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Successful island colonizations are key events to understand
range dynamic processes, but studying a young population
right after it reaches establishment is a rare opportunity in
natural systems. The genetic structure of a recently established
population may offer unique insights into its colonization history
and demographic processes that are important for a successful
colonization. Here, we studied the population genetics of a
recently established island population of Eurasian blackbirds
(Aves: Turdus merula) located on the island of Heligoland in the
German North Sea. Using microsatellites, we genotyped the
majority of the island population, including the nestlings, over a
4-year period between 2004 and 2007. We also genotyped high
numbers of migrants on stopover and mainland individuals, as
they are potential founders of the island population. We
identified two genetic clusters that comply with the migrating
and mainland birds. While most of the island birds belong to the
mainland cluster, some breeding individuals and a low fraction
of the offspring belong to the genetic cluster found in migrating
individuals with almost no admixture between the two, pointing
to assortative mating acting on the island population. We did not
find any evidence for founder events and detected deviations
from the Hardy–Weinberg equilibrium that disappeared in
cohorts of older age that coincide with a lower number of
siblings in older cohorts. The observed genetic patterns unravel a
complex colonization history to which migratory and mainland
birds have contributed and which is characterized by assortative
mating. Further research will be directed towards habitat
selection and phenotypic differences as potential drivers of
assortative mating in this island population.
1. Introduction
Studying the successful colonization of remote habitats, such as
islands, harbours strong potential for understanding range
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dynamic processes [1], yet its genetic underpinnings are difficult to assess as examples situated at the right

stage along the colonization-establishment trajectory are scarce (see [2–4] for field and experimental
examples). This is why very recent colonization events may pose a high extinction risk as they have not
reached establishment yet. By contrast, genetic colonization patterns from populations established a long
time ago may be intertwined with local adaptation following isolation or environmental changes (e.g.
[5–7], but see: [8]). Therefore, populations that just entered the establishment stage hold the strongest
potential to learn about the genetic underpinnings of colonization [2–4].

By definition, the colonization process starts with the arrival of propagules (immigrating individuals)
at an empty patch and ends when the extinction probability of the newly founded population no longer
depends on the initial properties of the propagules [9]. From then on, a population can be considered as
established. Genetically, this process is driven by the source from which propagules originate and the
frequency of immigration events during the colonization stage. If propagules originate from a single
source, a loss of genetic variation (i.e. a founder effect) is expected as immigrants go through a genetic
bottleneck (e.g. [10,11]), meaning that not all genetic variation of the source population is also
represented in the propagules. Through repeated immigration, this effect can, however, be diminished
so that a newly established population does not differ genetically from the source population [12,13].
Yet, the genetics behind successful establishment can become more complex when colonization
originates from more than one source, or when genetically divergent sources interbreed. In such cases,
a young population could accumulate genetic variation and make it more resilient during the
colonization process through admixture of beneficial genotypes (e.g. [14]). Alternatively, different
genotypes might prevail without admixture during the colonization process through assortative
mating which could form a starting point for sympatric speciation [15,16].

Here, we investigate the island colonization in Eurasian blackbirds (Turdus merula) on Heligoland
Island (North Sea, Germany) that have just entered the establishment stage. Since the initial
colonization in the 1980s, the population has increased in size, now comprising up to 100 breeding
pairs distributed across the main island (and a maximum of 1–2 breeding pairs on the neighbouring
Düne island located less than 600 m west of the main island), with breeding densities as high as in
mainland populations [17,18]. Eurasian blackbirds are full migrants in Northern Europe while
showing sedentary or partial migratory behaviour in Central Europe (summarized in [19], see also
[20,21])—and each year thousands of individuals use the island for stopover [18]. Therefore, the island
offers an interesting setting as colonizing birds could originate either from the nearby mainland or
from migrating birds on stopover. Hence, our study aims to disentangle the roles of spatially (nearest
mainland residents) or temporally (migrants on stopover) close individuals in the colonization success
of an isolated patch of suitable habitat (i.e. the island of Heligoland).

Heligoland is located in the North Sea approximately 55 km off the German coast, making it the most
isolated population of Eurasian blackbirds in Central Europe. Given the location of the island and
the migration ecology of the species, we consider three colonization scenarios possible: first, the
population was founded by migrating blackbirds breeding in Northern Europe which cross the North
Sea during the migration and frequently stopover on the island. Second, the island was initially
colonized by dispersing birds from the nearby Central European mainland populations without
recruitment from stopover migrants. Finally, a combination of both scenarios could also be possible
with birds from either source immigrating into the growing island population and contributing to the
colonization process. To assess each of the possible colonization histories, we genotyped almost
the entire island population (using microsatellites) over a 4-year period (including most of the
offspring), birds that rest on Heligoland during spring migration (i.e. birds breeding in Northern
Europe), and birds from close and distant mainland populations (i.e. birds breeding in Central Europe).
2. Methods
2.1. Study system
During 2004 and 2007, we colour-banded the majority of blackbirds from the island population and
their offspring of which we genotyped 630 individuals (186 presumably resident adults and 444
nestlings hatched over the study period). Genotyping was conducted using seven polymorphic
microsatellites (see electronic supplementary material, S1 for details on DNA extraction and
genotyping). We separated birds from the presumed residents that were observed at least 20 times
during weekly colour-ring counts across the study period (n = 51 birds, hereafter referred to as
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Figure 1. Geographical context of the study with locations of sample sites at Heligoland (Island) as well as Northern and Southern
mainland locations in Germany. The two possible colonization paths of Eurasian blackbirds at Heligoland are illustrated with coloured
arrows with colonization either from the nearby mainland (blue) or by migrating individuals breeding in Scandinavia (red). The inlet
shows Heligoland with the shaded area representing the approximate breeding density of Eurasian blackbirds.
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‘residents island greater than 20’), while we aggregated the remaining 135 birds in a separate group
(hereafter referred to as ‘residents island less than 20’). We did this separation to (i) ensure a
maximum of security in defining resident birds and (ii) to reduce negative effects of including
sibling individuals in the following analyses. In addition, we genotyped 163 migrating individuals
that used the island for stopover together with 29 individuals sampled from mainland Germany (n =
15 from Northern Germany; n = 14 from Southern Germany, figure 1). While previous studies showed
a weak genetic differentiation across large parts of Eastern, Central and Western Europe [19], potential
genetic differences to Northern European blackbirds remain unknown. Based on Evans et al. [19], we
expected a weak genetic differentiation between the mainland locations sampled in Northern and
Southern Germany, respectively.

2.2. Data analysis
To convert the genotype data into the programme-specific data formats, we used TRANSFORMER T4 [22].
For each population, we then calculated the number of (effective) alleles (Na and Ne), observed and
expected heterozygosities (HO and HE) and inbreeding coefficients (FIS) using GENALEX v. 6.502 [23,24].
We further calculated tests for deviations of group-specific Hardy–Weinberg equilibrium (HWE) and
pairwise population differentiation (FST and Dest) in POPGENREPORT [25]. Finally, we calculated locus-
specific estimates for HO, HE as well as genetic differentiation (D) in POPGENREPORT and supplemented
these with estimates on FST, FIS using GENALEX.

2.3. Population assignment
To analyse the population structure and assignment,we first calculated an assignment test as implemented in
GENALEX. In addition, we used STRUCTURE 2.3.3 [26,27] to infer population genetic structure of migrant,
mainland and island birds without a priori group allocation. We estimated the most likely number
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of genetic clusters (K) on 10 independent chains for each K ranging from 1 to 10. Each chain had a length of

1 000 000 iterations where the first half was discarded as burn-in (i.e. 500 000 iterations). We assumed
correlated allele frequencies and admixture, keeping the initial value of α—the Dirichlet parameter for
degree of admixture—at its default value of 1.0. To infer K following the STRUCTURE runs, we used the
Evanno method [28] as implemented in the online program STRUCTURE HARVESTER [29]. Initially, we ran
STRUCTURE with a subset of genotyped individuals forming migrants and mainland populations as well as
island birds with long record histories (i.e. ‘Resident > 20’ birds). This was done to avoid potential biased
estimates due to deviations from HWE that were known from the full dataset (see below). We then
compared these results with STRUCTURE runs using the full dataset. As the individual assignment did not
change between the reduced and the full dataset for the given individuals (data not shown), we focus our
results and discussion on the full dataset.
l/rsos
R.Soc.open

sci.6:190050
3. Results
Genetic diversity varied among groups with highest (effective) number of alleles in migrant birds and
lowest in the southern mainland population (table 1). Overall, observed and expected heterozygosities
were similar (0.708 and 0.704, respectively), although we found significant heterozygosity deficiencies
for nestlings and the Southern mainland population (table 1). Deviations from HWE were found
across nearly all loci for island nestlings and to a slightly lesser extent also in island birds that were
observed less than 20 times (table 2). Migrant birds only showed HWE deviations in one locus (Oe7),
while frequently observed island residents as well as the mainland populations have not shown any
significant deviations from HWE (table 2). Finally, FIS values were always close to zero with one
exception at the southern mainland location (FIS =−0.176, table 1). Genetic differentiation among
groups was consistent for FST and Dest metrics, with island groups showing lower differentiation to
mainland locations than with migrants (table 3).

The population assignment test in GENALEX revealed an overall assignment to the correct population
in just 42% of cases. Yet, most assignments from island groups were within the island cohort (ranging
from 55.6% in residents less than 20 observations to 67.5% in nestlings), while the migration
population was mostly assigned to itself (78.5% of cases, table 4). This overall picture became more
resolved after the STRUCTURE analyses. By applying the delta K method as introduced by Evanno et al.
[28], K = 2 had the lowest posterior log likelihood value paired with a high delta K (electronic
supplementary material, table S2). One cluster was dominated by migrant individuals, while the other
cluster spreads over most (but not all) samples from the island and the close and distant mainland
(figure 2). Remarkably, there was almost no admixture between the two genetic clusters at the
individual level (i.e. individuals with intermediate group assignment, figure 2). In particular, the
clearly assigned island offspring to either one of the two groups was unexpected under presumed
random mating. Based on this finding, we ran simulations of admixture under three possible
scenarios (i.e. colonization from either (i) the mainland (ii) by migrants or (iii) both sources with
random mating) and calculated the unpaired mean difference from observed assignment of nestlings
to assess significance (details on this approach can be found in the electronic supplementary material,
S2). In brief, neither scenario resulted in clearly distinct genotypes to one of the two clusters as shown
in island nestlings (electronic supplementary material, figure S1).
4. Discussion
Successful island colonizations offer unique insights into range dynamic processes, yet studying
populations just after successful establishment are rare events in natural systems. Here, we studied the
relative roles of two potential sources of propagules and found strong evidence of assortative mating
that frames establishment in a young island population of Eurasian blackbirds.

While the colonization process begins with a single immigration event [9], the amount of consecutive
immigration during establishment determines whether founder effects cause genetic drift in the
new population or not [10–12,14]. We did not find any signs of a founder effect as observed
heterozygosities were not different in island and mainland populations, while the generally higher
heterozygosity found in migrant birds can be explained by the large source area (Northern Europe) to
which these birds belong [18,30]. The absence of a founder effect is likely because of recurrent
immigration during the establishment phase (e.g. [2,14,31]) and which is supported by the constant
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Table 2. Deviation from HWE for each group of birds and microsatellite locus. Significant (i.e. p < 0.05) deviations are shown in
italic numbers.

genotyped blackbirds Oe1 Oe7 tur03 Cu32 LTMR6 tur02 tur01

residents island (>20 obs) 0.525 0.141 0.282 0.050 0.218 0.500 0.538

residents island (<20 obs) 0.001 0.420 0.137 0.001 0.017 0.009 0.353

nestlings island 0.000 0.330 0.003 0.000 0.000 0.000 0.007

migrants 0.899 0.006 0.969 0.932 0.142 0.721 0.142

mainland north 0.539 0.320 0.482 0.269 0.126 0.235 0.330

mainland south 0.980 0.736 0.567 0.945 0.294 0.094 1.000
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population growth that started with only a single breeding pair [18,32]. For the same reason, we can
exclude the alternative explanation that the initial colonization occurred with a large number of
putative propagules (e.g. [5]).

Once a population reaches its carrying capacity, later attempts of immigration could then be blocked
either stochastically by density-dependent priority effects (density blocking hypothesis, [33]) or
functionally, when immigrants are less adapted than their local counterparts (immigrant inviability
hypothesis, [34]). Yet, both hypotheses do not take microgeographic variation of the colonizing
environment into account, which could support different locally adapted genotypes even at small
spatial scales. Examples of island endemic birds illustrate that either local adaptation [35] or
secondary contact [36] can drive intraspecific divergence—even at such microgeographic scales. Our
results strongly point towards intraspecific divergence, driven by assortative mating as most offspring
were homozygotic to one of the two clusters and which contradicted our expectations under random
mating as tested through our simulations (electronic supplementary material, S2). This result is quite
surprising as we expected a very low genotypic [19] and phenotypic [20] variability of blackbirds in
our study region. On the other hand, Eurasian blackbirds are an iconic example of avian urbanization
that accompanied notable changes in behaviour, breeding phenology and migration (e.g. [19,37,38]).
Heligoland is strongly urbanized and the urban area harbours most of the blackbird population [17],
yet some breeding pairs were located in rather secondary coastal shrub habitat with low
anthropogenic pressure. Hence, while the exact reasons driving assortative mating in blackbirds have
not been identified yet, divergent microgeographic habitat preferences could force intraspecific
divergence in Heligolandian blackbirds. To this end, our next steps would be to quantify local habitat
conditions at the breeding sites into individuals belonging to either genotype (i.e. intraspecific niche
differentiation [39]) and possible phenotypic and phenological differences (sexual imprinting theory
[40]) in this island population.

In conclusion, the observed patterns found in the breeding population of Eurasian blackbirds on
Heligoland indicate a complex colonization history during which effects of genetic drift were
suppressed, likely due to consecutive immigration in the early stages of establishment. At which point
the second cluster arrived on the island but how persistent this small fraction of birds belonging to
this genotype will be on the island is, however, difficult to ascertain. Yet the clear distinction of both
clusters found in (putatively) resident birds and their offspring through assortative mating offers
interesting insights into the role of different source populations in the subsequent evolution of young
but isolated populations. While the genetic structure found in the island population point to
predominant reproductive barriers, occasional interbreeding cannot be ruled out when population
dynamics or environmental conditions change. Under such conditions, one genotype might act as a
nearby evolutionary backup for the other through admixture. Hence, multiple locally adapted
propagules of the same species that successfully colonized an island could make an isolated
population as a whole more resilient to changing conditions, while these propagules otherwise remain
isolated when conditions are stable. To this end, the detected differentiation found in Heligolandian
blackbirds might vanish at later stages in the population history, when reproductive isolation
disappears in the wake of environmental or habitat changes (as shown for many sympatric species;
see [41] and references therein). Such an altering event might not be detectable any more afterwards,
or may be hard to explain retrospectively after populations have merged. Future research needs to
focus on the reasons for assortative mating in Heligolandian blackbirds and whether it correlates with
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differences in habitat selection or phenotypes (e.g. morphology or song, see [42]) to reach more functional
insights of such an ecoevolutionary resilience system in island colonization.
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