Skip to main content
. 2019 Aug 7;6(8):190097. doi: 10.1098/rsos.190097

Table 3.

GLMM testing successful learning within conditions over time including time, its linear, quadratic and cubic term. res = lmer(PTL_corr.mean (poly1 + poly2 + poly3) + object + label + z.TestAge + (1 + (poly1 + poly2 + poly3) | id), data = dadult_Inconsistent, REML = F, control = contr.

group factor estimates s.e. lower CI upper CI LRT p
18 Consistent intercept 0.16 0.27 −0.41 0.70 a a
poly1 0.13 0.15 −0.16 0.41 0.71 0.40
poly2 0.15 0.09 −0.01 0.34 2.75 0.10
poly3 0.06 0.07 −0.09 0.20 0.61 0.44
object 0.04 0.01 0.02 0.06 12.94 <0.001
label 0.04 0.01 0.02 0.06 14.40 <0.001
z.TestAge 0.68 0.83 −1.03 2.33 0.53 0.47
18 Inconsistent intercept −0.09 0.13 −0.36 0.22 a a
poly1 0.06 0.15 −0.24 0.37 0.16 0.68
poly2 0.03 0.08 −0.14 0.20 0.10 0.75
poly3 0.06 0.07 −0.07 0.19 0.68 0.41
object 0.04 0.01 0.02 0.06 17.19 <0.001
label −0.04 0.01 −0.06 −0.02 17.68 <0.001
z.TestAge −0.27 0.41 −1.12 0.66 0.42 0.52
30 Consistent intercept 0.17 0.16 −0.16 0.50 a a
poly1 −0.00 0.13 −0.23 0.26 0.00 0.99
poly2 −0.23 0.08 −0.38 −0.07 6.80 0.01
poly3 −0.04 0.06 −0.16 0.09 0.33 0.56
object −0.02 0.01 −0.03 −0.00 4.12 0.04
label −0.04 0.01 −0.05 −0.02 21.04 <0.001
z.TestAge −0.17 0.37 -0.94 0.62 0.21 0.65
30 Inconsistent intercept −0.11 0.13 −0.35 0.14 a a
poly1 0.07 0.14 −0.21 0.32 0.23 0.63
poly2 0.04 0.08 −0.13 0.20 0.21 0.65
poly3 0.05 0.05 −0.05 0.16 0.90 0.34
object 0.00 0.01 −0.02 0.02 0.01 0.92
label 0.02 0.01 −0.00 0.04 3.34 0.07
z.TestAge 0.29 0.29 −0.32 0.86 0.94 0.33
3–4 Consistent intercept 0.31 0.20 −0.13 0.71 a a
poly1 0.36 0.14 0.08 0.61 5.92 0.01
poly2 0.09 0.09 −0.08 0.27 0.98 0.32
poly3 −0.13 0.07 −0.26 0.00 3.48 0.06
object 0.02 0.01 0.00 0.04 5.07 0.02
label 0.06 0.01 0.04 0.08 37.67 <0.001
z.TestAge −0.22 0.15 −0.52 0.11 1.67 0.20
3–4 Inconsistent intercept −0.07 0.17 −0.44 0.27 a a
poly1 −0.14 0.16 −0.45 0.17 0.83 0.36
poly2 −0.13 0.10 −0.33 0.06 1.69 0.19
poly3 0.05 0.06 −0.07 0.15 0.64 0.42
object 0.07 0.01 0.05 0.09 43.65 <0.001
label 0.03 0.01 0.01 0.05 10.48 <0.001
z.TestAge 0.04 0.13 −0.22 0.32 0.08 0.77
adults Consistent intercept 2.49 2.62 −2.91 8.07 a a
poly1 0.16 0.13 −0.09 0.42 1.50 0.22
poly2 −0.17 0.07 −0.32 −0.03 5.59 0.02
poly3 0.06 0.06 −0.05 0.17 1.28 0.26
object 0.04 0.01 0.03 0.06 38.64 0.001
label −0.00 0.01 −0.02 0.01 0.14 0.70
z.TestAge 1.64 1.86 −2.20 5.56 0.71 0.40
adults Inconsistent intercept −6.49 3.55 −14.20 1.22 a a
poly1 0.44 0.11 0.22 0.64 13.80 <0.001
poly2 −0.26 0.08 −0.40 −0.11 9.79 <0.001
poly3 0.05 0.05 −0.04 0.15 1.17 0.28
object 0.02 0.01 0.01 0.04 9.29 <0.001
label −0.01 0.01 −0.02 0.00 1.99 0.16
z.TestAge −4.73 2.51 −10.13 0.71 2.76 0.10

aNote that coefficients of interactions can only be interpreted in relation to the respective baseline levels of the interacting variables. Furthermore, the significance level of intercepts can only be interpreted in a meaningful way when effects on the intercept are tested. Thus, these values are not displayed here because of limited informativity.