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Many ecosystems, from vegetation to biofilms, are composed of
territorial populations that compete for both nutrients and phys-
ical space. What are the implications of such spatial organization
for biodiversity? To address this question, we developed and ana-
lyzed a model of territorial resource competition. In the model,
all species obey trade-offs inspired by biophysical constraints on
metabolism; the species occupy nonoverlapping territories, while
nutrients diffuse in space. We find that the nutrient diffusion
time is an important control parameter for both biodiversity and
the timescale of population dynamics. Interestingly, fast nutri-
ent diffusion allows the populations of some species to fluctuate
to zero, leading to extinctions. Moreover, territorial competition
spontaneously gives rise to both multistability and the Allee
effect (in which a minimum population is required for survival), so
that small perturbations can have major ecological effects. While
the assumption of trade-offs allows for the coexistence of more
species than the number of nutrients—thus violating the prin-
ciple of competitive exclusion—overall biodiversity is curbed by
the domination of “oligotroph” species. Importantly, in contrast
to well-mixed models, spatial structure renders diversity robust to
inequalities in metabolic trade-offs. Our results suggest that terri-
torial ecosystems can display high biodiversity and rich dynamics
simply due to competition for resources in a spatial community.
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L iving things exist not in isolation but in communities, many
of which are strikingly diverse. Tropical rainforests can have

more than 300 tree species in a single hectare (1), and it has
been estimated that 1 g of soil contains 2,000–30,000+ dis-
tinct microbial genomes (2, 3). Understanding the relationship
between biodiversity and the environment remains a major chal-
lenge, particularly in light of the competitive exclusion principle:
In simple models of resource competition, no more species can
coexist indefinitely than the number of limiting resources (4, 5).
In modern niche theory, competitive exclusion is circumvented
by mechanisms which reduce niche overlaps and/or intrinsic fit-
ness differences (6, 7), suggesting that trade-offs may play an
important role in the maintenance of biodiversity. Intriguingly,
diversity beyond the competitive-exclusion limit was recently
demonstrated in a resource-competition model with a well-mixed
environment and exact metabolic trade-offs (8). However, many
ecosystems are spatially structured, and metabolic trade-offs are
unlikely to be exact. While some spatial structure is externally
imposed, it also arises from the capacity of organisms to shape
their environment. How does self-generated spatial structure,
along with realistic metabolic constraints, impact diversity?

Various studies have clarified how intrinsic environmental het-
erogeneity (e.g., an external resource gradient) fosters biodiver-
sity by creating spatial niches (9–13). Others have demonstrated
that migration between low-diversity local environments can lead
to “metacommunities” with high global diversity (14–19). But
how is diversity impacted by local spatial structure? Recent
models suggest that spatial environments without intrinsic het-
erogeneity can support higher diversity than the well-mixed case
(20–25), although the effect depends on the interactions and
details of spatial structure (26, 27). In these models, competi-
tion follows phenomenological interaction rules. In some cases,
trade-offs have been invoked to limit fitness differences (21)

and penalize niche overlap (25), but did not otherwise struc-
ture the spatial interactions. All these models allow coexistence
when the combination of spatial segregation and local interac-
tions weakens interspecific competition relative to intraspecifc
competition. However, it remains unclear how such interactions
relate to concrete biophysical processes.

Here, we study biodiversity in a model where species interact
through spatial resource competition. We specifically consider
surface-associated populations which exclude each other as they
compete for territory. This is an appropriate description for
biofilms, vegetation, and marine ecosystems like mussels (28) or
coral (29), in contrast with models that represent populations as
overlapping densities and better describe motile or planktonic
populations (9, 30). The well-mixed environment is an explicit
limit of our model, so we are able to isolate the unique effects of
spatial structure.

We find that, contrary to expectations, introducing population
territories into a model with metabolic trade-offs reduces bio-
diversity relative to the well-mixed case. Extinctions occur over
a new timescale inversely related to the nutrient mixing time.
Spatial structure also leads to the emergence of multiple steady
states and the Allee effect, so that small perturbations may have
drastic consequences. Finally, we find that overall biodiversity is
curbed by the domination of “oligotroph” species but is robust to
inequalities in metabolic trade-offs.

Results
Model. We developed a model of territorial populations compet-
ing for diffusing resources to clarify the relationship between
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spatial structure, metabolic trade-offs, and biodiversity. The
model is spatially explicit and relates the mechanistic dynam-
ics of competition to parameters with clear biological meaning.
Crucially, competing populations are not interpenetrating, so
populations are competing for both nutrients and territory.

Specifically, we consider m species competing for p nutri-
ents in a 1-dimensional space of size L with periodic boundary
conditions (a ring). The rate of supply of nutrients is speci-
fied by the supply vector ~S =(S1,S2 . . .Sp) such that

∑
i Si =S ,

where S is the total nutrient supply rate in units of concentra-
tion/time. The nutrient supply is spatially uniform, so there is no
external environmental heterogeneity. Each species σ ∈ [1 . . .m]
is defined by its metabolic strategy ~ασ =(ασ1,ασ2 . . . ασp),
which specifies the proportion of its metabolic resources (e.g.,
enzymes) it allocates to the consumption of each nutrient.
Metabolic trade-offs are implemented via a constraint on the
enzyme budget—namely,

∑
i ασi =E for all species (except

where noted). Metabolic strategies and the supply can be rep-
resented as points on a simplex of dimension p− 1 (see Figs. 1A
and 2 A, Inset, for example). Each species occupies a segment
of the ring corresponding to its population nσ , so that nσ is a
length and σ=1 . . .m specifies a spatial ordering. For exam-
ple, the population with strategy ~α2 occupies the segment of
the ring between populations with strategies ~α1 and ~α3. Popula-
tions never overlap, so the total population satisfies

∑
σ nσ =L.

Fig. 1 B and C shows an example of the time evolution of one
such spatial community consisting of 11 species competing for
3 nutrients.

While the supply of nutrients is spatially uniform, the local rate
of nutrient consumption depends on the metabolic strategy of
the local species, and nutrients diffuse in space. We study the
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Fig. 1. A model with spatial structure and metabolic trade-offs supports
more species than expected from the principle of competitive exclusion.
Example with 3 nutrients and 11 species starting with equal populations is
shown. (A) Each species uptakes nutrients according to its enzyme-allocation
strategy (ασ1,ασ2,ασ3). Because strategies satisfy the budget constraint∑

i ασi = E, each can be represented as a point on a triangle in strategy
space. The nutrient supply ~s = (E/S)~S = (0.25, 0.45, 0.3) is represented as a
black diamond. Colors correspond to strategies and are consistent through-
out the figure. (B) Each species occupies a fraction of a 1-dimensional space
(a ring) and has a corresponding time-dependent population size nσ(t).
Here, the nutrient diffusion time τD is 400. (C) Population dynamics from A.
Nine species coexist on 3 nutrients. (D) Concentrations of the 3 nutrients at
steady state (vertical black lines denote boundaries between populations).

regime where population growth is nutrient-limited, so the rate
of uptake of each nutrient is linear in its concentration. Thus,
within each region occupied by a single species σ, the nutrient
concentrations cσi obey

∂cσi
∂t

=Si −ασicσi +D
∂2cσi
∂x2

, [1]

where D is the diffusion coefficient for all nutrients. As nutri-
ent processing is generally much faster than growth, we assume
a separation of timescales, such that nutrient concentrations
equilibrate before populations change. Then, ∂c

∂t
=0, and

cσi(x )=
Si

ασi
+Aσi exp

(
x

√
ασi
D

)
+Bσi exp

(
−x
√
ασi
D

)
.

[2]
The constants of integration Aσi and Bσi are fixed by the phys-
ical requirement that ci(x ) be continuous and differentiable at
the population boundaries. Fig. 1D shows the concentrations of
the 3 nutrients after the populations shown in Fig. 1 B and C has
reached steady state. The competitors transform the uniform
nutrient supply into a complex spatial environment by depleting
their preferred nutrients while allowing other nutrients diffuse to
their neighbors.

The populations change in time according to

dnσ
dt

=
∑
i

ασi

(
v

∫ nσ

0

ci(x ) dx

)
− δnσ, [3]

where δ is the death rate and the integral is taken over the
territory occupied by species σ. v is a length that converts nutri-
ents to territory growth. The total population remains fixed at
L, corresponding to competition for a share of a fixed total ter-
ritory. This implies

∑
σ ṅσ =0, which requires δ= vS—i.e., the

death rate matches the nutrient value of the total supply rate.
We choose units of time and concentration such that v =1 and
S =1, without loss of generality. In the example shown in Fig. 1
B and C, 9 species coexist, far exceeding the 3-species limit set by
competitive exclusion.

The spatial nutrient environment influences the population
dynamics via the dimensionless diffusion time τD ≡L2E/D ,
which is the time for nutrients to diffuse a distance L relative to
the uptake time. Competitors interact only through the nutrient
environment, so when nutrients diffuse instantaneously (τD =0),
the spatial dynamics reduce to the well-mixed dynamics. (See SI
Appendix for the τD→ 0 expansion.)

Biodiversity. How does territorial spatial structure influence bio-
diversity? As an illustrative example, we consider 10 species
competing for 2 resources. The simplex in Fig. 2 A, Inset shows
how each of the strategies (colored dots) and the nutrient sup-
ply (diamond) divide between the 2 nutrients. In Fig. 2A, the
nutrients are well-mixed (τD =0), and all 10 species coexist at
steady state. The steady state of the spatial case shown in Fig. 2B
still exceeds competitive exclusion, with 3 species coexisting on
2 resources, but much of the biodiversity is lost. This behavior
is striking, as it contrasts with many competition models where
spatial structure increases diversity relative to the well-mixed
case (20–26). In those models, diversity increases because spatial
segregation, combined with local interactions, weakens interspe-
cific competition. Here, however, the resource environment is
uniformly coupled via diffusion, so competition remains strong.
Strategies that are poorly matched to the nutrient supply allow
unused nutrients to diffuse away to competitors; such popula-
tions shrink until the nutrient fluxes are balanced or the species
goes extinct. This contrasts with the well-mixed case, where at
steady state all of the nutrient concentrations are equal so that
every strategy can coexist (8). Thus, territorial spatial structure
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Fig. 2. Spatial structure reduces diversity compared to the well-mixed limit
of instantaneous nutrient diffusion. (A, Upper) A well-mixed population
of 10 species with equal initial populations competing for 2 nutrients.
All 10 coexist at steady state. (A, Lower) Same as A, Upper, but with
different initial populations. The community reaches a new steady state.
(A, Upper, Inset) Strategies ~ασ and resource supply~s = (0.4, 0.6). (B, Upper)
Same species and nutrient supply as A, but in a spatial environment with
nonzero nutrient diffusion time. Only 3 species survive. (B, Lower) Same
as B, Upper, but with different initial populations. The community reaches
the same steady state. (C) Fraction of initial species coexisting at steady
state with ~s = (0.4, 0.6); a population is considered extinct if nσ/L< 10−6

(mean± SD for 400 random sets of 10 strategies). The well-mixed model has
survival fraction 0.99± 0.08. (D) Effective number of species M at steady
state (mean ± SD for same strategies as C).

heightens competitive differences between strategies, even when
all obey the same trade-offs.

How representative is the behavior seen in Fig. 2 A and B? In
Fig. 2 C and D, we show results for many randomly generated
territorial communities, confirming that the loss of biodiversity
is a generic feature of spatial structure and that the nutrient dif-
fusion time τD acts as a control parameter for biodiversity. In
the well-mixed model, all 10 species typically coexist. (See ref. 8
for a discussion of the “convex hull condition” for coexistence.)
Fig. 2C shows the mean fraction of species coexisting at steady
state for nonzero τD . Spatial communities still violate compet-
itive exclusion, but a large fraction of species go extinct. Even
among those that survive, spatial structure reduces biodiversity
by rendering abundances highly unequal. Using the same data
as Fig. 2C, Fig. 2D quantifies this via the effective number of
species M =exp (H ), where H =−

∑
σ pσ log pσ is the Shannon

entropy and pσ =nσ/L. (Intuitively, M is the number of equal
populations yielding H . See SI Appendix for full rank abundance
curves.) The average community loses ≈ 1/3 of its steady-state
diversity as τD grows from 0.01 to 1600. In well-mixed com-
munities, all 10 species are typically present in comparable
proportions, but in the spatial model, 1 species dominates. Once
this population is large compared to

√
E/D , increasing τD adds

to the “bulk” population in its interior, decreasing overall diver-
sity (see SI Appendix for details). However, aggregate measures
of diversity in Fig. 2 C and D belies a wide distribution of out-
comes. For example, only 3 species survive in Fig. 2B, whereas
9 coexist in Fig. 1. Why are some steady-state communities so
much more diverse than others?

In order to identify which features of the initial set of species
determine steady-state diversity, we generated many random
communities with species drawn uniformly from strategy space.
Fig. 3 A and C shows the distributions of the steady-state
diversity M as a function of s1, the supply of nutrient 1. The
number of nutrients does not explain the difference in out-
comes. However, diverse steady states proliferate as the supply
becomes more balanced between nutrients. What distinguishes
high-diversity outcomes? Fig. 3 B and D shows every strategy
present in every community with high diversity. Diverse com-
munities have one thing in common: They lack species in the
region of strategy space where Rσ ≡

∑p
i Rσi < p. Here, Rσi ≡

Si/ασi is the uniform concentration of nutrient i an isolated
population with uptake ασi would produce given a supply rate
Si . Thus, Rσ is the total nutrient concentration maintained
by and sustaining an isolated species σ at steady state. For
comparison, Rσ diverges for specialists (ασi =0), while a per-
fect generalist (ασi =1/p) has Rσ = p, as does a strategy that
perfectly matches the supply (ασi =Si). Strategies satisfying
Rσ < p survive on even lower total nutrient concentrations, so
we christen them “oligotrophs.” Their ability to create and sur-
vive on the minimum total nutrient concentration allows them
to drive competitors extinct, thus reducing diversity. This recalls
Tilman’s famous result that the species with the lowest equilib-
rium concentration of its limiting resource (the lowest R∗) can
displace all others competing for that resource (15). However, the
R∗ rule is due to a species’ innate superiority in consuming a single
resource, whereas the oligotroph condition arises in a competition
for multiple resources between intrinsically equal species.

To test whether it is simply the presence/absence of
oligotrophs that controls overall biodiversity, we generated
random communities in an environment with an asymmetric
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Fig. 3. Steady-state diversity is governed by a simple condition: Diversity
crashes if there is an “oligotroph” whose strategy satisfies Rσ < p. (A) Prob-
ability of effective number of species M at steady state. For each nutrient
supply, we simulated 2,000 sets of 20 strategies. Strategies were chosen
uniformly at random, except the case shown in red (~s = (0.2, 0.8)), where
oligotrophs were excluded. τD = 10 here and below. (B) For ~s = (0.4, 0.6)
(orange in A), we plot all strategies that appear in the most diverse 10%
of simulations (90th percentile and above of M). No strategies appear in
the oligotroph region, demarcated by the blue dashed lines. (C) Same as A
but for 3 nutrients. (D) Strategies that appear in the most diverse 10% of
simulations for~s = (0.2, 0.4, 0.4) (teal in C). The oligotroph region is nearly
empty.
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nutrient supply (s1 =0.2), but excluded oligotrophs. The result-
ing steady-state communities are much more diverse (Fig. 3A,
red) than the case where oligotrophs are allowed (Fig. 3A, pur-
ple). Hence, an asymmetric nutrient supply reduces diversity
by increasing the probability that an oligotroph will be present.
The oligotroph condition captures the intuition of the R∗ rule—
species with low resource requirements dominate—but does not
require biological superiority or preclude coexistence beyond
competitive exclusion.

Alternative Steady States and Slow Dynamics. How does the out-
come of spatial competition depend on initial conditions? Con-
sider the well-mixed system in Fig. 2A. All that differs between
the top and bottom subplots are the initial populations, but the
same set of species has 2 very different steady states; not even the
hierarchy of populations is preserved. In fact, there is an m − p-
dimensional degenerate manifold of fixed points corresponding
to the communities that construct the same steady-state nutrient
environment c∗i =S/E ∀ i . The final population may lie any-
where on this manifold. By contrast, in the spatial ecosystem
of Fig. 2B, both sets of initial populations converge to the same
unique steady state.

The relationship between the steady states in the well-mixed
and spatial regimes can be visualized in a simple example. Fig. 4A
shows the phase behavior of 3 species competing for 2 resources.
Here, m − p=1, so the well-mixed case (Fig. 4 A, Left) has a
1-dimensional degeneracy of steady states. In the spatial com-
munity (Fig. 4 A, Center and Right), the degenerate manifold
collapses to a single fixed point. (Here, the fixed point is unique,
but this is not always the case; see Fig. 5.) This discontinuous
change in the steady states is reflected in Fig. 2 C and D, where
the diversity for any τD 6=0 is substantially lower than for the
well-mixed limit τD =0. Fig. 4A also clarifies another striking
difference between Fig. 2A, in which the well-mixed community
approaches steady state at approximately the individual death

B

A

Fig. 4. Spatial structure replaces the steady-state degeneracy of the well-
mixed case with slow modes in population space. (A) Trajectories in popula-
tion space for a 3-way competition at different values of τD. The direction
and color of the arrows show the direction and magnitude of dnσ/dt,
respectively. (A, Inset) Strategies and supply for A and B. (B) Same as A, but
with stochastic dynamics due to random births and deaths; see SI Appendix
for details. (B, Inset) Trajectory color as a function of time. (B, Left) Species 3
drifts to extinction. (B, Right) nσ(t) for the population trajectory at B, Left.
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Fig. 5. (A and B) Two species competing for 2 nutrients, with supply
~s = (0.3, 0.7) and τD = 400. Arrows indicate flow away from unstable fixed
points. (A) Bistability for α11 = 0.29. (B) Allee effect for α11 = 0.31. Species 2
goes extinct if its initial population is too low. (C) The Allee effect in a com-
petition with 10 species and 2 nutrients, with~s = (0.4, 0.6) and τD = 100. The
blue and brown species displace each other, depending on initial conditions.
(Inset) Strategies and supply.

rate δ, and Fig. 2B, in which the spatial community approaches
steady-state orders of magnitude more slowly. This emergent
slow timescale and the breaking of degeneracy are intimately
related: For any nonzero diffusion time τD , the degenerate
manifold becomes a corresponding slow manifold, which the
population rapidly reaches and then crawls to a fixed point. Lin-
ear stability analysis around this fixed point reveals a relaxation
time tslow∼ 1/τD , which diverges as τD→ 0. (See SI Appendix for
details.)

What are the ecological implications of this slow relaxation to
steady state? In general, diverse communities with m − p� 1
could have tens or hundreds of slow modes for population
changes. These modes shape the response to perturbations: A
microbial community might recover from one antibiotic very
rapidly and another very slowly, depending on the shift in pop-
ulation space. Even without an intervention, real populations
will have stochastic fluctuations around the steady state. Fig. 4B
shows trajectories through population space for the same species
and nutrient supply as in Fig. 4A, but with demographic noise
due to stochastic births and deaths. Ecological drift is confined
to the slow manifold, and fluctuations primarily excite the popu-
lation’s “soft mode” of the balance between species 2 and species
3. These 2 have similar strategies, and either can drift to extinc-
tion, whereas species 1 always survives. In the absence of noise,
increasing τD decreases fixed-point diversity (Fig. 2D). With
noise, however, steady states in the well-mixed limit are unsta-
ble to fluctuations along the degenerate manifold. Increasing the
“restoring force” (∼ τD ) can prevent species from fluctuating to
extinction, and so spatial structure can stabilize diversity.

Although the well-mixed case has degenerate steady states,
the steady-state nutrient environment is unique, and small ini-
tial population differences lead to small differences in the steady
state (Fig. 4A). By contrast, spatial communities can have multi-
ple steady-state nutrient environments, and similar populations
may end in very different steady states. For example, in a compe-
tition of 2 species for 2 resources, Fig. 5 A and B shows the steady
states as a function of α21, with α11 held fixed. (ασ1 is the enzyme
allocation of species σ to nutrient 1. Due to trade-offs, this also
fixes ασ2.) In Fig. 5A, there are 2 alternative steady states with
both species coexisting. The unstable fixed point separates the
relatively equal community of the lower branch from the upper
branch, where species 1 dominates. This bistability leads to dis-
continuous transitions, where small changes (the populations
crossing the separatrix, or the strategy exiting the bistable phase)
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can have dramatic consequences. Fig. 5B shows another region
of strategy space where the outcomes are bistable, but now the
alternatives are coexistence and exclusion. Above the unstable
fixed point in Fig. 5B, species 1 drives species 2 to extinction.
Otherwise, they coexist with species 2 having the larger popula-
tion. This is an example of the Allee effect: Species 2 can only
survive if its population exceeds a threshold. (See SI Appendix
for a phase diagram of the full strategy space.)

The Allee effect persists in more complex communities.
Fig. 5C shows a 10-species competition where the brown and blue
species can displace each other depending on the initial condi-
tions, modifying the 8 other species’ fates in the process. Thus,
multistability and the Allee effect emerge naturally in our terri-
torial model, even though the species interact exclusively through
competition for resources.

Unequal Enzyme Budgets. Metabolic trade-offs are plausible
because all microbes face the same biophysical constraints on
metabolism and protein production, but trade-offs are unlikely to
be exact in real ecosystems. How does this impact biodiversity in
our model? Fig. 6A shows results for 10 species with exact trade-
offs (

∑
i ασi =E for all species) competing for 2 resources. The

well-mixed community is very diverse, while the spatial commu-
nity is not. In Fig. 6B, each species allocates the same fraction of
its enzyme budget to each nutrient as in Fig. 6A, but each with
its own total enzyme budget Eσ . Diversity collapses in the well-
mixed system, but the spatial community actually becomes more
diverse. Fig. 6 C and D shows that this behavior is typical via
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Fig. 6. Territorial spatial structure renders diversity robust to variation
in enzyme budgets. (A) In a community with equal enzyme budgets and
~s = (0.4, 0.6) (Left), 10 species coexist in the well-mixed model (Center),
whereas only 3 coexist in the spatial model (Right). (B) In a community with
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random enzyme budgets, in the well-mixed model with ~s = (0.4, 0.6). For
2,000 sets of strategies, each of 20 initial species’ enzyme budgets Eσ was
drawn fromN (1, δE). (D) Same as C but for spatial model.

comparison of the steady-state diversity of communities where
each species’ enzyme budget is drawn from a normal distribu-
tion with mean 1 and SD δE . Well-mixed communities (Fig. 6C)
are very diverse if trade-offs are exact (δE =0), but any dis-
parity in the enzyme budgets causes diversity to collapse; only
1 or 2 species survives at steady state. The spatial communities
(Fig. 6D) are less diverse for δE =0, but their diversity 〈M 〉
actually increases with δE . This is due to an asymmetric effect:
Oligotrophs lose their dominance with a very small decrease in
Eσ , but other species require a large increase in Eσ to dominate
(see SI Appendix for details). As a result, spatial communities
with imperfect trade-offs can display biodiversity well beyond the
competitive-exclusion limit.

Discussion
We analyzed a model of spatial resource competition among
territorial surface communities such as biofilms, vegetation, or
coral. Each species has a concrete metabolic strategy subject to
biophysical trade-offs. The nutrient environment has no intrinsic
heterogeneity but is globally coupled via diffusion, so competi-
tors shape it via consumption. We found that the resulting spatial
structure restricts biodiversity, in stark contrast to previous mod-
els, where spatial segregation increases diversity by weakening
competition. In the simplest of these cases, different resources
are partitioned into different regions, providing spatial niches
(9–13). Alternatively, competitors may self-organize into patches
linked by migration (14–16, 18, 19) or into aggregates with local
interactions (20–26). External resource gradients can also
increase diversity, because diffusion of dense motile populations
prevents any species from monopolizing resource-rich regions
(9, 10). In our model, the situation is very different. Because
the external nutrient supply is uniform and the entire space
is linked via diffusion, no spatial niches emerge; competitors
have nowhere to hide. This is reminiscent of ecological reaction–
diffusion models without external sources, where global coupling
reduces diversity (26) and nonuniform steady states only become
possible for unequal diffusion coefficients or complex geometries
(27). Our communities are fundamentally different, however,
as they occupy exclusive territories and exceed the competitive-
exclusion limit despite a simple geometry and uniform diffusion
coefficients.

What controls diversity in our model? The degree of nutri-
ent mixing τD controls the evenness of abundances by setting
the population of the dominant species, while the presence
of oligotrophs distinguishes steady states of high coexistence
from those with many extinctions. Oligotrophs drive competitors
extinct because they have the lowest total nutrient requirements,
in rough analogy with the lowest R∗ rule for well-mixed systems
(15). However, oligotrophs obey the same trade-offs as every
other species, and their dominance arises from the relationship
between their strategies and the nutrient supply rather than any
innate superiority. The composition of the nutrient supply sets
the strategy range of oligotrophs, so it is effectively another con-
trol parameter for diversity. Despite highly nonlinear dynamics
and many parameters, the oligotroph condition provides a simple
criterion for diversity.

Spatial structure also provides a novel mechanism for discon-
tinuous transitions between alternative steady states. Such sud-
den shifts, or “catastrophes,” attract significant attention due to
their implications for ecosystem resilience (31). The Allee effect
occurs in a large variety of ecosystems (32) and is particularly
relevant to the conservation of rare species. It is usually under-
stood as the result of transparently cooperative processes, such
as production of a public good (32), and modeled via an explicit
cooperative term. In resource-competition models, multistabil-
ity has been observed when species consume nutrients one at a
time (33) or with unequal stoichiometries (34). Here, both the
Allee effect and multistability emerge naturally from the ability
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of a population to render its resource environment more favor-
able to itself. Interestingly, the Allee-effect species are oligo-
trophs, underscoring the special ability these strategies have to
impact their ecosystems.

It has been observed that spatial structure increases the time
to reach equilibrium (35). Here, we showed precisely how a new
dynamical timescale emerges from spatial structure. We found
that the slow dynamics are confined to a manifold in population
space. These slow modes of the population are subject to large
fluctuations due to noise (e.g., demographics). Slow relaxation
also means that for a rapidly changing nutrient supply, the pop-
ulation might never reach steady state, potentially saving some
species from extinction.

Finally, we find that spatial structure allows diversity to per-
sist with imprecise metabolic trade-offs. In the well-mixed system
without noise, any deviation from exactly equal enzyme budgets
leads to ecosystem collapse (8). Spatial communities, however,
remain diverse with only approximate trade-offs. In fact, vari-
ation in enzyme budgets actually increases mean diversity by
impairing oligotrophs. The persistence of diversity beyond com-
petitive exclusion with inexact trade-offs makes it more credible
that trade-offs play a role in maintaining the surprising diversity
of real ecosystems.

Our results suggest several future research directions. A 2D
extension of the model exhibits the same loss of biodiversity
due to oligotrophs and uneven abundances (SI Appendix), and
it will be interesting to explore 2D pattern formation in more
depth. One might also consider resources that diffuse at different
rates. This can lead to nonuniform steady states in reaction–
diffusion systems (27). Finally, in microbial communities,
gene regulation and evolution are often relevant on ecological

timescales, so it would be natural to allow species to modify their
strategies.

In summary, we find that spatial structure engenders more
realistic communities: It curtails the unlimited diversity of the
well-mixed model, but allows for coexistence beyond the compet-
itive exclusion principle even in the absence of exact metabolic
trade-offs. Our results demonstrate that mechanistic interac-
tions, arising from biophysical constraints such as space and
metabolism, can allow even simple models to capture some of
the rich behaviors of real ecosystems.

Materials and Methods
The population ordinary differential equations (Eq. 3) were solved numeri-
cally by using Mathematica’s “NDSolve.” The cσ,i depend on nσ through the
coefficients {Aσi , Bσi}, which are fixed by requiring that ci(x) be continuous
and differentiable at the population boundaries. The nutrient equations are
simpler under the change of variables x→ x−

∑
σ′<σ

nσ′ . Then, cσ,i(x) runs

from 0 to nσ , yielding the system

cσ,i(nσ) = cσ+1,i(0)

c′σ,i(nσ) = c′σ+1,i(0),
[4]

which was solved by using Mathematica’s “LinearSolve” with periodic
boundary conditions (cmi(nm) = c1i(0), corresponding to a ring).

Details on the well-mixed model, stochastic dynamics, and figure
parameters can be found in SI Appendix. Code is available on GitHub (36).
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rapid phenotypic diversification in species-rich communities. PLoS Comput. Biol. 12,
e1005139 (2016).

26. R. Durrett, S. A. Levin, The importance of being discrete (and spatial). Theor. Popul.
Biol. 46, 363–394 (1994).

27. S. A. Levin, “Non-uniform stable solutions to reaction-diffusion equations: Applica-
tions to ecological pattern oormation” in Pattern Formation by Dynamic Systems
and Pattern Recognition, H. Haken, Ed. (Springer-Verlag, Berlin, Germany, 1979), pp.
210–222.

28. J. T. Wooton, Local interactions predict large-scale pattern in empirically derived
cellular automata. Nature 413, 841–844 (2001).

29. L. A. Maguire, J. W. Porter, A spatial model of growth and competition strategies in
coral communities. Eco Modell. 3, 249–271 (1977).

30. A. Okubo, S. A. Levin, Diffusion and Ecological Problems: Modern Perspectives
(Springer-Verlag, New York, NY, 2001).

31. M. Scheffer, S. R. Carpenter, Catastrophic regime shifts in ecosystems: Linking theory
to observation. Trends Ecol. Evol. 18, 648–656 (2003).

32. F. Courchamp, L. Berec, J. Gascoigne, Allee Effects in Ecology and Conservation
(Oxford University Press, Oxford, UK, 2008).

33. A. Goyal, V. Dubinkina, S. Maslov, Multiple stable states in microbial com-
munities explained by the stable marriage problem. ISME J. 12, 2823–2834
(2018).

34. V. Dubinkina, Y. Fridman, P. P. Pandey, S. Maslov, Alternative stable states in a
model of microbial community limited by multiple essential nutrients. https://www.
biorxiv.org/content/10.1101/439547v1.full (10 October 2018).

35. C. L. Lehman, D. Tilman, “Competition in spatial habitats” in Spatial Ecology: The Role
of Space in Population Dynamics and Interspecific Interactions, D. Tilman, P. Kareiva,
Eds. (Princeton University Press, Princeton, NJ, 1997), chap. 8, pp. 185–203.

36. B. G. Weiner, A. Posfai, N. S. Wingreen, Ecology-territorial-populations. GitHub.
https://github.com/BenjaminWeiner/ecology-territorial-populations. Deposited 11
August 2019.

Weiner et al. PNAS | September 3, 2019 | vol. 116 | no. 36 | 17879

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911570116/-/DCSupplemental
https://www.biorxiv.org/content/10.1101/439547v1.full
https://www.biorxiv.org/content/10.1101/439547v1.full
https://github.com/BenjaminWeiner/ecology-territorial-populations

