Table 4.
Ranked Molecular Descriptor-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a
algorithms | AUC | F1_score | ACC | Cohen’s κ | MCC | precision | recall | mean | rank |
---|---|---|---|---|---|---|---|---|---|
SVM | 0.926 | 0.573 | 0.900 | 0.504 | 0.540 | 0.495 | 0.802 | 0.677 | 2 |
MLP_1 | 0.902 | 0.560 | 0.902 | 0.503 | 0.542 | 0.476 | 0.813 | 0.671 | 3 |
MLP_2 | 0.843 | 0.517 | 0.856 | 0.390 | 0.407 | 0.466 | 0.639 | 0.588 | 11 |
MLP_3 | 0.858 | 0.549 | 0.876 | 0.448 | 0.468 | 0.534 | 0.616 | 0.621 | 9 |
MLP_4 | 0.901 | 0.566 | 0.887 | 0.454 | 0.480 | 0.472 | 0.735 | 0.642 | 7 |
MLP_5 | 0.912 | 0.570 | 0.906 | 0.499 | 0.522 | 0.494 | 0.738 | 0.663 | 6 |
RF | 0.911 | 0.582 | 0.907 | 0.503 | 0.521 | 0.503 | 0.728 | 0.665 | 5 |
ABDT | 0.940 | 0.595 | 0.920 | 0.556 | 0.602 | 0.504 | 0.875 | 0.713 | 1 |
DT | 0.816 | 0.562 | 0.901 | 0.478 | 0.492 | 0.497 | 0.682 | 0.632 | 8 |
NB | 0.925 | 0.561 | 0.878 | 0.470 | 0.526 | 0.451 | 0.887 | 0.671 | 3 |
logistic | 0.877 | 0.505 | 0.842 | 0.415 | 0.464 | 0.423 | 0.821 | 0.621 | 9 |
Each bold entry shows the highest metric value among the machine learning models using different algorithms.