonemes). We first were able to derive a mechanistic model based on the concatenation of
words that mathematically explains the onset of MAL as proposed by Altmann. The law itself
mathematically predicts a second regime where the popular MAL interpretation is inverted, and
empirical results support the presence of this second regime here (additional analysis in other datasets
should confirm whether the onset of the second regime is generally appearing, or whether this is just
a mathematical artefact).

Interestingly, we find that MAL is fulfilled when the constituent size is measured in physical units
(time duration, R2 = 0.7 and 0.9) but notably less so when we use the more classic written units (R2 =
0.05 and 0.05, table 3).

This is yet another indirect indication supporting that written corpus is a discrete symbolization that
only captures the shadow of a richer structure present in oral communication [8] in which linguistic laws
truly emerge, with a physical origin that written texts would only capture partially. As a matter of fact,
working in time units enabled us to also define a speech velocity function, which we have found to be
slightly below the optimal efficiency limit imposed by the actual MAL, a deviation which was indeed
expected considering the fact that conversational speech is not under stress to maximize informational
content per unit time. Note at this point that MAL has been traditionally argued to emerge only in
linguistic units lying on adjacent levels [91], and under the symbolic perspective words would not be
considered the element immediately below the BG, and similarly the phoneme is not the element
immediately below the word (i.e. the seminal work of Menzerath and De Oleza related words with
syllables [10]). Nonetheless, working with physical units (time durations) MAL is fulfilled both
between the BG and word levels, and between the word and phoneme levels.

It should also be noted that, to the best of our knowledge, this is the first study relating acoustic levels
such as BGs and words. As a matter of fact, assuming that MAL has a purely physiological origin [10,11]
that eventually percolated into a written corpus, then BGs should indeed be more adequate units to
explore this law than sentences or clauses. BGs are free from some of the problems emerging for
sentences and clauses [92], and actually are so universal that they can also be measured in animal
communication [68].
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To conclude, we have thoroughly explored and explained a number of statistical patterns emerging in

oral communication, which altogether strongly suggest that complexity in written texts—quantitatively
summarized in the so-called linguistic laws—is not necessarily an inherent property of written language
(the symbolic hypothesis) but is in turn a by-product of similar structures already present in oral
communication, thereby pointing to a deeper, perhaps physiological origin [36,93]. As a contrast to
the symbolic hypothesis, we coin this new perspective as the physical hypothesis. The extent by which
the physical hypothesis holds has been previously certified in prelinguistic levels [86] and to some
extent in phonology [94,95] and ecological psychology [96]. In the framework of linguistic laws, we
argue that these must be studied primarily by analysing the acoustic magnitudes of speech, since their
recovery in written texts is due to the extent to which they collapse and are a reflection of orality. In
Chomskyan terms, our results suggest that linguistic laws come from non-symbolic principles of
language performance, rather than symbolic principles of language representation. Also, we believe
the physical hypothesis allows a more objective analysis within theoretical linguistics—including the
classical debate on linguistic universals—and avoids many espistemological problems [97]. For
instance, this paradigm does not negate the symbolism of language, much on the contrary it
ultimately aims at explaining its origin without any needs to postulate it a priori.

Further work should be carried out to confirm our findings, including similar analysis for additional
physical variables such as energy dissipation, and comparative studies (i) in other languages and (ii) in
oral communication for other species [86].

Data accessibility. Buckeye corpus is a freely accessible corpus for non-commercial uses. Post-processed data from Buckeye
corpus is now available in Dryad Digital Repository: https://doi.org/10.5061/dryad.4ss043q [98], while scripts are
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