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An important feature of human cognition is the ability to
flexibly and efficiently adapt behavior in response to continu-
ously changing contextual demands. We leverage a large-scale
dataset from Lumosity, an online cognitive-training platform, to
investigate how cognitive processes involved in cued switch-
ing between tasks are affected by level of task practice across
the adult lifespan. We develop a computational account of task
switching that specifies the temporal dynamics of activating
task-relevant representations and inhibiting task-irrelevant rep-
resentations and how they vary with extended task practice
across a number of age groups. Practice modulates the level
of activation of the task-relevant representation and improves
the rate at which this information becomes available, but has
little effect on the task-irrelevant representation. While long-
term practice improves performance across all age groups, it
has a greater effect on older adults. Indeed, extensive task
practice can make older individuals functionally similar to less-
practiced younger individuals, especially for cognitive measures
that focus on the rate at which task-relevant information becomes
available.

task switching | cognitive control | practice effects | Bayesian modeling |
aging effects

As we are increasingly engaging with multiple devices con-
currently, and continuously shifting between different input

sources and output platforms, it is becoming more important
to understand the cognitive costs of switching from executing
one task to another. How long does it take to switch between
tasks? Can practice overcome the challenges of task switching?
If so, how much practice is needed, and does this vary across the
lifespan? A large body of research has sought to identify the cog-
nitive processes underlying task switching by using a number of
theoretical perspectives (1, 2), behavioral paradigms (3), and lev-
els of measurement and analysis (4). Computational models of
task switching are based on a variety of modeling approaches,
including cognitive architectures (5), neural networks (6), and
evidence-accumulation models (7, 8).

We propose a probabilistic computational model of task-
switching using cognitive-training data (9) from Lumosity, an
online training platform. Such online gaming platforms have
supported the investigation of skill learning and cognition at
unprecedented scales (10–12), as part of a trend to use nat-
urally occurring large-scale datasets to develop and test the-
ories of cognition (13, 14). Such data provide the significant
advantage of selecting different samples of users according to
demographic characteristics, levels of engagement, and training
histories.

Here, we investigate task switching in 3 distinct samples of
users who trained on Lumosity’s task-switching paradigm: a large
adult-lifespan sample who trained for up to 60 sessions each; a
sample of the most active users who trained for thousands of
sessions; and a sample of older adults with at least 1,000 ses-
sions. While previous studies have examined aging effects on
task-switching performance (15–17) as well as practice effects
(15, 17–21), the interaction between age and extensive practice

remains poorly understood. The large user sample and range
of practice in the Lumosity data enables detailed characteriza-
tion of changes in task-switching behavior with aging, practice,
and their interaction. The sample of extremely practiced users
allows direct investigation of a key question in aging research:
Can extensive practice make an older person functionally similar
to a younger person?

Our computational model decomposes task switching into
a number of underlying cognitive processes and details how
these processes change over trials within an experimental ses-
sion, as well as with practice across multiple sessions. The
model is consistent with recent theoretical perspectives of cog-
nitive control (22) that distinguish between controlled acts
(e.g., responding to a particular stimulus) and acts of control
(e.g., instantiating a particular task). The model instantiates
the response process using evidence accumulation, similar to
previous models of task switching (7, 15). However, it also
introduces additional task-switching control processes that have
their own temporal dynamics, operating between decisions (in
the order of seconds) and across practice (in the order of
minutes, hours, or days). Separating the task-switching dynam-
ics of the control process from the temporal dynamics of the
response mechanism makes it possible to compare cognitive
performance across age groups on a number of latent cogni-
tive characteristics, including the ability to perform the basic
tasks, the rate of switching between tasks, and the degree to
which the relevant task can be activated and the irrelevant task
suppressed.

Significance

In modern life, we engage with many sources of informa-
tion concurrently. To do this, we must continuously switch
between different tasks, but this comes at a cost to perfor-
mance, especially in older adults. Using a large dataset from
an online cognitive-training platform, we develop a compu-
tational model of task switching that defines distinct latent
measures of activating the relevant task, deactivating the
irrelevant task, and making a decision. This model shows that,
although task practice can improve task-switching perfor-
mance, persistent costs remain even after extensive practice,
and more so in older adults. We show that, with extensive
task practice, older people can become functionally similar to
less-practiced younger people.
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Fig. 1. Illustration of a task-switching sequence of 5 trials (top row). Each
display shows a set of leaves with 2 main perceptual features: the point-
ing direction (as shown in the displays) and the movement direction (large
arrow in second row). The task cue (pointing or moving; third row) is indi-
cated by the color of the leaves as well as a label at the bottom of the
display. Users have to respond with the direction of the cued dimension.
The correct response (left, right, up, or down) is indicated by the highlighted
key (bottom row). Trials 1 and 4 are congruent trials: The leaves point and
move in the same direction. Trials 2, 3, and 5 are incongruent trials: The
leaves point and move in different directions. In this sequence, trials 3 and
5 require a task switch.

A Computational Model
Before describing the task-switching model, we note a few con-
straints imposed by the particular experimental paradigm. In this
task (Fig. 1), stimuli are represented along 2 visual dimensions
(pointing and moving), and each visual dimension has 4 feature
values (up, down, left, and right). A task cue (i.e., the words point-
ing or moving that are also mapped to leaf color: green or orange)
indicates which stimulus dimension should be used to determine
the response. For example, if the leaves are pointing up and mov-
ing down, the correct response would be up if the task cue is
pointing, and down if the task cue is moving. The experimen-
tal paradigm intermittently alternates between the 2 task cues
(pointing and moving), and each task run includes a variable
number of trials.

This task is akin to the standard explicit cuing task—i.e., an
explicit task cue is presented on each trial—with no prepa-
ration interval—i.e., there is no delay between the onset of
the cue and the perceptual display. Therefore, the model is
designed to account for the dynamics of task activation in the
absence of any opportunity for advance preparation prior to tar-
get onset. Further, unlike most task-switching paradigms, the
paradigm involves 4 (not 2) response alternatives per task, so we

have extended the response model to account for more than 2
responses.

The model is illustrated in Fig. 2B. The perceptual information
along the pointing and moving directions is encoded separately.
Changes in task cue lead to temporal changes in task activa-
tion for the cued task (currently relevant) and the uncued task
(previously relevant, now irrelevant). The activation of the cued
task and deactivation of the uncued task takes time. The tem-
poral dynamics of task activation are illustrated in Fig. 2A. The
perceptual information for each dimension is weighted by the
task activation for the corresponding dimension (Fig. 2B). The
information is then combined across dimensions to produce the
evidence (drift rates) for each individual response. Evidence
accumulators—one for each response—race to determine the
response choice and the response time. We apply Bayesian infer-
ence to estimate model parameters for each individual user (SI
Appendix, SI Text).

We describe the model in 4 sections: 1) the dynamics of task
activation within and between runs; 2) how practice alters the
task-activation dynamics; 3) a simple model for encoding percep-
tual information, relating this to congruency effects; and 4) the
response process which uses an evidence-accumulation model to
account for response time and accuracy.

Task Activation Dynamics. Preparation for a new task takes time
and involves a number of acts of cognitive control involving
memory (loading the new task into memory) and attention
(diverting attention to perceptual dimensions relevant to the new
task), as well as setting up the rules to map stimuli to responses
(1, 22). The model summarizes these changes in a single latent
construct, task activation. Consistent with the notion of task-set
reconfiguration (1), it takes time for the activation of the rel-
evant task to increase. Similarly, consistent with the notion of
task-set inertia (2), it takes time to decrease the activation of the
irrelevant task.

We use wcued,i and wuncued,i to represent the activations of the
cued and uncued tasks at trial i . Changes in task activation across
trials are described by the difference equation:

wd,i =wd,i−1 + (asymptote−wd,i−1) · rate. [1]

The asymptote takes different values for the cued and uncued
task (asymptote = v and asymptote = u , respectively).
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Fig. 2. (A) Illustration of the changes in task activation for the cued task (solid lines) and the uncued task (dashed lines) over trials when alternating
between 2 tasks. Markers show the task activations at particular trials, and lines show the activation between trials, to illustrate the underlying dynamics.
The model predictions are based on the following parameter settings: g = 0.9, h = 1.6, u = 0.2, and v = 1. The speed of task switching is assessed as the slope
∆w of the task-activation function at the first switch trial, separately for cued and uncued tasks. (B) Illustration of processing in an incongruent trial with
leaves pointing up and moving down. The cued dimension in this example trial is pointing, and the correct response corresponds to the up direction. The
activation of perceptual features (a) is weighted by task activation (w), and the resulting weighted activations (b) are summed across dimensions to produce
the drift rates for the 4 response alternatives (c). The evidence accumulator for the U (up) response reaches the decision threshold first and determines the
response choice and response time. D, down; L, left; M, moving; P, pointing; R, right; U, up.
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Generally, Eq. 1 predicts that task activation starts at a base-
line value, increases to an asymptote, and decreases again to
a baseline value. The timing of these changes coincides with
changes in the task cue, as illustrated in Fig. 2A. For exam-
ple, having switched from a run of trials on task B back to task
A, activation of the cued task (A) starts near baseline u and
increases toward asymptote v . At the same time, activation for
the uncued task (B, that is now irrelevant) starts near baseline
v and decreases to value u . Therefore, u represents the resid-
ual task activation that persists, even after several trials have
occurred after a task switch.

In addition, we also allow for different values of the rate
parameter for the cued and uncued task (rate = h and rate = g ,
respectively). The separation of rate parameters for cued and
uncued tasks allows the model to capture asymmetries in the
underlying dynamics of cognitive control. For example, there
might be differences in the time to load vs. unload tasks from
memory, or differences in the time to engage attention to a
new dimension and disengage from the old dimension. In the
illustration, given the particular parameters, the task dynamics
show an asymmetry in the rates with a relatively fast change
for the uncued task and a somewhat slower change for the
cued task.

Based on these rate parameters, we derive a measure of
task-switching speed by the slope of the task-activation func-
tion assessed at the first trial after a switch, for both the cued
and uncued tasks (∆wc , ∆wu in Fig. 2A; SI Appendix, SI Text).
This measure allows comparisons of task-switching speed across
individuals with different baseline and asymptotes.

Effect of Practice. Practice may affect a number of process-
ing stages (e.g., perceptual or response). We assume that the
main effect of practice is to change task-activation levels—i.e.,
increase activation for the cued task, decrease activation for the
uncued task, or both. We will assume that both baseline and
asymptotic task activation change as a function of the num-
ber of practiced sessions (j ) according to exponential growth
functions:

vj = τv + (γv − τv )(1− e−δv (j−1))

uj = τu + (γu − τu)(1− e−δu (j−1)).
[2]

In this notation, τ , γ, and δ are intercept, asymptote, and rate
parameters, respectively, and the subscript denotes the specific
variable associated with these parameters. For example, the
asymptotic activation for the cued task (v) starts at τv and after
extended practice reaches asymptote γv .

Another dimension of practice involves the rate at which
asymptotic task-activation levels are achieved. Practice could
speed up the activation of the cued task and/or the deactiva-
tion of the uncued task, allowing better separation between tasks
after fewer trials in a run. In the model, practice can affect the
rate of change in activation levels in a similar way as for the
asymptotic levels above, but in logarithmic units:

log gj = τg + (γg − τg)(1− e−δg (j−1))

log hj = τh + (γh − τh)(1− e−δh (j−1)).
[3]

Perceptual Model. Let xl represent the feature value shown along
dimension l—e.g., x ∈{up, down, left , right}. Let ak ,l represent
the perceptual evidence for feature k along visual dimension l—
that is, the internal perception of the features. To simplify the
perceptual model, we assume that the perceptual evidence can
take only 2 distinct values: φc for features which correctly match
the physical stimulus (i.e., xl = k) and φo for incorrectly matching
features (xl 6= k).

The parameters φc and φo determine the perceptual evi-
dence for correct and incorrect feature values, regardless of
whether dimension l is cued or uncued. The task cue that
is presented on each trial determines which visual dimension
should be used to determine the response. Ideally, only the
cued dimension should be used to determine the response, but
we will assume that the evidence from the uncued (but pre-
viously cued) task dimension will partially contribute, depend-
ing on its task activation. Task activation combines with the
perceptual evidence in a multiplicative fashion—perceptual evi-
dence can contribute to a response only when there is some
task activation for the corresponding dimension. The multi-
plicative combination of perceptual evidence and task activa-
tion is conceptually similar to compound-cuing models (23) as
well as gating mechanisms in connectionist models of cognitive
control (24).

The perceptual evidence for feature k of dimension l is given
by bk ,l = ak ,l ×wc for the cued task and by bk ,l = ak ,l ×wu for
the uncued task. The task activations wc and wu determine how
much the perceptual evidence from the cued and uncued dimen-
sions will be differentiated, respectively. If wu > 0, there is some
“leakage” of perceptual evidence from the wrong dimension
that will contribute to the response. To complete the percep-
tual model, we assume that the perceptual evidence is added
across dimensions for each response direction. Let ck repre-
sent the perceptual evidence for response k . In the model, c
is simply the sum of the perceptual evidence weighted by task
activation: ck = bk ,1 + bk ,2. Because the activations are summed
across dimensions, the activation is higher in a congruent trial
relative to an incongruent trial, as there is additional percep-
tual evidence from the uncued dimension. Response congruency
effects therefore depend on the task activation for the uncued
dimension.

Decision Process. Choices and response times during perceptual
decision making have been modeled by stochastic accumulator
models of many types (25–27). Previous task-switching modeling
studies have primarily used the diffusion decision model (7, 8,
16) that is restricted to modeling 2-choice tasks. As our paradigm
involves 4 response choices, we used simple race models which
effectively model perceptual decisions of multiple responses
(e.g., ref. 28).

In the race model, we associated a separate evidence accu-
mulator with each of the 4 responses. The evidence for each
accumulator started at zero and accumulated for each alterna-
tive until one of the accumulators reached a response threshold
(Fig. 2B). The winning accumulator determined the response
choice, as well as the response time. Evidence accumulation
followed a diffusion process—a continuous random walk. Each
accumulator had an average “drift rate” at which evidence
increased, and this was set by the perceptual evidence for that
response (ck ). The distribution of times to reach threshold was
inverse Gaussian (or “Wald”) distribution (25). This distribution
was parameterized by the drift rate (ck ), the response thresh-
old (α), and the variance of the Wiener process (σ). We made
standard assumptions about contaminant data and the time
taken for motor and perceptual processes (see SI Appendix for
details).

Results
Response Time and Accuracy. Fig. 3 shows the observed and
model-predicted response times and accuracy as a function of
the number of trials after a task switch, practice, and congruency
for 3 of the 6 age groups. In each plot, trial 1 is a switch trial
(e.g., the cued task changed from B to A), whereas trials 2–5 are
task-repeat trials (e.g., task A was repeated). SI Appendix, Figs.
S1 and S2 show the results separately for all age groups, as well
as results of a posterror slowing analysis. Responses were slowest
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Fig. 3. Average response time and accuracy for observed data (Upper) and model predictions (Lower) for the first 5 trials following a task switch, bro-
ken down by age group (columns), levels of practice (colors), and congruency (solid line, congruent; dashed line, incongruent). Shaded areas for model
predictions represent 75% credible intervals. Runs extending beyond 5 trials were included in the modeling, but are not shown here.

immediately after a task switch and sped up over several repeat
trials.∗ Practice sped up overall response times and reduced
response speedup after the second trial in a run. However, even
extended practice did not eliminate response slowing for the
switch trial (see also ref. 19). A similar pattern held for accu-
racy: It was lowest for the switch trial and gradually increased
as the run progressed and with practice, especially for incongru-
ent trials (congruent trials had accuracy near ceiling). All age
groups showed qualitatively similar effects for response time and
accuracy. The older age groups had generally slower response
times and lower accuracy, but also showed more pronounced
improvements with practice.

With a relatively small set of parameters, the model cap-
tured all of the qualitative trends in response time and accuracy
data, and many of the quantitative trends, albeit with some
deviations—e.g., for low practice, the model underpredicted
accuracy for incongruent trials.

Latent Cognitive Processing in Well-Practiced Task Switching. To
better understand how the model captures empirical trends,
we examined the inferred model parameters. Fig. 4 shows the
task activations wc and wu as a function of number of tri-
als after a task switch, by age and practice. Practice increased
the asymptotic task activation for the cued, but did not affect
the uncued task dimension. Fig. 5 shows that, for the highly
practiced sample, the asymptotic task activation (u, v) for the
cued task dimension increased with long-term practice (see SI
Appendix, Figs. S3–S5 for additional results), but there was no
corresponding decrease for the uncued task dimension, even
after 10,000 sessions. This implies that irrelevant information
continued to interfere even after extensive practice. The slopes
(∆wc , ∆wc) of the task-activation function show that practice
increased the rate of change in task activations approximately

*In contrast, Altmann and Gray (5) found response time slowing across trials in the same
run, when the task cue was only presented on the first (switch) trial of the run and
needed to be maintained in memory.

symmetrically for the cued and uncued dimensions: Less time
was needed to disengage from the perceptual dimension that
is no longer relevant and to engage the relevant perceptual
dimension.

The estimated model parameters indicate that a number
of cognitive processes change with age. One effect is a gen-
eral decrease in speed of information processing, as cap-
tured by task-activation levels that directly affected the drift
rates of the decision process. This is consistent with aging
theories proposing general slowing of cognitive operations
(29), as well as theories invoking cognitive control deficits
impacting the ability to update task relevant context (30).
Older age groups also make more cautious decisions, as
reflected by higher decision thresholds, slower nondecision
times, and larger variability in the evidence-accumulation pro-
cess (SI Appendix, Fig. S6), consistent with previous findings
(16, 31, 32).
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activation function during the first trial (Right).

The Effect of Practice on Performance Differences across Age Groups.
Fig. 3 shows that the older groups at higher practice levels
performed functionally similarly to younger groups at lower
practice levels, suggesting that some age differences can be
overcome by training. However, age effects on response time
and accuracy can be contaminated by speed/accuracy trade-
offs or nondecision time components, such as motor-response
times that are unrelated to task switching. To better understand
age differences in performance, we assessed the speed of task
switching through the slope of the activation function for cued
tasks (∆(wc)).

Fig. 6 shows the analysis of relative performance of younger
users who trained up to 60 sessions against older (71–80 y
old) users who trained up to 1) 60 sessions (Upper) and 2)
1,000 sessions (Lower). The plots show the probability that a
randomly sampled older individual outperforms a randomly sam-
pled younger individual. The key finding is indicated by the
plot regions that are not blue: In many cases, older individuals
outperformed younger individuals who had received the same
(Fig. 6, Upper) or less (Fig. 6, Lower) training. The amount
of training required for this to occur increased with the differ-
ence between the age groups being compared. In addition to
comparing pairs of individuals, we also compared older indi-
viduals against the median performance of the youngest age
group. This led to results similar to those shown in Fig. 6. For
example, all 36 71- to 80-y-old individuals with 1,000 practice
sessions performed better than the median performance of 21-
to 30-y-old individuals after one practice session. This number
decreased to 17 of 36 (roughly equivalent performance) when
the 21- to 30-y-old individuals trained for 15 sessions. Only 11
of 36 71- to 80-y-old individuals at 1,000 practice sessions out-
performed 21- to 30-y-old individuals at 60 practice sessions.
Therefore, the majority of older individuals were able to match
or exceed the performance of younger individuals, but only when
younger individuals were relatively unpracticed. The amount of
additional training that older people need to reach performance
equivalent to younger age groups diminished with smaller age
differences.

Other latent measures that also assess task-switching perfor-
mance, such as the asymptotic task activation (u , that assesses
the degree to which the cued task can be activated) and the drift
rates (c, that assesses information processing speed), produced
similar results (SI Appendix, Figs. S7 and S8).

General Discussion
We present a probabilistic model for task switching that sep-
arates a control process that governs task activation from an

evidence-accumulation process that governs each individual
decision. We propose simple temporal dynamics across trials that
determine the task activation of both cued and uncued tasks. In
a very large adult-lifespan dataset with multiple task sessions,
we showed that practice increased both the maximum amount of
task activation for the cued task and the rate at which that maxi-
mum is reached. However, even after extensive practice, residual
activation of the uncued task remained unaffected by practice or
age. This explains why the model predicts that response congru-
ency effects are not impacted by practice or age, consistent with
previous empirical findings (33), as the benefit for congruent tri-
als is directly related to the additional boost of activation from
the uncued dimension.

This model provides latent parameters that can differentiate
between the relative contribution of level of activation of the rel-
evant vs. the irrelevant task on the cost of switching (34). These
parameters were differently impacted by aging: Older groups
showed a reduced level of cued task activation, even after multi-
ple repeat runs, especially at low practice levels. In the particular
task-switching paradigm studied in this paper, the cue was pre-
sented simultaneously with the target. An important direction for
future research is to extend the task-switching model to account
for cuing effects (35) when the task cue is presented before the
target and the task cue is partially informative of the upcom-
ing task.

Overall, our findings show that task switching in this partic-
ular paradigm can be substantially improved by practice across
all age ranges. Many cognitive-training studies have shown that
task-specific performance in a number of cognitive domains, such
as perceptual speed, working memory (36), and task switch-
ing (15, 17–21), can improve with practice. Here, we show
that extensive, self-motivated task-switching practice can par-
tially mitigate aging effects on task-switching processes. With
extensive task practice, older people can become function-
ally similar to less-practiced younger people, in this specific
task.

Attempts to demonstrate transfer of cognitive training to
structurally dissimilar tasks have been challenging (37, 38), pos-
sibly in part because of our poor understanding of the latent
factors that underlie the learning process (34). By specifying the
underlying cognitive changes that explain how people improve
on task switching, this paper provides a promising direction to
investigate transfer to other executive-control tasks, at a latent
cognitive level.
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Fig. 6. Performance comparison as a function of practice for the older (ver-
tical axes) and the younger (horizontal axes) age groups. Dark orange colors
indicate practice levels where the majority of older individuals are outper-
forming the younger individuals; dark blue colors indicate the opposite.
Dashed lines show the practice levels resulting in equal odds of an older
individual outperforming a younger individual. Upper compares users with
training data up to 60 games. Lower compares the performance of older
users with training data up to 1,000 games (36 per age group) against
younger users with training data up to 60 games. The performance metric
is the speed of task switching (∆(w)).
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Materials and Methods
Lumosity Data. We performed a retrospective analysis of gameplay data for
a sample of users who played “Ebb and Flow,” a task-switching game on the
Lumosity platform that is designed to test the ability to switch between 2
tasks (see SI Appendix, SI Text for details on procedure). The original deiden-
tified dataset provided by Lumosity included the gameplay history and raw
data at the individual trial level for 194,695 users spanning a period from
December 18, 2012 to October 31, 2017. Our user sample spent a mean of
2.5 y on the platform and included 54% females and 42% males (5% did
not specify gender).

The analyses are based on 3 different samples of users. The first sam-
ple included a large set of users, but limited the total amount of practice
considered. We selected 1,000 users who played at least 60 gameplays and
restricted the data to only the first 60 gameplays of each user. This guar-
anteed that the dataset had a full learning history of 60 gameplays to
avoid potential dropout confounds (10). We sampled an equal number of
users across 6 age groups: 21–30, 31–40, 41–50, 51–60, 61–70, and 71–80.

Overall, this data sample of 1,000 users contained 46,470 gameplay events
and 2,881,161 trials.

The second sample included a small set of users with the most extensive
history of practice in our Lumosity data sample. This included 15 users who
practiced between 3,000 and 13,733 games over 1.5–4.5 y. The full practice
history of these users was included (25,522 gameplay events and 1,778,052
trials).

The third sample included a small, randomly selected set of older users
who practiced for at least 1,000 games (n = 36 users per age group: 61–70
and 71–80 y old). We restricted their gameplay history to the first 1,000
games. Overall, this data sample of 72 users contained 52,693 gameplay
events and 3,339,430 trials.
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