Skip to main content
. Author manuscript; available in PMC: 2020 Oct 1.
Published in final edited form as: Int J Radiat Oncol Biol Phys. 2019 Jun 13;105(2):440–447. doi: 10.1016/j.ijrobp.2019.06.009

Table 1.

Results of xerostomia prediction

Method Accuracy Sensitivity Specificity F-score AUC (95% CI)
3D rCNN 0.76 0.76 0.76 0.70 0.84 (0.74–0.91)
3D rCNN without contour 0.74 0.72 0.76 0.68 0.82 (0.72–0.90)
3D rCNN without CT 0.73 0.77 0.71 0.69 0.78 (0.67–0.88)
3D rCNN without dose 0.65 0.59 0.69 0.56 0.70 (0.58–0.80)
LR without clinical variables 0.56 0.75 0.43 0.57 0.68 (0.56–0.80)
LR with clinical variables 0.64 0.72 0.59 0.60 0.74 (0.64–0.84)

AUC: area under the curve; CI: confidence interval; CT: computed tomography; 3D rCNN: three-dimensional residual convolutional neural network; LR: logistic regression