Table 3.
AUC Values of All Machine Learning Models with Each Dataset on Test Seta
datasets | MLP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | MLP_1 | MLP_2 | MLP_3 | MLP_4 | MLP_5 | RF | ABDT | DT | NB | logistic | ||
molecular descriptor | CB1 test | 0.922 | 0.852 | 0.854 | 0.866 | 0.898 | 0.891 | 0.914 | 0.915 | 0.818 | 0.935 | 0.826 |
CB2 test | 0.931 | 0.914 | 0.906 | 0.908 | 0.918 | 0.920 | 0.904 | 0.927 | 0.807 | 0.917 | 0.891 | |
CB1O/CB1A test | 0.923 | 0.940 | 0.769 | 0.800 | 0.887 | 0.925 | 0.915 | 0.979 | 0.822 | 0.924 | 0.915 | |
MACCS | CB1 test | 0.892 | 0.902 | 0.882 | 0.902 | 0.907 | 0.893 | 0.848 | 0.880 | 0.796 | 0.832 | 0.903 |
CB2 test | 0.917 | 0.924 | 0.928 | 0.923 | 0.920 | 0.915 | 0.891 | 0.895 | 0.839 | 0.872 | 0.928 | |
CB1O/CB1A test | 0.935 | 0.970 | 0.969 | 0.955 | 0.945 | 0.948 | 0.868 | 0.970 | 0.834 | 0.813 | 0.937 | |
ECFP6 | CB1 test | 0.861 | 0.916 | 0.896 | 0.899 | 0.909 | 0.917 | 0.893 | 0.899 | 0.764 | 0.942 | 0.912 |
CB2 test | 0.936 | 0.945 | 0.940 | 0.947 | 0.930 | 0.934 | 0.900 | 0.926 | 0.811 | 0.957 | 0.953 | |
CB1O/CB1A test | 0.939 | 0.979 | 0.979 | 0.984 | 0.982 | 0.944 | 0.873 | 0.972 | 0.872 | 0.973 | 0.978 |
Each bold entry shows the highest metric value among the machine learning models using different algorithms.