Skip to main content
. Author manuscript; available in PMC: 2019 Sep 8.
Published in final edited form as: Mol Pharm. 2019 May 3;16(6):2605–2615. doi: 10.1021/acs.molpharmaceut.9b00182

Table 3.

AUC Values of All Machine Learning Models with Each Dataset on Test Seta

datasets MLP
SVM MLP_1 MLP_2 MLP_3 MLP_4 MLP_5 RF ABDT DT NB logistic
molecular descriptor CB1 test 0.922 0.852 0.854 0.866 0.898 0.891 0.914 0.915 0.818 0.935 0.826
CB2 test 0.931 0.914 0.906 0.908 0.918 0.920 0.904 0.927 0.807 0.917 0.891
CB1O/CB1A test 0.923 0.940 0.769 0.800 0.887 0.925 0.915 0.979 0.822 0.924 0.915
MACCS CB1 test 0.892 0.902 0.882 0.902 0.907 0.893 0.848 0.880 0.796 0.832 0.903
CB2 test 0.917 0.924 0.928 0.923 0.920 0.915 0.891 0.895 0.839 0.872 0.928
CB1O/CB1A test 0.935 0.970 0.969 0.955 0.945 0.948 0.868 0.970 0.834 0.813 0.937
ECFP6 CB1 test 0.861 0.916 0.896 0.899 0.909 0.917 0.893 0.899 0.764 0.942 0.912
CB2 test 0.936 0.945 0.940 0.947 0.930 0.934 0.900 0.926 0.811 0.957 0.953
CB1O/CB1A test 0.939 0.979 0.979 0.984 0.982 0.944 0.873 0.972 0.872 0.973 0.978
a

Each bold entry shows the highest metric value among the machine learning models using different algorithms.