Skip to main content
. Author manuscript; available in PMC: 2019 Sep 8.
Published in final edited form as: Mol Pharm. 2019 May 3;16(6):2605–2615. doi: 10.1021/acs.molpharmaceut.9b00182

Table 4.

Ranked Molecular Descriptor-Based Prediction Scores for Each Machine Learning Algorithm by Metrics (Average over Three Datasets)a

algorithms AUC F1_score ACC Cohen’s κ MCC precision recall mean rank
SVM 0.926 0.573 0.900 0.504 0.540 0.495 0.802 0.677 2
MLP_1 0.902 0.560 0.902 0.503 0.542 0.476 0.813 0.671 3
MLP_2 0.843 0.517 0.856 0.390 0.407 0.466 0.639 0.588 11
MLP_3 0.858 0.549 0.876 0.448 0.468 0.534 0.616 0.621 9
MLP_4 0.901 0.566 0.887 0.454 0.480 0.472 0.735 0.642 7
MLP_5 0.912 0.570 0.906 0.499 0.522 0.494 0.738 0.663 6
RF 0.911 0.582 0.907 0.503 0.521 0.503 0.728 0.665 5
ABDT 0.940 0.595 0.920 0.556 0.602 0.504 0.875 0.713 1
DT 0.816 0.562 0.901 0.478 0.492 0.497 0.682 0.632 8
NB 0.925 0.561 0.878 0.470 0.526 0.451 0.887 0.671 3
logistic 0.877 0.505 0.842 0.415 0.464 0.423 0.821 0.621 9
a

Each bold entry shows the highest metric value among the machine learning models using different algorithms.